diff options
Diffstat (limited to 'include/astra/FanFlatBeamLineKernelProjector2D.inl')
-rw-r--r-- | include/astra/FanFlatBeamLineKernelProjector2D.inl | 740 |
1 files changed, 740 insertions, 0 deletions
diff --git a/include/astra/FanFlatBeamLineKernelProjector2D.inl b/include/astra/FanFlatBeamLineKernelProjector2D.inl new file mode 100644 index 0000000..e686532 --- /dev/null +++ b/include/astra/FanFlatBeamLineKernelProjector2D.inl @@ -0,0 +1,740 @@ +/* +----------------------------------------------------------------------- +Copyright 2012 iMinds-Vision Lab, University of Antwerp + +Contact: astra@ua.ac.be +Website: http://astra.ua.ac.be + + +This file is part of the +All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox"). + +The ASTRA Toolbox is free software: you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +The ASTRA Toolbox is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. + +----------------------------------------------------------------------- +$Id$ +*/ + + +using namespace astra; + +//---------------------------------------------------------------------------------------- +// PROJECT ALL +template <typename Policy> +void CFanFlatBeamLineKernelProjector2D::project(Policy& p) +{ + // variables + float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2; + float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY; + int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector, x1; + bool switch_t; + + const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry); + const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry); + + float32 old_theta, theta, alpha; + const SFanProjection * proj = 0; + + // loop angles + for (iAngle = 0; iAngle < m_pProjectionGeometry->getProjectionAngleCount(); ++iAngle) { + + // get theta + if (pProjectionGeometry) { + old_theta = pProjectionGeometry->getProjectionAngle(iAngle); + } + else if (pVecProjectionGeometry) { + proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; + old_theta = atan2(-proj->fSrcX, proj->fSrcY); + if (old_theta < 0) old_theta += 2*PI; + } else { + assert(false); + } + + switch_t = false; + if (old_theta >= 7*PIdiv4) old_theta -= 2*PI; + if (old_theta >= 3*PIdiv4) { + old_theta -= PI; + switch_t = true; + } + + // loop detectors + for (iDetector = 0; iDetector < m_pProjectionGeometry->getDetectorCount(); ++iDetector) { + + iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; + + // POLICY: RAY PRIOR + if (!p.rayPrior(iRayIndex)) continue; + + // get values + if (pProjectionGeometry) { + t = -pProjectionGeometry->indexToDetectorOffset(iDetector); + alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance()); + t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance(); + } + else if (pVecProjectionGeometry) { + float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + iDetector); + float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + iDetector); + alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY); + t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY); + } else { + assert(false); + } + + if (switch_t) t = -t; + theta = old_theta + alpha; + + // precalculate sin, cos, 1/cos + sin_theta = sin(theta); + cos_theta = cos(theta); + inv_sin_theta = 1.0f / sin_theta; + inv_cos_theta = 1.0f / cos_theta; + + // precalculate kernel limits + lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta; + updatePerRow = sin_theta * inv_cos_theta; + inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); + + // precalculate kernel limits + lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta; + updatePerCol = cos_theta * inv_sin_theta; + inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); + + // precalculate S and T + S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow); + T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol); + + // vertically + if (old_theta <= PIdiv4) { + + // calculate x for row 0 + P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta; + x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX; + + // for each row + for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { + + // get coords + x1 = int((x > 0.0f) ? x : x-1.0f); + x2 = x - x1; + x += updatePerRow; + + if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue; + + // left + if (x2 < 0.5f-S) { + I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow; + + if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); + p.pixelPosterior(iVolumeIndex); + } + } + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // center + else if (x2 <= 0.5f+S) { + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // right + else if (x2 <= 1.0f) { + I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow; + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); + p.pixelPosterior(iVolumeIndex); + } + } + } + } + } + + // horizontally + //else if (PIdiv4 <= old_theta && old_theta <= 3*PIdiv4) { + else { + + // calculate point P + P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta; + x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY; + + // for each col + for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { + + // get coords + x1 = int((x > 0.0f) ? x : x-1.0f); + x2 = x - x1; + x += updatePerCol; + + if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue; + + // up + if (x2 < 0.5f-T) { + I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol; + + if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); + p.pixelPosterior(iVolumeIndex); + } + } + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // center + else if (x2 <= 0.5f+T) { + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // down + else if (x2 <= 1.0f) { + I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol; + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); + p.pixelPosterior(iVolumeIndex); + } + } + } + } + } // end loop col + + // POLICY: RAY POSTERIOR + p.rayPosterior(iRayIndex); + + } // end loop detector + } // end loop angles +} + + +//---------------------------------------------------------------------------------------- +// PROJECT SINGLE PROJECTION +template <typename Policy> +void CFanFlatBeamLineKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) +{ + // variables + float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2; + float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY; + int iVolumeIndex, iRayIndex, row, col, iDetector, x1; + bool switch_t; + + const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry); + const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry); + + float32 old_theta, theta, alpha; + const SFanProjection * proj = 0; + + //get theta + if (pProjectionGeometry) { + old_theta = pProjectionGeometry->getProjectionAngle(_iProjection); + } + else if (pVecProjectionGeometry) { + proj = &pVecProjectionGeometry->getProjectionVectors()[_iProjection]; + old_theta = atan2(-proj->fSrcX, proj->fSrcY); + if (old_theta < 0) old_theta += 2*PI; + } else { + assert(false); + } + + switch_t = false; + if (old_theta >= 7*PIdiv4) old_theta -= 2*PI; + if (old_theta >= 3*PIdiv4) { + old_theta -= PI; + switch_t = true; + } + + // loop detectors + for (iDetector = 0; iDetector < m_pProjectionGeometry->getDetectorCount(); ++iDetector) { + + iRayIndex = _iProjection * m_pProjectionGeometry->getDetectorCount() + iDetector; + + // POLICY: RAY PRIOR + if (!p.rayPrior(iRayIndex)) continue; + + if (pProjectionGeometry) { + t = -pProjectionGeometry->indexToDetectorOffset(iDetector); + alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance()); + t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance(); + } + else if (pVecProjectionGeometry) { + float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + iDetector); + float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + iDetector); + alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY); + t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY); + } else { + assert(false); + } + + if (switch_t) t = -t; + theta = old_theta + alpha; + + // precalculate sin, cos, 1/cos + sin_theta = sin(theta); + cos_theta = cos(theta); + inv_sin_theta = 1.0f / sin_theta; + inv_cos_theta = 1.0f / cos_theta; + + // precalculate kernel limits + lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta; + updatePerRow = sin_theta * inv_cos_theta; + inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); + + // precalculate kernel limits + lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta; + updatePerCol = cos_theta * inv_sin_theta; + inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); + + // precalculate S and T + S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow); + T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol); + + // vertically + if (old_theta <= PIdiv4) { + + // calculate x for row 0 + P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta; + x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX; + + // for each row + for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { + + // get coords + x1 = int((x > 0.0f) ? x : x-1.0f); + x2 = x - x1; + x += updatePerRow; + + if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue; + + // left + if (x2 < 0.5f-S) { + I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow; + + if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); + p.pixelPosterior(iVolumeIndex); + } + } + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // center + else if (x2 <= 0.5f+S) { + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // right + else if (x2 <= 1.0f) { + I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow; + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); + p.pixelPosterior(iVolumeIndex); + } + } + } + } + } + + // horizontally + else { + + // calculate point P + P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta; + x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY; + + // for each col + for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { + + // get coords + x1 = int((x > 0.0f) ? x : x-1.0f); + x2 = x - x1; + x += updatePerCol; + + if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue; + + // up + if (x2 < 0.5f-T) { + I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol; + + if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); + p.pixelPosterior(iVolumeIndex); + } + } + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // center + else if (x2 <= 0.5f+T) { + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // down + else if (x2 <= 1.0f) { + I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol; + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); + p.pixelPosterior(iVolumeIndex); + } + } + } + } + } // end loop col + + // POLICY: RAY POSTERIOR + p.rayPosterior(iRayIndex); + + } // end loop detector + +} + +//---------------------------------------------------------------------------------------- +// PROJECT SINGLE RAY +template <typename Policy> +void CFanFlatBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) +{ + // variables + float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2; + float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY; + int iVolumeIndex, iRayIndex, row, col, x1; + bool switch_t; + + const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry); + const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry); + + iRayIndex = _iProjection * m_pProjectionGeometry->getDetectorCount() + _iDetector; + + // POLICY: RAY PRIOR + if (!p.rayPrior(iRayIndex)) return; + + float32 old_theta, theta, alpha; + if (pProjectionGeometry) { + old_theta = pProjectionGeometry->getProjectionAngle(_iProjection); + t = -pProjectionGeometry->indexToDetectorOffset(_iDetector); + alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance()); + t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance(); + } + else if (pVecProjectionGeometry) { + const SFanProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[_iProjection]; + old_theta = atan2(-proj->fSrcX, proj->fSrcY); + if (old_theta < 0) old_theta += 2*PI; + + float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + _iDetector); + float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + _iDetector); + alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY); + t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY); + } else { + assert(false); + } + + switch_t = false; + if (old_theta >= 7*PIdiv4) old_theta -= 2*PI; + if (old_theta >= 3*PIdiv4) { + old_theta -= PI; + switch_t = true; + } + if (switch_t) t = -t; + theta = old_theta + alpha; + + // precalculate sin, cos, 1/cos + sin_theta = sin(theta); + cos_theta = cos(theta); + inv_sin_theta = 1.0f / sin_theta; + inv_cos_theta = 1.0f / cos_theta; + + // precalculate kernel limits + lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta; + updatePerRow = sin_theta * inv_cos_theta; + inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); + + // precalculate kernel limits + lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta; + updatePerCol = cos_theta * inv_sin_theta; + inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); + + // precalculate S and T + S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow); + T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol); + + // vertically + if (old_theta <= PIdiv4) { + + // calculate x for row 0 + P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta; + x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX; + + // for each row + for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { + + // get coords + x1 = int((x > 0.0f) ? x : x-1.0f); + x2 = x - x1; + x += updatePerRow; + + if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue; + + // left + if (x2 < 0.5f-S) { + I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow; + + if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); + p.pixelPosterior(iVolumeIndex); + } + } + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // center + else if (x2 <= 0.5f+S) { + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // right + else if (x2 <= 1.0f) { + I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow; + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); + p.pixelPosterior(iVolumeIndex); + } + } + } + } + } + + // horizontally + else { + + // calculate point P + P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta; + x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY; + + // for each col + for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { + + // get coords + x1 = int((x > 0.0f) ? x : x-1.0f); + x2 = x - x1; + x += updatePerCol; + + if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue; + + // up + if (x2 < 0.5f-T) { + I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol; + + if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); + p.pixelPosterior(iVolumeIndex); + } + } + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // center + else if (x2 <= 0.5f+T) { + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol); + p.pixelPosterior(iVolumeIndex); + } + } + } + + // down + else if (x2 <= 1.0f) { + I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol; + + if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, I); + p.pixelPosterior(iVolumeIndex); + } + } + if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop + iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col); + // POLICY: PIXEL PRIOR + ADD + POSTERIOR + if (p.pixelPrior(iVolumeIndex)) { + p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); + p.pixelPosterior(iVolumeIndex); + } + } + } + } + } // end loop col + + // POLICY: RAY POSTERIOR + p.rayPosterior(iRayIndex); +} |