diff options
| author | Willem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl> | 2015-03-06 10:58:50 +0100 | 
|---|---|---|
| committer | Willem Jan Palenstijn <Willem.Jan.Palenstijn@cwi.nl> | 2015-03-06 11:07:02 +0100 | 
| commit | f603045f5bb41de6bc1ffa93badd932b891f5f1d (patch) | |
| tree | 1474b4dd207c29cd5a8ad2bf85d78743f7507e46 /samples | |
| parent | 1c247ef5576afe401be02e08b974824263f3d61b (diff) | |
| download | astra-f603045f5bb41de6bc1ffa93badd932b891f5f1d.tar.gz astra-f603045f5bb41de6bc1ffa93badd932b891f5f1d.tar.bz2 astra-f603045f5bb41de6bc1ffa93badd932b891f5f1d.tar.xz astra-f603045f5bb41de6bc1ffa93badd932b891f5f1d.zip | |
Adjust docstring and samples to new python create_sino function
Diffstat (limited to 'samples')
| -rw-r--r-- | samples/python/s001_sinogram_par2d.py | 4 | ||||
| -rw-r--r-- | samples/python/s003_gpu_reconstruction.py | 4 | ||||
| -rw-r--r-- | samples/python/s008_gpu_selection.py | 4 | ||||
| -rw-r--r-- | samples/python/s012_masks.py | 4 | ||||
| -rw-r--r-- | samples/python/s013_constraints.py | 4 | ||||
| -rw-r--r-- | samples/python/s014_FBP.py | 4 | ||||
| -rw-r--r-- | samples/python/s015_fp_bp.py | 14 | 
7 files changed, 19 insertions, 19 deletions
| diff --git a/samples/python/s001_sinogram_par2d.py b/samples/python/s001_sinogram_par2d.py index 009d9b3..1d1b912 100644 --- a/samples/python/s001_sinogram_par2d.py +++ b/samples/python/s001_sinogram_par2d.py @@ -43,8 +43,8 @@ P = scipy.io.loadmat('phantom.mat')['phantom256']  # Create a sinogram using the GPU.  # Note that the first time the GPU is accessed, there may be a delay  # of up to 10 seconds for initialization. -proj_id = astra.create_projector('line',proj_geom,vol_geom) -sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id)  import pylab  pylab.gray() diff --git a/samples/python/s003_gpu_reconstruction.py b/samples/python/s003_gpu_reconstruction.py index 4f6ec1f..07b38ef 100644 --- a/samples/python/s003_gpu_reconstruction.py +++ b/samples/python/s003_gpu_reconstruction.py @@ -33,8 +33,8 @@ proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180  # As before, create a sinogram from a phantom  import scipy.io  P = scipy.io.loadmat('phantom.mat')['phantom256'] -proj_id = astra.create_projector('line',proj_geom,vol_geom) -sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id)  import pylab  pylab.gray() diff --git a/samples/python/s008_gpu_selection.py b/samples/python/s008_gpu_selection.py index c42e53b..a180802 100644 --- a/samples/python/s008_gpu_selection.py +++ b/samples/python/s008_gpu_selection.py @@ -32,10 +32,10 @@ proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180  import scipy.io  P = scipy.io.loadmat('phantom.mat')['phantom256'] -proj_id = astra.create_projector('line',proj_geom,vol_geom) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom)  # Create a sinogram from a phantom, using GPU #1. (The default is #0) -sinogram_id, sinogram = astra.create_sino(P, proj_id, useCUDA=True, gpuIndex=1) +sinogram_id, sinogram = astra.create_sino(P, proj_id, gpuIndex=1)  # Set up the parameters for a reconstruction algorithm using the GPU diff --git a/samples/python/s012_masks.py b/samples/python/s012_masks.py index 441d11b..0f667b0 100644 --- a/samples/python/s012_masks.py +++ b/samples/python/s012_masks.py @@ -48,8 +48,8 @@ proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,50,  # As before, create a sinogram from a phantom  import scipy.io  P = scipy.io.loadmat('phantom.mat')['phantom256'] -proj_id = astra.create_projector('line',proj_geom,vol_geom) -sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id)  pylab.figure(2)  pylab.imshow(P) diff --git a/samples/python/s013_constraints.py b/samples/python/s013_constraints.py index 009360e..8b63d5e 100644 --- a/samples/python/s013_constraints.py +++ b/samples/python/s013_constraints.py @@ -36,8 +36,8 @@ proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,50,  # As before, create a sinogram from a phantom  import scipy.io  P = scipy.io.loadmat('phantom.mat')['phantom256'] -proj_id = astra.create_projector('line',proj_geom,vol_geom) -sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id)  import pylab  pylab.gray() diff --git a/samples/python/s014_FBP.py b/samples/python/s014_FBP.py index ef4afc2..2f8e388 100644 --- a/samples/python/s014_FBP.py +++ b/samples/python/s014_FBP.py @@ -33,8 +33,8 @@ proj_geom = astra.create_proj_geom('parallel', 1.0, 384, np.linspace(0,np.pi,180  # As before, create a sinogram from a phantom  import scipy.io  P = scipy.io.loadmat('phantom.mat')['phantom256'] -proj_id = astra.create_projector('line',proj_geom,vol_geom) -sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id)  import pylab  pylab.gray() diff --git a/samples/python/s015_fp_bp.py b/samples/python/s015_fp_bp.py index 10c238d..fa0bf86 100644 --- a/samples/python/s015_fp_bp.py +++ b/samples/python/s015_fp_bp.py @@ -26,8 +26,8 @@  # This example demonstrates using the FP and BP primitives with Matlab's lsqr -# solver. Calls to FP (astra_create_sino_cuda) and -# BP (astra_create_backprojection_cuda) are wrapped in a function astra_wrap, +# solver. Calls to FP (astra.create_sino) and +# BP (astra.create_backprojection) are wrapped in a function astra_wrap,  # and a handle to this function is passed to lsqr.  # Because in this case the inputs/outputs of FP and BP have to be vectors @@ -39,17 +39,17 @@ import numpy as np  # FP/BP wrapper class  class astra_wrap(object):      def __init__(self,proj_geom,vol_geom): -        self.proj_id = astra.create_projector('line',proj_geom,vol_geom) +        self.proj_id = astra.create_projector('cuda',proj_geom,vol_geom)          self.shape = (proj_geom['DetectorCount']*len(proj_geom['ProjectionAngles']),vol_geom['GridColCount']*vol_geom['GridRowCount'])          self.dtype = np.float      def matvec(self,v): -        sid, s = astra.create_sino(np.reshape(v,(vol_geom['GridRowCount'],vol_geom['GridColCount'])),self.proj_id,useCUDA=True) +        sid, s = astra.create_sino(np.reshape(v,(vol_geom['GridRowCount'],vol_geom['GridColCount'])),self.proj_id)          astra.data2d.delete(sid)          return s.flatten()      def rmatvec(self,v): -        bid, b = astra.create_backprojection(np.reshape(v,(len(proj_geom['ProjectionAngles']),proj_geom['DetectorCount'],)),self.proj_id,useCUDA=True) +        bid, b = astra.create_backprojection(np.reshape(v,(len(proj_geom['ProjectionAngles']),proj_geom['DetectorCount'],)),self.proj_id)          astra.data2d.delete(bid)          return b.flatten() @@ -61,8 +61,8 @@ import scipy.io  P = scipy.io.loadmat('phantom.mat')['phantom256']  # Create a sinogram using the GPU. -proj_id = astra.create_projector('line',proj_geom,vol_geom) -sinogram_id, sinogram = astra.create_sino(P, proj_id,useCUDA=True) +proj_id = astra.create_projector('cuda',proj_geom,vol_geom) +sinogram_id, sinogram = astra.create_sino(P, proj_id)  # Reshape the sinogram into a vector  b = sinogram.flatten() | 
