diff options
Diffstat (limited to 'dummy.py')
-rw-r--r-- | dummy.py | 132 |
1 files changed, 132 insertions, 0 deletions
diff --git a/dummy.py b/dummy.py new file mode 100644 index 0000000..047c021 --- /dev/null +++ b/dummy.py @@ -0,0 +1,132 @@ +# cil imports +from cil.framework import ImageData, ImageGeometry +from cil.framework import AcquisitionGeometry, AcquisitionData +from cil.optimisation.algorithms import CGLS, SIRT + +import src.operators.ProjectionOperator as UfoProjectionOperator +import cil.plugins.astra.operators.ProjectionOperator as AstraProjectionOperator +import cil.plugins.astra.processors.FBP + + +# External imports +import tifffile +import os +import numpy as np +import matplotlib.pyplot as plt +import logging +import time + +logging.basicConfig(level = logging.INFO) + +# set up default colour map for visualisation +#cmap = "gray" + +# set the backend for FBP and the ProjectionOperator +#device = 'gpu' + +def reconstruct(): + # number of pixels + n_pixels = 4096 + z_size = 1024 + #slices=2 + #rounding='int8' + #rounding='half' + #rounding='single' + #n_pixels = 1024 + + # Angles + angles = np.linspace(0, 180, n_pixels, endpoint=False, dtype=np.float32) + + + # Setup acquisition geometry + # with sufficient number of projections + ag = AcquisitionGeometry.create_Parallel3D()\ + .set_angles(angles)\ + .set_panel([n_pixels,z_size], pixel_size=1) + #ag = AcquisitionGeometry.create_Parallel2D()\ + # .set_angles(angles)\ + # .set_panel(n_pixels,pixel_size=1) + + ag.set_labels(['vertical', 'angle', 'horizontal']) + + # Setup image geometry + ig = ImageGeometry(voxel_num_x=n_pixels, + voxel_num_y=n_pixels, + voxel_num_z=z_size, + voxel_size_x=1, + voxel_size_y=1, + voxel_size_z=1) + + + # Get phantom + #home='/ccpi/data/new/phantom/' + home='/ccpi/data/new/1024/phantom/' + #home='/ccpi/data/test/1024/slices/' +# phantom = [] +# for i in sorted(os.listdir(home)): +# for i in range(0, z_size): + #file = os.path.join(home,i) + #img = tifffile.imread(file) +# img = np.random.random_sample((n_pixels,n_pixels)).astype(np.float32) +# if len(img.shape)==3: +# img = np.squeeze(img, axis=0) +# phantom.append(img) +# phantom = np.asarray(phantom) + phantom = np.random.random_sample((z_size,n_pixels,n_pixels)).astype(np.float32) + + print(phantom.shape) + phantom_reshaped = np.transpose(phantom, (0, 1, 2)) + print(phantom_reshaped.shape) + phantom = ImageData(phantom_reshaped, deep_copy=False, geometry=ig) + phantom_arr = phantom.as_array() + tifffile.imsave('phantom_3d.tif', phantom_arr[:,:,0]) + + # Create projection operator using Astra-Toolbox. + out_file = "ufo_single.tif" + sino_file= "sino_single.tif" + +# Ufo-harish + A = UfoProjectionOperator(ig, ag, True, rounding, slices) +# Ufo-farago +# A = UfoProjectionOperator(ig, ag, False, rounding, slices) +# Astra +# A = AstraProjectionOperator(ig, ag, 'gpu') + + #A.dot_test(A) + + # Create an acqusition data (numerically) + sino = A.direct(phantom) + sino_arr = sino.as_array() + tifffile.imsave(sino_file,sino_arr[0,:,:]) + + # back_projection + back_projection = A.adjoint(sino) + + # initial estimate - zero array in this case + initial = ig.allocate(0) + + # setup CGLS + f = open("single.txt", "a") + for i in range(20,21): + total_time=0 + for j in range(0,1): + cgls = CGLS(initial=initial, + operator=A, + data=sino, + tolerance=1e-16, + max_iteration = 50, + update_objective_interval = 1 ) + + # run N interations + start = time.time() + cgls.run(i, verbose=True) + end = time.time() + if(j>0): + total_time += (end-start) + f.write('Iteration {} Time {} \n'.format(i,str(total_time/3))) + f.close() + print("finished reconstruction in single precision") + +if __name__ == '__main__': + reconstruct() + |