/*
-----------------------------------------------------------------------
Copyright: 2010-2021, imec Vision Lab, University of Antwerp
2014-2021, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/dims3d.h"
#include
#include
#include
#include
#include
namespace astraCUDA3d {
static const unsigned int g_anglesPerBlock = 4;
// thickness of the slices we're splitting the volume up into
static const unsigned int g_blockSlices = 4;
static const unsigned int g_detBlockU = 32;
static const unsigned int g_detBlockV = 32;
static const unsigned g_MaxAngles = 1024;
__constant__ float gC_SrcX[g_MaxAngles];
__constant__ float gC_SrcY[g_MaxAngles];
__constant__ float gC_SrcZ[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetSZ[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];
__constant__ float gC_DetUZ[g_MaxAngles];
__constant__ float gC_DetVX[g_MaxAngles];
__constant__ float gC_DetVY[g_MaxAngles];
__constant__ float gC_DetVZ[g_MaxAngles];
// x=0, y=1, z=2
struct DIR_X {
__device__ float nSlices(const SDimensions3D& dims) const { return dims.iVolX; }
__device__ float nDim1(const SDimensions3D& dims) const { return dims.iVolY; }
__device__ float nDim2(const SDimensions3D& dims) const { return dims.iVolZ; }
__device__ float c0(float x, float y, float z) const { return x; }
__device__ float c1(float x, float y, float z) const { return y; }
__device__ float c2(float x, float y, float z) const { return z; }
__device__ float tex(cudaTextureObject_t tex, float f0, float f1, float f2) const { return tex3D(tex, f0, f1, f2); }
__device__ float x(float f0, float f1, float f2) const { return f0; }
__device__ float y(float f0, float f1, float f2) const { return f1; }
__device__ float z(float f0, float f1, float f2) const { return f2; }
};
// y=0, x=1, z=2
struct DIR_Y {
__device__ float nSlices(const SDimensions3D& dims) const { return dims.iVolY; }
__device__ float nDim1(const SDimensions3D& dims) const { return dims.iVolX; }
__device__ float nDim2(const SDimensions3D& dims) const { return dims.iVolZ; }
__device__ float c0(float x, float y, float z) const { return y; }
__device__ float c1(float x, float y, float z) const { return x; }
__device__ float c2(float x, float y, float z) const { return z; }
__device__ float tex(cudaTextureObject_t tex, float f0, float f1, float f2) const { return tex3D(tex, f1, f0, f2); }
__device__ float x(float f0, float f1, float f2) const { return f1; }
__device__ float y(float f0, float f1, float f2) const { return f0; }
__device__ float z(float f0, float f1, float f2) const { return f2; }
};
// z=0, x=1, y=2
struct DIR_Z {
__device__ float nSlices(const SDimensions3D& dims) const { return dims.iVolZ; }
__device__ float nDim1(const SDimensions3D& dims) const { return dims.iVolX; }
__device__ float nDim2(const SDimensions3D& dims) const { return dims.iVolY; }
__device__ float c0(float x, float y, float z) const { return z; }
__device__ float c1(float x, float y, float z) const { return x; }
__device__ float c2(float x, float y, float z) const { return y; }
__device__ float tex(cudaTextureObject_t tex, float f0, float f1, float f2) const { return tex3D(tex, f1, f2, f0); }
__device__ float x(float f0, float f1, float f2) const { return f1; }
__device__ float y(float f0, float f1, float f2) const { return f2; }
__device__ float z(float f0, float f1, float f2) const { return f0; }
};
struct SCALE_CUBE {
float fOutputScale;
__device__ float scale(float a1, float a2) const { return sqrt(a1*a1+a2*a2+1.0f) * fOutputScale; }
};
struct SCALE_NONCUBE {
float fScale1;
float fScale2;
float fOutputScale;
__device__ float scale(float a1, float a2) const { return sqrt(a1*a1*fScale1+a2*a2*fScale2+1.0f) * fOutputScale; }
};
bool transferConstants(const SConeProjection* angles, unsigned int iProjAngles)
{
// transfer angles to constant memory
float* tmp = new float[iProjAngles];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(SrcX);
TRANSFER_TO_CONSTANT(SrcY);
TRANSFER_TO_CONSTANT(SrcZ);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetSZ);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
TRANSFER_TO_CONSTANT(DetUZ);
TRANSFER_TO_CONSTANT(DetVX);
TRANSFER_TO_CONSTANT(DetVY);
TRANSFER_TO_CONSTANT(DetVZ);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
return true;
}
#include "rounding.h"
// threadIdx: x = ??? detector (u?)
// y = relative angle
// blockIdx: x = ??? detector (u+v?)
// y = angle block
template
__global__ void cone_FP_t(float* D_projData, unsigned int projPitch,
cudaTextureObject_t tex,
unsigned int startSlice,
unsigned int startAngle, unsigned int endAngle,
const SDimensions3D dims,
SCALE sc)
{
COORD c;
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y;
if (angle >= endAngle)
return;
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fSrcZ = gC_SrcZ[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
const float fDetUZ = gC_DetUZ[angle];
const float fDetVX = gC_DetVX[angle];
const float fDetVY = gC_DetVY[angle];
const float fDetVZ = gC_DetVZ[angle];
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX;
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY;
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ;
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x;
if (detectorU >= dims.iProjU)
return;
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV;
int endDetectorV = startDetectorV + g_detBlockV;
if (endDetectorV > dims.iProjV)
endDetectorV = dims.iProjV;
int endSlice = startSlice + g_blockSlices;
if (endSlice > c.nSlices(dims))
endSlice = c.nSlices(dims);
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
{
/* Trace ray from Src to (detectorU,detectorV) from */
/* X = startSlice to X = endSlice */
const float fDetX = fDetSX + detectorU*fDetUX + detectorV*fDetVX;
const float fDetY = fDetSY + detectorU*fDetUY + detectorV*fDetVY;
const float fDetZ = fDetSZ + detectorU*fDetUZ + detectorV*fDetVZ;
/* (x) ( 1) ( 0) */
/* ray: (y) = (ay) * x + (by) */
/* (z) (az) (bz) */
const float a1 = (c.c1(fSrcX,fSrcY,fSrcZ) - c.c1(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float a2 = (c.c2(fSrcX,fSrcY,fSrcZ) - c.c2(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float b1 = c.c1(fSrcX,fSrcY,fSrcZ) - a1 * c.c0(fSrcX,fSrcY,fSrcZ);
const float b2 = c.c2(fSrcX,fSrcY,fSrcZ) - a2 * c.c0(fSrcX,fSrcY,fSrcZ);
const float fDistCorr = sc.scale(a1, a2);
float fVal = 0.0f;
float f0 = startSlice + 0.5f;
float f1 = a1 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b1 + 0.5f*c.nDim1(dims) - 0.5f + 0.5f;
float f2 = a2 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b2 + 0.5f*c.nDim2(dims) - 0.5f + 0.5f;
for (int s = startSlice; s < endSlice; ++s)
{
float f1f = round(f1) - 0.5f;
float f2f = round(f2) - 0.5f;
textype f1_ = texto(f1);
textype f2_ = texto(f2);
textype f1f_ = texto(f1f);
textype f2f_ = texto(f2f);
textype fVal0_0; textocheck(fVal0_0, "fp", c.tex(tex, f0, f1f, f2f));
textype fVal1_0; textocheck(fVal1_0, "fp", c.tex(tex, f0, f1f + 1.0f, f2f));
textype fVal0_1; textocheck(fVal0_1, "fp", c.tex(tex, f0, f1f, f2f + 1.0f));
textype fVal1_1; textocheck(fVal1_1, "fp", c.tex(tex, f0, f1f + 1.0f, f2f + 1.0f));
textype fVal0 = interpolate(fVal0_0, fVal0_1, (f2_ - f2f_));
textype fVal1 = interpolate(fVal1_0, fVal1_1, (f2_ - f2f_));
fVal += texfrom(interpolate(fVal0, fVal1, (f1_ - f1f_)));
// fVal += c.tex(tex, f0, f1, f2);
f0 += 1.0f;
f1 += a1;
f2 += a2;
}
fVal *= fDistCorr;
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fVal;
}
}
template
__global__ void cone_FP_SS_t(float* D_projData, unsigned int projPitch,
cudaTextureObject_t tex,
unsigned int startSlice,
unsigned int startAngle, unsigned int endAngle,
const SDimensions3D dims, int iRaysPerDetDim,
SCALE_NONCUBE sc)
{
COORD c;
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y;
if (angle >= endAngle)
return;
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fSrcZ = gC_SrcZ[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
const float fDetUZ = gC_DetUZ[angle];
const float fDetVX = gC_DetVX[angle];
const float fDetVY = gC_DetVY[angle];
const float fDetVZ = gC_DetVZ[angle];
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX;
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY;
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ;
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x;
if (detectorU >= dims.iProjU)
return;
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV;
int endDetectorV = startDetectorV + g_detBlockV;
if (endDetectorV > dims.iProjV)
endDetectorV = dims.iProjV;
int endSlice = startSlice + g_blockSlices;
if (endSlice > c.nSlices(dims))
endSlice = c.nSlices(dims);
const float fSubStep = 1.0f/iRaysPerDetDim;
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
{
/* Trace ray from Src to (detectorU,detectorV) from */
/* X = startSlice to X = endSlice */
float fV = 0.0f;
float fdU = detectorU - 0.5f + 0.5f*fSubStep;
for (int iSubU = 0; iSubU < iRaysPerDetDim; ++iSubU, fdU+=fSubStep) {
float fdV = detectorV - 0.5f + 0.5f*fSubStep;
for (int iSubV = 0; iSubV < iRaysPerDetDim; ++iSubV, fdV+=fSubStep) {
const float fDetX = fDetSX + fdU*fDetUX + fdV*fDetVX;
const float fDetY = fDetSY + fdU*fDetUY + fdV*fDetVY;
const float fDetZ = fDetSZ + fdU*fDetUZ + fdV*fDetVZ;
/* (x) ( 1) ( 0) */
/* ray: (y) = (ay) * x + (by) */
/* (z) (az) (bz) */
const float a1 = (c.c1(fSrcX,fSrcY,fSrcZ) - c.c1(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float a2 = (c.c2(fSrcX,fSrcY,fSrcZ) - c.c2(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float b1 = c.c1(fSrcX,fSrcY,fSrcZ) - a1 * c.c0(fSrcX,fSrcY,fSrcZ);
const float b2 = c.c2(fSrcX,fSrcY,fSrcZ) - a2 * c.c0(fSrcX,fSrcY,fSrcZ);
const float fDistCorr = sc.scale(a1, a2);
float fVal = 0.0f;
float f0 = startSlice + 0.5f;
float f1 = a1 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b1 + 0.5f*c.nDim1(dims) - 0.5f + 0.5f;
float f2 = a2 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b2 + 0.5f*c.nDim2(dims) - 0.5f + 0.5f;
for (int s = startSlice; s < endSlice; ++s)
{
fVal += c.tex(tex, f0, f1, f2);
f0 += 1.0f;
f1 += a1;
f2 += a2;
}
fVal *= fDistCorr;
fV += fVal;
}
}
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fV / (iRaysPerDetDim * iRaysPerDetDim);
}
}
bool ConeFP_Array_internal(cudaPitchedPtr D_projData,
cudaTextureObject_t D_texObj,
const SDimensions3D& dims,
unsigned int angleCount, const SConeProjection* angles,
const SProjectorParams3D& params)
{
if (!transferConstants(angles, angleCount))
return false;
std::list streams;
dim3 dimBlock(g_detBlockU, g_anglesPerBlock); // region size, angles
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
int blockDirection = 0;
bool cube = true;
if (abs(params.fVolScaleX / params.fVolScaleY - 1.0) > 0.00001)
cube = false;
if (abs(params.fVolScaleX / params.fVolScaleZ - 1.0) > 0.00001)
cube = false;
SCALE_CUBE scube;
scube.fOutputScale = params.fOutputScale * params.fVolScaleX;
SCALE_NONCUBE snoncubeX;
float fS1 = params.fVolScaleY / params.fVolScaleX;
snoncubeX.fScale1 = fS1 * fS1;
float fS2 = params.fVolScaleZ / params.fVolScaleX;
snoncubeX.fScale2 = fS2 * fS2;
snoncubeX.fOutputScale = params.fOutputScale * params.fVolScaleX;
SCALE_NONCUBE snoncubeY;
fS1 = params.fVolScaleX / params.fVolScaleY;
snoncubeY.fScale1 = fS1 * fS1;
fS2 = params.fVolScaleZ / params.fVolScaleY;
snoncubeY.fScale2 = fS2 * fS2;
snoncubeY.fOutputScale = params.fOutputScale * params.fVolScaleY;
SCALE_NONCUBE snoncubeZ;
fS1 = params.fVolScaleX / params.fVolScaleZ;
snoncubeZ.fScale1 = fS1 * fS1;
fS2 = params.fVolScaleY / params.fVolScaleZ;
snoncubeZ.fScale2 = fS2 * fS2;
snoncubeZ.fOutputScale = params.fOutputScale * params.fVolScaleZ;
// timeval t;
// tic(t);
for (unsigned int a = 0; a <= angleCount; ++a) {
int dir = -1;
if (a != angleCount) {
float dX = fabsf(angles[a].fSrcX - (angles[a].fDetSX + dims.iProjU*angles[a].fDetUX*0.5f + dims.iProjV*angles[a].fDetVX*0.5f));
float dY = fabsf(angles[a].fSrcY - (angles[a].fDetSY + dims.iProjU*angles[a].fDetUY*0.5f + dims.iProjV*angles[a].fDetVY*0.5f));
float dZ = fabsf(angles[a].fSrcZ - (angles[a].fDetSZ + dims.iProjU*angles[a].fDetUZ*0.5f + dims.iProjV*angles[a].fDetVZ*0.5f));
if (dX >= dY && dX >= dZ)
dir = 0;
else if (dY >= dX && dY >= dZ)
dir = 1;
else
dir = 2;
}
if (a == angleCount || dir != blockDirection) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
dim3 dimGrid(
((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV),
(blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock);
// TODO: consider limiting number of handle (chaotic) geoms
// with many alternating directions
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
// printf("angle block: %d to %d, %d (%dx%d, %dx%d)\n", blockStart, blockEnd, blockDirection, dimGrid.x, dimGrid.y, dimBlock.x, dimBlock.y);
if (blockDirection == 0) {
for (unsigned int i = 0; i < dims.iVolX; i += g_blockSlices)
if (params.iRaysPerDetDim == 1)
if (cube)
cone_FP_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, scube);
else
cone_FP_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, snoncubeX);
else
cone_FP_SS_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, params.iRaysPerDetDim, snoncubeX);
} else if (blockDirection == 1) {
for (unsigned int i = 0; i < dims.iVolY; i += g_blockSlices)
if (params.iRaysPerDetDim == 1)
if (cube)
cone_FP_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, scube);
else
cone_FP_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, snoncubeY);
else
cone_FP_SS_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, params.iRaysPerDetDim, snoncubeY);
} else if (blockDirection == 2) {
for (unsigned int i = 0; i < dims.iVolZ; i += g_blockSlices)
if (params.iRaysPerDetDim == 1)
if (cube)
cone_FP_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, scube);
else
cone_FP_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, snoncubeZ);
else
cone_FP_SS_t<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), D_texObj, i, blockStart, blockEnd, dims, params.iRaysPerDetDim, snoncubeZ);
}
}
blockDirection = dir;
blockStart = a;
}
}
bool ok = true;
for (std::list::iterator iter = streams.begin(); iter != streams.end(); ++iter) {
ok &= checkCuda(cudaStreamSynchronize(*iter), "cone_fp");
cudaStreamDestroy(*iter);
}
// printf("%f\n", toc(t));
return ok;
}
bool ConeFP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SConeProjection* angles,
const SProjectorParams3D& params)
{
// transfer volume to array
cudaArray* cuArray = allocateVolumeArray(dims);
transferVolumeToArray(D_volumeData, cuArray, dims);
cudaTextureObject_t D_texObj;
if (!createTextureObject3D(cuArray, D_texObj)) {
cudaFreeArray(cuArray);
return false;
}
bool ret;
for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) {
unsigned int iEndAngle = iAngle + g_MaxAngles;
if (iEndAngle >= dims.iProjAngles)
iEndAngle = dims.iProjAngles;
cudaPitchedPtr D_subprojData = D_projData;
D_subprojData.ptr = (char*)D_projData.ptr + iAngle * D_projData.pitch;
ret = ConeFP_Array_internal(D_subprojData, D_texObj,
dims, iEndAngle - iAngle, angles + iAngle,
params);
if (!ret)
break;
}
cudaFreeArray(cuArray);
return ret;
}
}