%-------------------------------------------------------------------------- % This file is part of the ASTRA Toolbox % % Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp % 2014-2016, CWI, Amsterdam % License: Open Source under GPLv3 % Contact: astra@uantwerpen.be % Website: http://www.astra-toolbox.com/ %-------------------------------------------------------------------------- classdef DARTalgorithm < matlab.mixin.Copyable % Algorithm class for Discrete Algebraic Reconstruction Technique (DART). %---------------------------------------------------------------------- properties (GetAccess=public, SetAccess=public) tomography = IterativeTomography(); % POLICY: Tomography object. segmentation = SegmentationDefault(); % POLICY: Segmentation object. smoothing = SmoothingDefault(); % POLICY: Smoothing object. masking = MaskingDefault(); % POLICY: Masking object. output = OutputDefault(); % POLICY: Output object. statistics = StatisticsDefault(); % POLICY: Statistics object. base = struct(); % DATA(set): base structure, should contain: 'sinogram', 'proj_geom', 'phantom' (optional). memory = 'no'; % SETTING: reduce memory usage? (disables some features) implementation = 'linear'; % SETTING: which type of projector is used ('linear', 'nonlinear') t = 5; % SETTING: # ARMiterations, each DART iteration. t0 = 100; % SETTING: # ARM iterations at DART initialization. end %---------------------------------------------------------------------- properties (GetAccess=public, SetAccess=private) V0 = []; % DATA(get): Initial reconstruction. V = []; % DATA(get): Reconstruction. S = []; % DATA(get): Segmentation. R = []; % DATA(get): Residual projection data. Mask = []; % DATA(get): Reconstruction Mask. stats = struct(); % Structure containing various statistics. iterationcount = 0; % Number of performed iterations. start_tic = 0; initialized = 0; % Is initialized? end %---------------------------------------------------------------------- properties (Access=private) adaptparam_name = {}; adaptparam_values = {}; adaptparam_iters = {}; end %---------------------------------------------------------------------- methods %------------------------------------------------------------------ function this = DARTalgorithm(varargin) % Constructor % >> D = DARTalgorithm(base); [base is a matlab struct that % should contain 'sinogram' and % 'proj_geom'] % >> D = DARTalgorithm('base_path'); [path to base struct file] % >> D = DARTalgorithm(sinogram, proj_geom) % narginchk(1, 2) if nargin == 1 && ischar(varargin{1}) this.base = load(varargin{1}); elseif nargin == 1 && isstruct(varargin{1}) this.base = varargin{1}; elseif nargin == 2 this.base = struct(); this.base.sinogram = varargin{1}; this.base.proj_geom = varargin{2}; else error('invalid arguments') end end %------------------------------------------------------------------ function D = deepcopy(this) % Create a deep copy of this object. % >> D2 = D.deepcopy(); D = copy(this); props = properties(this); for i = 1:length(props) if isa(this.(props{i}), 'handle') D.(props{i}) = copy(this.(props{i})); end end end %------------------------------------------------------------------ function this = initialize(this) % Initializes this object. % >> D.initialize(); % Initialize tomography part if ~this.tomography.initialized this.tomography.proj_geom = this.base.proj_geom; this.tomography.initialize(); end % Create an Initial Reconstruction if isfield(this.base, 'V0') this.V0 = this.base.V0; else this.output.pre_initial_iteration(this); this.V0 = this.tomography.reconstruct(this.base.sinogram, this.t0); this.output.post_initial_iteration(this); end this.V = this.V0; if strcmp(this.memory,'yes') this.base.V0 = []; this.V0 = []; end this.initialized = 1; end %------------------------------------------------------------------ % iterate function this = iterate(this, iters) % Perform several iterations of the DART algorithm. % >> D.iterate(iterations); if strcmp(this.implementation,'linear') this.iterate_linear(iters); elseif strcmp(this.implementation,'nonlinear') this.iterate_nonlinear(iters); end end %------------------------------------------------------------------ % iterate - linear projector implementation function this = iterate_linear(this, iters) this.start_tic = tic; for iteration = 1:iters this.iterationcount = this.iterationcount + 1; % initial output this.output.pre_iteration(this); % update adaptive parameters this.update_adaptiveparameter(this.iterationcount); % segmentation this.segmentation.estimate_grey_levels(this, this.V); this.S = this.segmentation.apply(this, this.V); % select update and fixed pixels this.Mask = this.masking.apply(this, this.S); this.V = (this.V .* this.Mask) + (this.S .* (1 - this.Mask)); F = this.V; F(this.Mask == 1) = 0; % compute residual projection difference this.R = this.base.sinogram - this.tomography.project(F); % ART update part this.V = this.tomography.reconstruct_mask(this.R, this.V, this.Mask, this.t); % blur this.V = this.smoothing.apply(this, this.V); %calculate statistics this.stats = this.statistics.apply(this); % output this.output.post_iteration(this); end end %------------------------------------------------------------------ % iterate - nonlinear projector implementation function this = iterate_nonlinear(this, iters) this.start_tic = tic; for iteration = 1:iters this.iterationcount = this.iterationcount + 1; % Output this.output.pre_iteration(this); % update adaptive parameters this.update_adaptiveparameter(this.iterationcount) % Segmentation this.segmentation.estimate_grey_levels(this, this.V); this.S = this.segmentation.apply(this, this.V); % Select Update and Fixed Pixels this.Mask = this.masking.apply(this, this.S); this.V = (this.V .* this.Mask) + (this.S .* (1 - this.Mask)); % ART update part this.V = this.tomography.reconstruct2_mask(this.base.sinogram, this.V, this.Mask, this.t); % blur this.V = this.smoothing.apply(this, this.V); % calculate statistics this.stats = this.statistics.apply(this); % output this.output.post_iteration(this); end end %------------------------------------------------------------------ % get data function data = getdata(this, string) if numel(this.(string)) == 1 data = astra_mex_data2d('get',this.(string)); else data = this.(string); end end %------------------------------------------------------------------ % add adaptive parameter function this = adaptiveparameter(this, name, values, iterations) this.adaptparam_name{end+1} = name; this.adaptparam_values{end+1} = values; this.adaptparam_iters{end+1} = iterations; end %------------------------------------------------------------------ % update adaptive parameter function this = update_adaptiveparameter(this, iteration) for i = 1:numel(this.adaptparam_name) for j = 1:numel(this.adaptparam_iters{i}) if iteration == this.adaptparam_iters{i}(j) new_value = this.adaptparam_values{i}(j); eval(['this.' this.adaptparam_name{i} ' = ' num2str(new_value) ';']); end end end end %------------------------------------------------------------------ function settings = getsettings(this) % Returns a structure containing all settings of this object. % >> settings = tomography.getsettings(); settings.tomography = this.tomography.getsettings(); settings.smoothing = this.smoothing.getsettings(); settings.masking = this.masking.getsettings(); settings.segmentation = this.segmentation.getsettings(); end %------------------------------------------------------------------ end % methods end % class