1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
|
/*
-----------------------------------------------------------------------
Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp
2014-2016, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>.
-----------------------------------------------------------------------
*/
#include <cstdio>
#include <cassert>
#include <iostream>
#include <list>
#include <cuda.h>
#include "util3d.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#include "dims3d.h"
typedef texture<float, 3, cudaReadModeElementType> texture3D;
static texture3D gT_coneVolumeTexture;
namespace astraCUDA3d {
static const unsigned int g_anglesPerBlock = 4;
// thickness of the slices we're splitting the volume up into
static const unsigned int g_blockSlices = 4;
static const unsigned int g_detBlockU = 32;
static const unsigned int g_detBlockV = 32;
static const unsigned g_MaxAngles = 1024;
__constant__ float gC_SrcX[g_MaxAngles];
__constant__ float gC_SrcY[g_MaxAngles];
__constant__ float gC_SrcZ[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetSZ[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];
__constant__ float gC_DetUZ[g_MaxAngles];
__constant__ float gC_DetVX[g_MaxAngles];
__constant__ float gC_DetVY[g_MaxAngles];
__constant__ float gC_DetVZ[g_MaxAngles];
bool bindVolumeDataTexture(const cudaArray* array)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>();
gT_coneVolumeTexture.addressMode[0] = cudaAddressModeBorder;
gT_coneVolumeTexture.addressMode[1] = cudaAddressModeBorder;
gT_coneVolumeTexture.addressMode[2] = cudaAddressModeBorder;
gT_coneVolumeTexture.filterMode = cudaFilterModeLinear;
gT_coneVolumeTexture.normalized = false;
cudaBindTextureToArray(gT_coneVolumeTexture, array, channelDesc);
// TODO: error value?
return true;
}
// x=0, y=1, z=2
struct DIR_X {
__device__ float nSlices(const SDimensions3D& dims) const { return dims.iVolX; }
__device__ float nDim1(const SDimensions3D& dims) const { return dims.iVolY; }
__device__ float nDim2(const SDimensions3D& dims) const { return dims.iVolZ; }
__device__ float c0(float x, float y, float z) const { return x; }
__device__ float c1(float x, float y, float z) const { return y; }
__device__ float c2(float x, float y, float z) const { return z; }
__device__ float tex(float f0, float f1, float f2) const { return tex3D(gT_coneVolumeTexture, f0, f1, f2); }
__device__ float x(float f0, float f1, float f2) const { return f0; }
__device__ float y(float f0, float f1, float f2) const { return f1; }
__device__ float z(float f0, float f1, float f2) const { return f2; }
};
// y=0, x=1, z=2
struct DIR_Y {
__device__ float nSlices(const SDimensions3D& dims) const { return dims.iVolY; }
__device__ float nDim1(const SDimensions3D& dims) const { return dims.iVolX; }
__device__ float nDim2(const SDimensions3D& dims) const { return dims.iVolZ; }
__device__ float c0(float x, float y, float z) const { return y; }
__device__ float c1(float x, float y, float z) const { return x; }
__device__ float c2(float x, float y, float z) const { return z; }
__device__ float tex(float f0, float f1, float f2) const { return tex3D(gT_coneVolumeTexture, f1, f0, f2); }
__device__ float x(float f0, float f1, float f2) const { return f1; }
__device__ float y(float f0, float f1, float f2) const { return f0; }
__device__ float z(float f0, float f1, float f2) const { return f2; }
};
// z=0, x=1, y=2
struct DIR_Z {
__device__ float nSlices(const SDimensions3D& dims) const { return dims.iVolZ; }
__device__ float nDim1(const SDimensions3D& dims) const { return dims.iVolX; }
__device__ float nDim2(const SDimensions3D& dims) const { return dims.iVolY; }
__device__ float c0(float x, float y, float z) const { return z; }
__device__ float c1(float x, float y, float z) const { return x; }
__device__ float c2(float x, float y, float z) const { return y; }
__device__ float tex(float f0, float f1, float f2) const { return tex3D(gT_coneVolumeTexture, f1, f2, f0); }
__device__ float x(float f0, float f1, float f2) const { return f1; }
__device__ float y(float f0, float f1, float f2) const { return f2; }
__device__ float z(float f0, float f1, float f2) const { return f0; }
};
struct SCALE_CUBE {
float fOutputScale;
__device__ float scale(float a1, float a2) const { return sqrt(a1*a1+a2*a2+1.0f) * fOutputScale; }
};
struct SCALE_NONCUBE {
float fScale1;
float fScale2;
float fOutputScale;
__device__ float scale(float a1, float a2) const { return sqrt(a1*a1*fScale1+a2*a2*fScale2+1.0f) * fOutputScale; }
};
// threadIdx: x = ??? detector (u?)
// y = relative angle
// blockIdx: x = ??? detector (u+v?)
// y = angle block
template<class COORD, class SCALE>
__global__ void cone_FP_t(float* D_projData, unsigned int projPitch,
unsigned int startSlice,
unsigned int startAngle, unsigned int endAngle,
const SDimensions3D dims,
SCALE sc)
{
COORD c;
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y;
if (angle >= endAngle)
return;
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fSrcZ = gC_SrcZ[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
const float fDetUZ = gC_DetUZ[angle];
const float fDetVX = gC_DetVX[angle];
const float fDetVY = gC_DetVY[angle];
const float fDetVZ = gC_DetVZ[angle];
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX;
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY;
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ;
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x;
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV;
int endDetectorV = startDetectorV + g_detBlockV;
if (endDetectorV > dims.iProjV)
endDetectorV = dims.iProjV;
int endSlice = startSlice + g_blockSlices;
if (endSlice > c.nSlices(dims))
endSlice = c.nSlices(dims);
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
{
/* Trace ray from Src to (detectorU,detectorV) from */
/* X = startSlice to X = endSlice */
const float fDetX = fDetSX + detectorU*fDetUX + detectorV*fDetVX;
const float fDetY = fDetSY + detectorU*fDetUY + detectorV*fDetVY;
const float fDetZ = fDetSZ + detectorU*fDetUZ + detectorV*fDetVZ;
/* (x) ( 1) ( 0) */
/* ray: (y) = (ay) * x + (by) */
/* (z) (az) (bz) */
const float a1 = (c.c1(fSrcX,fSrcY,fSrcZ) - c.c1(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float a2 = (c.c2(fSrcX,fSrcY,fSrcZ) - c.c2(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float b1 = c.c1(fSrcX,fSrcY,fSrcZ) - a1 * c.c0(fSrcX,fSrcY,fSrcZ);
const float b2 = c.c2(fSrcX,fSrcY,fSrcZ) - a2 * c.c0(fSrcX,fSrcY,fSrcZ);
const float fDistCorr = sc.scale(a1, a2);
float fVal = 0.0f;
float f0 = startSlice + 0.5f;
float f1 = a1 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b1 + 0.5f*c.nDim1(dims) - 0.5f + 0.5f;
float f2 = a2 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b2 + 0.5f*c.nDim2(dims) - 0.5f + 0.5f;
for (int s = startSlice; s < endSlice; ++s)
{
fVal += c.tex(f0, f1, f2);
f0 += 1.0f;
f1 += a1;
f2 += a2;
}
fVal *= fDistCorr;
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fVal;
}
}
template<class COORD>
__global__ void cone_FP_SS_t(float* D_projData, unsigned int projPitch,
unsigned int startSlice,
unsigned int startAngle, unsigned int endAngle,
const SDimensions3D dims, int iRaysPerDetDim,
SCALE_NONCUBE sc)
{
COORD c;
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y;
if (angle >= endAngle)
return;
const float fSrcX = gC_SrcX[angle];
const float fSrcY = gC_SrcY[angle];
const float fSrcZ = gC_SrcZ[angle];
const float fDetUX = gC_DetUX[angle];
const float fDetUY = gC_DetUY[angle];
const float fDetUZ = gC_DetUZ[angle];
const float fDetVX = gC_DetVX[angle];
const float fDetVY = gC_DetVY[angle];
const float fDetVZ = gC_DetVZ[angle];
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX;
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY;
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ;
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x;
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV;
int endDetectorV = startDetectorV + g_detBlockV;
if (endDetectorV > dims.iProjV)
endDetectorV = dims.iProjV;
int endSlice = startSlice + g_blockSlices;
if (endSlice > c.nSlices(dims))
endSlice = c.nSlices(dims);
const float fSubStep = 1.0f/iRaysPerDetDim;
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV)
{
/* Trace ray from Src to (detectorU,detectorV) from */
/* X = startSlice to X = endSlice */
float fV = 0.0f;
float fdU = detectorU - 0.5f + 0.5f*fSubStep;
for (int iSubU = 0; iSubU < iRaysPerDetDim; ++iSubU, fdU+=fSubStep) {
float fdV = detectorV - 0.5f + 0.5f*fSubStep;
for (int iSubV = 0; iSubV < iRaysPerDetDim; ++iSubV, fdV+=fSubStep) {
const float fDetX = fDetSX + fdU*fDetUX + fdV*fDetVX;
const float fDetY = fDetSY + fdU*fDetUY + fdV*fDetVY;
const float fDetZ = fDetSZ + fdU*fDetUZ + fdV*fDetVZ;
/* (x) ( 1) ( 0) */
/* ray: (y) = (ay) * x + (by) */
/* (z) (az) (bz) */
const float a1 = (c.c1(fSrcX,fSrcY,fSrcZ) - c.c1(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float a2 = (c.c2(fSrcX,fSrcY,fSrcZ) - c.c2(fDetX,fDetY,fDetZ)) / (c.c0(fSrcX,fSrcY,fSrcZ) - c.c0(fDetX,fDetY,fDetZ));
const float b1 = c.c1(fSrcX,fSrcY,fSrcZ) - a1 * c.c0(fSrcX,fSrcY,fSrcZ);
const float b2 = c.c2(fSrcX,fSrcY,fSrcZ) - a2 * c.c0(fSrcX,fSrcY,fSrcZ);
const float fDistCorr = sc.scale(a1, a2);
float fVal = 0.0f;
float f0 = startSlice + 0.5f;
float f1 = a1 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b1 + 0.5f*c.nDim1(dims) - 0.5f + 0.5f;
float f2 = a2 * (startSlice - 0.5f*c.nSlices(dims) + 0.5f) + b2 + 0.5f*c.nDim2(dims) - 0.5f + 0.5f;
for (int s = startSlice; s < endSlice; ++s)
{
fVal += c.tex(f0, f1, f2);
f0 += 1.0f;
f1 += a1;
f2 += a2;
}
fVal *= fDistCorr;
fV += fVal;
}
}
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fV / (iRaysPerDetDim * iRaysPerDetDim);
}
}
bool ConeFP_Array_internal(cudaPitchedPtr D_projData,
const SDimensions3D& dims, unsigned int angleCount, const SConeProjection* angles,
const SProjectorParams3D& params)
{
// transfer angles to constant memory
float* tmp = new float[angleCount];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < angleCount; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, angleCount*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(SrcX);
TRANSFER_TO_CONSTANT(SrcY);
TRANSFER_TO_CONSTANT(SrcZ);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetSZ);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
TRANSFER_TO_CONSTANT(DetUZ);
TRANSFER_TO_CONSTANT(DetVX);
TRANSFER_TO_CONSTANT(DetVY);
TRANSFER_TO_CONSTANT(DetVZ);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
std::list<cudaStream_t> streams;
dim3 dimBlock(g_detBlockU, g_anglesPerBlock); // region size, angles
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
int blockDirection = 0;
bool cube = true;
if (abs(params.fVolScaleX / params.fVolScaleY - 1.0) > 0.00001)
cube = false;
if (abs(params.fVolScaleX / params.fVolScaleZ - 1.0) > 0.00001)
cube = false;
SCALE_CUBE scube;
scube.fOutputScale = params.fOutputScale * params.fVolScaleX;
SCALE_NONCUBE snoncubeX;
float fS1 = params.fVolScaleY / params.fVolScaleX;
snoncubeX.fScale1 = fS1 * fS1;
float fS2 = params.fVolScaleZ / params.fVolScaleX;
snoncubeX.fScale2 = fS2 * fS2;
snoncubeX.fOutputScale = params.fOutputScale * params.fVolScaleX;
SCALE_NONCUBE snoncubeY;
fS1 = params.fVolScaleX / params.fVolScaleY;
snoncubeY.fScale1 = fS1 * fS1;
fS2 = params.fVolScaleY / params.fVolScaleY;
snoncubeY.fScale2 = fS2 * fS2;
snoncubeY.fOutputScale = params.fOutputScale * params.fVolScaleY;
SCALE_NONCUBE snoncubeZ;
fS1 = params.fVolScaleX / params.fVolScaleZ;
snoncubeZ.fScale1 = fS1 * fS1;
fS2 = params.fVolScaleY / params.fVolScaleZ;
snoncubeZ.fScale2 = fS2 * fS2;
snoncubeZ.fOutputScale = params.fOutputScale * params.fVolScaleZ;
// timeval t;
// tic(t);
for (unsigned int a = 0; a <= angleCount; ++a) {
int dir = -1;
if (a != angleCount) {
float dX = fabsf(angles[a].fSrcX - (angles[a].fDetSX + dims.iProjU*angles[a].fDetUX*0.5f + dims.iProjV*angles[a].fDetVX*0.5f));
float dY = fabsf(angles[a].fSrcY - (angles[a].fDetSY + dims.iProjU*angles[a].fDetUY*0.5f + dims.iProjV*angles[a].fDetVY*0.5f));
float dZ = fabsf(angles[a].fSrcZ - (angles[a].fDetSZ + dims.iProjU*angles[a].fDetUZ*0.5f + dims.iProjV*angles[a].fDetVZ*0.5f));
if (dX >= dY && dX >= dZ)
dir = 0;
else if (dY >= dX && dY >= dZ)
dir = 1;
else
dir = 2;
}
if (a == angleCount || dir != blockDirection) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
dim3 dimGrid(
((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV),
(blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock);
// TODO: check if we can't immediately
// destroy the stream after use
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
// printf("angle block: %d to %d, %d (%dx%d, %dx%d)\n", blockStart, blockEnd, blockDirection, dimGrid.x, dimGrid.y, dimBlock.x, dimBlock.y);
if (blockDirection == 0) {
for (unsigned int i = 0; i < dims.iVolX; i += g_blockSlices)
if (params.iRaysPerDetDim == 1)
if (cube)
cone_FP_t<DIR_X><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, scube);
else
cone_FP_t<DIR_X><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, snoncubeX);
else
cone_FP_SS_t<DIR_X><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, params.iRaysPerDetDim, snoncubeX);
} else if (blockDirection == 1) {
for (unsigned int i = 0; i < dims.iVolY; i += g_blockSlices)
if (params.iRaysPerDetDim == 1)
if (cube)
cone_FP_t<DIR_Y><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, scube);
else
cone_FP_t<DIR_Y><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, snoncubeY);
else
cone_FP_SS_t<DIR_Y><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, params.iRaysPerDetDim, snoncubeY);
} else if (blockDirection == 2) {
for (unsigned int i = 0; i < dims.iVolZ; i += g_blockSlices)
if (params.iRaysPerDetDim == 1)
if (cube)
cone_FP_t<DIR_Z><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, scube);
else
cone_FP_t<DIR_Z><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, snoncubeZ);
else
cone_FP_SS_t<DIR_Z><<<dimGrid, dimBlock, 0, stream>>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, params.iRaysPerDetDim, snoncubeZ);
}
}
blockDirection = dir;
blockStart = a;
}
}
for (std::list<cudaStream_t>::iterator iter = streams.begin(); iter != streams.end(); ++iter)
cudaStreamDestroy(*iter);
streams.clear();
cudaTextForceKernelsCompletion();
// printf("%f\n", toc(t));
return true;
}
bool ConeFP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SConeProjection* angles,
const SProjectorParams3D& params)
{
// transfer volume to array
cudaArray* cuArray = allocateVolumeArray(dims);
transferVolumeToArray(D_volumeData, cuArray, dims);
bindVolumeDataTexture(cuArray);
bool ret;
for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) {
unsigned int iEndAngle = iAngle + g_MaxAngles;
if (iEndAngle >= dims.iProjAngles)
iEndAngle = dims.iProjAngles;
cudaPitchedPtr D_subprojData = D_projData;
D_subprojData.ptr = (char*)D_projData.ptr + iAngle * D_projData.pitch;
ret = ConeFP_Array_internal(D_subprojData,
dims, iEndAngle - iAngle, angles + iAngle,
params);
if (!ret)
break;
}
cudaFreeArray(cuArray);
return ret;
}
}
#ifdef STANDALONE
int main()
{
SDimensions3D dims;
dims.iVolX = 256;
dims.iVolY = 256;
dims.iVolZ = 256;
dims.iProjAngles = 32;
dims.iProjU = 512;
dims.iProjV = 512;
dims.iRaysPerDet = 1;
cudaExtent extentV;
extentV.width = dims.iVolX*sizeof(float);
extentV.height = dims.iVolY;
extentV.depth = dims.iVolZ;
cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
cudaMalloc3D(&volData, extentV);
cudaExtent extentP;
extentP.width = dims.iProjU*sizeof(float);
extentP.height = dims.iProjV;
extentP.depth = dims.iProjAngles;
cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
cudaMalloc3D(&projData, extentP);
cudaMemset3D(projData, 0, extentP);
float* slice = new float[256*256];
cudaPitchedPtr ptr;
ptr.ptr = slice;
ptr.pitch = 256*sizeof(float);
ptr.xsize = 256*sizeof(float);
ptr.ysize = 256;
for (unsigned int i = 0; i < 256*256; ++i)
slice[i] = 1.0f;
for (unsigned int i = 0; i < 256; ++i) {
cudaExtent extentS;
extentS.width = dims.iVolX*sizeof(float);
extentS.height = dims.iVolY;
extentS.depth = 1;
cudaPos sp = { 0, 0, 0 };
cudaPos dp = { 0, 0, i };
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = sp;
p.srcPtr = ptr;
p.dstArray = 0;
p.dstPos = dp;
p.dstPtr = volData;
p.extent = extentS;
p.kind = cudaMemcpyHostToDevice;
cudaError err = cudaMemcpy3D(&p);
assert(!err);
}
SConeProjection angle[32];
angle[0].fSrcX = -1536;
angle[0].fSrcY = 0;
angle[0].fSrcZ = 200;
angle[0].fDetSX = 512;
angle[0].fDetSY = -256;
angle[0].fDetSZ = -256;
angle[0].fDetUX = 0;
angle[0].fDetUY = 1;
angle[0].fDetUZ = 0;
angle[0].fDetVX = 0;
angle[0].fDetVY = 0;
angle[0].fDetVZ = 1;
#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
for (int i = 1; i < 32; ++i) {
angle[i] = angle[0];
ROTATE0(Src, i, i*1*M_PI/180);
ROTATE0(DetS, i, i*1*M_PI/180);
ROTATE0(DetU, i, i*1*M_PI/180);
ROTATE0(DetV, i, i*1*M_PI/180);
}
#undef ROTATE0
astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
float* buf = new float[512*512];
cudaMemcpy(buf, ((float*)projData.ptr)+512*512*8, 512*512*sizeof(float), cudaMemcpyDeviceToHost);
printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
saveImage("proj.png", 512, 512, buf);
}
#endif
|