summaryrefslogtreecommitdiffstats
path: root/include/astra/FanFlatBeamLineKernelProjector2D.inl
diff options
context:
space:
mode:
Diffstat (limited to 'include/astra/FanFlatBeamLineKernelProjector2D.inl')
-rw-r--r--include/astra/FanFlatBeamLineKernelProjector2D.inl740
1 files changed, 740 insertions, 0 deletions
diff --git a/include/astra/FanFlatBeamLineKernelProjector2D.inl b/include/astra/FanFlatBeamLineKernelProjector2D.inl
new file mode 100644
index 0000000..e686532
--- /dev/null
+++ b/include/astra/FanFlatBeamLineKernelProjector2D.inl
@@ -0,0 +1,740 @@
+/*
+-----------------------------------------------------------------------
+Copyright 2012 iMinds-Vision Lab, University of Antwerp
+
+Contact: astra@ua.ac.be
+Website: http://astra.ua.ac.be
+
+
+This file is part of the
+All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
+
+The ASTRA Toolbox is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+The ASTRA Toolbox is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
+
+-----------------------------------------------------------------------
+$Id$
+*/
+
+
+using namespace astra;
+
+//----------------------------------------------------------------------------------------
+// PROJECT ALL
+template <typename Policy>
+void CFanFlatBeamLineKernelProjector2D::project(Policy& p)
+{
+ // variables
+ float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2;
+ float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY;
+ int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector, x1;
+ bool switch_t;
+
+ const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry);
+ const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry);
+
+ float32 old_theta, theta, alpha;
+ const SFanProjection * proj = 0;
+
+ // loop angles
+ for (iAngle = 0; iAngle < m_pProjectionGeometry->getProjectionAngleCount(); ++iAngle) {
+
+ // get theta
+ if (pProjectionGeometry) {
+ old_theta = pProjectionGeometry->getProjectionAngle(iAngle);
+ }
+ else if (pVecProjectionGeometry) {
+ proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle];
+ old_theta = atan2(-proj->fSrcX, proj->fSrcY);
+ if (old_theta < 0) old_theta += 2*PI;
+ } else {
+ assert(false);
+ }
+
+ switch_t = false;
+ if (old_theta >= 7*PIdiv4) old_theta -= 2*PI;
+ if (old_theta >= 3*PIdiv4) {
+ old_theta -= PI;
+ switch_t = true;
+ }
+
+ // loop detectors
+ for (iDetector = 0; iDetector < m_pProjectionGeometry->getDetectorCount(); ++iDetector) {
+
+ iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector;
+
+ // POLICY: RAY PRIOR
+ if (!p.rayPrior(iRayIndex)) continue;
+
+ // get values
+ if (pProjectionGeometry) {
+ t = -pProjectionGeometry->indexToDetectorOffset(iDetector);
+ alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance());
+ t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance();
+ }
+ else if (pVecProjectionGeometry) {
+ float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + iDetector);
+ float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + iDetector);
+ alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY);
+ t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY);
+ } else {
+ assert(false);
+ }
+
+ if (switch_t) t = -t;
+ theta = old_theta + alpha;
+
+ // precalculate sin, cos, 1/cos
+ sin_theta = sin(theta);
+ cos_theta = cos(theta);
+ inv_sin_theta = 1.0f / sin_theta;
+ inv_cos_theta = 1.0f / cos_theta;
+
+ // precalculate kernel limits
+ lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta;
+ updatePerRow = sin_theta * inv_cos_theta;
+ inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
+
+ // precalculate kernel limits
+ lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta;
+ updatePerCol = cos_theta * inv_sin_theta;
+ inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
+
+ // precalculate S and T
+ S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow);
+ T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol);
+
+ // vertically
+ if (old_theta <= PIdiv4) {
+
+ // calculate x for row 0
+ P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta;
+ x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX;
+
+ // for each row
+ for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
+
+ // get coords
+ x1 = int((x > 0.0f) ? x : x-1.0f);
+ x2 = x - x1;
+ x += updatePerRow;
+
+ if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue;
+
+ // left
+ if (x2 < 0.5f-S) {
+ I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow;
+
+ if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // center
+ else if (x2 <= 0.5f+S) {
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // right
+ else if (x2 <= 1.0f) {
+ I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow;
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+ }
+ }
+
+ // horizontally
+ //else if (PIdiv4 <= old_theta && old_theta <= 3*PIdiv4) {
+ else {
+
+ // calculate point P
+ P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta;
+ x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY;
+
+ // for each col
+ for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
+
+ // get coords
+ x1 = int((x > 0.0f) ? x : x-1.0f);
+ x2 = x - x1;
+ x += updatePerCol;
+
+ if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue;
+
+ // up
+ if (x2 < 0.5f-T) {
+ I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol;
+
+ if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // center
+ else if (x2 <= 0.5f+T) {
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // down
+ else if (x2 <= 1.0f) {
+ I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol;
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+ }
+ } // end loop col
+
+ // POLICY: RAY POSTERIOR
+ p.rayPosterior(iRayIndex);
+
+ } // end loop detector
+ } // end loop angles
+}
+
+
+//----------------------------------------------------------------------------------------
+// PROJECT SINGLE PROJECTION
+template <typename Policy>
+void CFanFlatBeamLineKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p)
+{
+ // variables
+ float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2;
+ float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY;
+ int iVolumeIndex, iRayIndex, row, col, iDetector, x1;
+ bool switch_t;
+
+ const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry);
+ const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry);
+
+ float32 old_theta, theta, alpha;
+ const SFanProjection * proj = 0;
+
+ //get theta
+ if (pProjectionGeometry) {
+ old_theta = pProjectionGeometry->getProjectionAngle(_iProjection);
+ }
+ else if (pVecProjectionGeometry) {
+ proj = &pVecProjectionGeometry->getProjectionVectors()[_iProjection];
+ old_theta = atan2(-proj->fSrcX, proj->fSrcY);
+ if (old_theta < 0) old_theta += 2*PI;
+ } else {
+ assert(false);
+ }
+
+ switch_t = false;
+ if (old_theta >= 7*PIdiv4) old_theta -= 2*PI;
+ if (old_theta >= 3*PIdiv4) {
+ old_theta -= PI;
+ switch_t = true;
+ }
+
+ // loop detectors
+ for (iDetector = 0; iDetector < m_pProjectionGeometry->getDetectorCount(); ++iDetector) {
+
+ iRayIndex = _iProjection * m_pProjectionGeometry->getDetectorCount() + iDetector;
+
+ // POLICY: RAY PRIOR
+ if (!p.rayPrior(iRayIndex)) continue;
+
+ if (pProjectionGeometry) {
+ t = -pProjectionGeometry->indexToDetectorOffset(iDetector);
+ alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance());
+ t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance();
+ }
+ else if (pVecProjectionGeometry) {
+ float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + iDetector);
+ float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + iDetector);
+ alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY);
+ t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY);
+ } else {
+ assert(false);
+ }
+
+ if (switch_t) t = -t;
+ theta = old_theta + alpha;
+
+ // precalculate sin, cos, 1/cos
+ sin_theta = sin(theta);
+ cos_theta = cos(theta);
+ inv_sin_theta = 1.0f / sin_theta;
+ inv_cos_theta = 1.0f / cos_theta;
+
+ // precalculate kernel limits
+ lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta;
+ updatePerRow = sin_theta * inv_cos_theta;
+ inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
+
+ // precalculate kernel limits
+ lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta;
+ updatePerCol = cos_theta * inv_sin_theta;
+ inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
+
+ // precalculate S and T
+ S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow);
+ T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol);
+
+ // vertically
+ if (old_theta <= PIdiv4) {
+
+ // calculate x for row 0
+ P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta;
+ x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX;
+
+ // for each row
+ for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
+
+ // get coords
+ x1 = int((x > 0.0f) ? x : x-1.0f);
+ x2 = x - x1;
+ x += updatePerRow;
+
+ if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue;
+
+ // left
+ if (x2 < 0.5f-S) {
+ I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow;
+
+ if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // center
+ else if (x2 <= 0.5f+S) {
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // right
+ else if (x2 <= 1.0f) {
+ I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow;
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+ }
+ }
+
+ // horizontally
+ else {
+
+ // calculate point P
+ P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta;
+ x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY;
+
+ // for each col
+ for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
+
+ // get coords
+ x1 = int((x > 0.0f) ? x : x-1.0f);
+ x2 = x - x1;
+ x += updatePerCol;
+
+ if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue;
+
+ // up
+ if (x2 < 0.5f-T) {
+ I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol;
+
+ if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // center
+ else if (x2 <= 0.5f+T) {
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // down
+ else if (x2 <= 1.0f) {
+ I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol;
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+ }
+ } // end loop col
+
+ // POLICY: RAY POSTERIOR
+ p.rayPosterior(iRayIndex);
+
+ } // end loop detector
+
+}
+
+//----------------------------------------------------------------------------------------
+// PROJECT SINGLE RAY
+template <typename Policy>
+void CFanFlatBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p)
+{
+ // variables
+ float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2;
+ float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY;
+ int iVolumeIndex, iRayIndex, row, col, x1;
+ bool switch_t;
+
+ const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry);
+ const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast<CFanFlatVecProjectionGeometry2D*>(m_pProjectionGeometry);
+
+ iRayIndex = _iProjection * m_pProjectionGeometry->getDetectorCount() + _iDetector;
+
+ // POLICY: RAY PRIOR
+ if (!p.rayPrior(iRayIndex)) return;
+
+ float32 old_theta, theta, alpha;
+ if (pProjectionGeometry) {
+ old_theta = pProjectionGeometry->getProjectionAngle(_iProjection);
+ t = -pProjectionGeometry->indexToDetectorOffset(_iDetector);
+ alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance());
+ t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance();
+ }
+ else if (pVecProjectionGeometry) {
+ const SFanProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[_iProjection];
+ old_theta = atan2(-proj->fSrcX, proj->fSrcY);
+ if (old_theta < 0) old_theta += 2*PI;
+
+ float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + _iDetector);
+ float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + _iDetector);
+ alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY);
+ t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY);
+ } else {
+ assert(false);
+ }
+
+ switch_t = false;
+ if (old_theta >= 7*PIdiv4) old_theta -= 2*PI;
+ if (old_theta >= 3*PIdiv4) {
+ old_theta -= PI;
+ switch_t = true;
+ }
+ if (switch_t) t = -t;
+ theta = old_theta + alpha;
+
+ // precalculate sin, cos, 1/cos
+ sin_theta = sin(theta);
+ cos_theta = cos(theta);
+ inv_sin_theta = 1.0f / sin_theta;
+ inv_cos_theta = 1.0f / cos_theta;
+
+ // precalculate kernel limits
+ lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta;
+ updatePerRow = sin_theta * inv_cos_theta;
+ inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX();
+
+ // precalculate kernel limits
+ lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta;
+ updatePerCol = cos_theta * inv_sin_theta;
+ inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY();
+
+ // precalculate S and T
+ S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow);
+ T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol);
+
+ // vertically
+ if (old_theta <= PIdiv4) {
+
+ // calculate x for row 0
+ P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta;
+ x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX;
+
+ // for each row
+ for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) {
+
+ // get coords
+ x1 = int((x > 0.0f) ? x : x-1.0f);
+ x2 = x - x1;
+ x += updatePerRow;
+
+ if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue;
+
+ // left
+ if (x2 < 0.5f-S) {
+ I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow;
+
+ if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // center
+ else if (x2 <= 0.5f+S) {
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // right
+ else if (x2 <= 1.0f) {
+ I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow;
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+ }
+ }
+
+ // horizontally
+ else {
+
+ // calculate point P
+ P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta;
+ x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY;
+
+ // for each col
+ for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) {
+
+ // get coords
+ x1 = int((x > 0.0f) ? x : x-1.0f);
+ x2 = x - x1;
+ x += updatePerCol;
+
+ if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue;
+
+ // up
+ if (x2 < 0.5f-T) {
+ I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol;
+
+ if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // center
+ else if (x2 <= 0.5f+T) {
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+
+ // down
+ else if (x2 <= 1.0f) {
+ I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol;
+
+ if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) {
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop
+ iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col);
+ // POLICY: PIXEL PRIOR + ADD + POSTERIOR
+ if (p.pixelPrior(iVolumeIndex)) {
+ p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I);
+ p.pixelPosterior(iVolumeIndex);
+ }
+ }
+ }
+ }
+ } // end loop col
+
+ // POLICY: RAY POSTERIOR
+ p.rayPosterior(iRayIndex);
+}