/* ----------------------------------------------------------------------- Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp 2014-2016, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ using namespace astra; template void CFanFlatBeamLineKernelProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CFanFlatBeamLineKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CFanFlatBeamLineKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- // PROJECT BLOCK template void CFanFlatBeamLineKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // variables float32 sin_theta, cos_theta, inv_sin_theta, inv_cos_theta, S, T, t, I, P, x, x2; float32 lengthPerRow, updatePerRow, inv_pixelLengthX, lengthPerCol, updatePerCol, inv_pixelLengthY; int iVolumeIndex, iRayIndex, row, col, iAngle, iDetector, x1; bool switch_t; const CFanFlatProjectionGeometry2D* pProjectionGeometry = dynamic_cast(m_pProjectionGeometry); const CFanFlatVecProjectionGeometry2D* pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); float32 old_theta, theta, alpha; const SFanProjection * proj = 0; // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // get theta if (pProjectionGeometry) { old_theta = pProjectionGeometry->getProjectionAngle(iAngle); } else if (pVecProjectionGeometry) { proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; old_theta = atan2(-proj->fSrcX, proj->fSrcY); if (old_theta < 0) old_theta += 2*PI; } else { assert(false); } switch_t = false; if (old_theta >= 7*PIdiv4) old_theta -= 2*PI; if (old_theta >= 3*PIdiv4) { old_theta -= PI; switch_t = true; } // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; // get values if (pProjectionGeometry) { t = -pProjectionGeometry->indexToDetectorOffset(iDetector); alpha = atan(t / pProjectionGeometry->getSourceDetectorDistance()); t = sin(alpha) * pProjectionGeometry->getOriginSourceDistance(); } else if (pVecProjectionGeometry) { float32 detX = proj->fDetSX + proj->fDetUX*(0.5f + iDetector); float32 detY = proj->fDetSY + proj->fDetUY*(0.5f + iDetector); alpha = angleBetweenVectors(-proj->fSrcX, -proj->fSrcY, detX - proj->fSrcX, detY - proj->fSrcY); t = sin(alpha) * sqrt(proj->fSrcX*proj->fSrcX + proj->fSrcY*proj->fSrcY); } else { assert(false); } if (switch_t) t = -t; theta = old_theta + alpha; // precalculate sin, cos, 1/cos sin_theta = sin(theta); cos_theta = cos(theta); inv_sin_theta = 1.0f / sin_theta; inv_cos_theta = 1.0f / cos_theta; // precalculate kernel limits lengthPerRow = m_pVolumeGeometry->getPixelLengthY() * inv_cos_theta; updatePerRow = sin_theta * inv_cos_theta; inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); // precalculate kernel limits lengthPerCol = m_pVolumeGeometry->getPixelLengthX() * inv_sin_theta; updatePerCol = cos_theta * inv_sin_theta; inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); // precalculate S and T S = 0.5f - 0.5f * ((updatePerRow < 0) ? -updatePerRow : updatePerRow); T = 0.5f - 0.5f * ((updatePerCol < 0) ? -updatePerCol : updatePerCol); // vertically if (old_theta <= PIdiv4) { // calculate x for row 0 P = (t - sin_theta * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta; x = (P - m_pVolumeGeometry->getWindowMinX()) * inv_pixelLengthX; // for each row for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { // get coords x1 = int((x > 0.0f) ? x : x-1.0f); x2 = x - x1; x += updatePerRow; if (x1 < -1 || x1 > m_pVolumeGeometry->getGridColCount()) continue; // left if (x2 < 0.5f-S) { I = (0.5f - S + x2) / (1.0f - 2.0f*S) * lengthPerRow; if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridColCount()*/) {//x1 is always less than or equal to gridColCount because of the "continue" in the beginning of the for-loop iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1-1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); p.pixelPosterior(iVolumeIndex); } } if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } } // center else if (x2 <= 0.5f+S) { if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow); p.pixelPosterior(iVolumeIndex); } } } // right else if (x2 <= 1.0f) { I = (1.5f - S - x2) / (1.0f - 2.0f*S) * lengthPerRow; if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridColCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridColCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, x1+1); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerRow-I); p.pixelPosterior(iVolumeIndex); } } } } } // horizontally //else if (PIdiv4 <= old_theta && old_theta <= 3*PIdiv4) { else { // calculate point P P = (t - cos_theta * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta; x = (m_pVolumeGeometry->getWindowMaxY() - P) * inv_pixelLengthY; // for each col for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { // get coords x1 = int((x > 0.0f) ? x : x-1.0f); x2 = x - x1; x += updatePerCol; if (x1 < -1 || x1 > m_pVolumeGeometry->getGridRowCount()) continue; // up if (x2 < 0.5f-T) { I = (0.5f - T + x2) / (1.0f - 2.0f*T) * lengthPerCol; if (x1-1 >= 0 /*&& x1-1 < m_pVolumeGeometry->getGridRowCount()*/) {//x1 is always less than or equal to gridRowCount because of the "continue" in the beginning of the for-loop iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1-1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); p.pixelPosterior(iVolumeIndex); } } if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } } // center else if (x2 <= 0.5f+T) { if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol); p.pixelPosterior(iVolumeIndex); } } } // down else if (x2 <= 1.0f) { I = (1.5f - T - x2) / (1.0f - 2.0f*T) * lengthPerCol; if (x1 >= 0 && x1 < m_pVolumeGeometry->getGridRowCount()) { iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, I); p.pixelPosterior(iVolumeIndex); } } if (/*x1+1 >= 0 &&*/ x1+1 < m_pVolumeGeometry->getGridRowCount()) {//x1 is always greater than or equal to -1 because of the "continue" in the beginning of the for-loop iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(x1+1, col); // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { p.addWeight(iRayIndex, iVolumeIndex, lengthPerCol-I); p.pixelPosterior(iVolumeIndex); } } } } } // end loop col // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles }