/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- $Id$ */ #include <cstdio> #include <cassert> #include <iostream> #include "util.h" #include "arith.h" #ifdef STANDALONE #include "testutil.h" #endif #define PIXELTRACE typedef texture<float, 2, cudaReadModeElementType> texture2D; static texture2D gT_projTexture; namespace astraCUDA { const unsigned int g_anglesPerBlock = 16; const unsigned int g_blockSliceSize = 32; const unsigned int g_blockSlices = 16; const unsigned int g_MaxAngles = 2560; __constant__ float gC_angle_sin[g_MaxAngles]; __constant__ float gC_angle_cos[g_MaxAngles]; __constant__ float gC_angle_offset[g_MaxAngles]; static bool bindProjDataTexture(float* data, unsigned int pitch, unsigned int width, unsigned int height, cudaTextureAddressMode mode = cudaAddressModeBorder) { cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<float>(); gT_projTexture.addressMode[0] = mode; gT_projTexture.addressMode[1] = mode; gT_projTexture.filterMode = cudaFilterModeLinear; gT_projTexture.normalized = false; cudaBindTexture2D(0, gT_projTexture, (const void*)data, channelDesc, width, height, sizeof(float)*pitch); // TODO: error value? return true; } __global__ void devBP(float* D_volData, unsigned int volPitch, unsigned int startAngle, bool offsets, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles) endAngle = dims.iProjAngles; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ) / dims.fDetScale; const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f ) / dims.fDetScale; float* volData = (float*)D_volData; float fVal = 0.0f; float fA = startAngle + 0.5f; const float fT_base = 0.5f*dims.iProjDets - 0.5f + 0.5f; if (offsets) { for (int angle = startAngle; angle < endAngle; ++angle) { const float cos_theta = gC_angle_cos[angle]; const float sin_theta = gC_angle_sin[angle]; const float TOffset = gC_angle_offset[angle]; const float fT = fT_base + fX * cos_theta - fY * sin_theta + TOffset; fVal += tex2D(gT_projTexture, fT, fA); fA += 1.0f; } } else { for (int angle = startAngle; angle < endAngle; ++angle) { const float cos_theta = gC_angle_cos[angle]; const float sin_theta = gC_angle_sin[angle]; const float fT = fT_base + fX * cos_theta - fY * sin_theta; fVal += tex2D(gT_projTexture, fT, fA); fA += 1.0f; } } volData[Y*volPitch+X] += fVal * fOutputScale; } // supersampling version __global__ void devBP_SS(float* D_volData, unsigned int volPitch, unsigned int startAngle, bool offsets, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; int endAngle = startAngle + g_anglesPerBlock; if (endAngle > dims.iProjAngles) endAngle = dims.iProjAngles; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim) / dims.fDetScale; const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f - 0.5f + 0.5f/dims.iRaysPerPixelDim) / dims.fDetScale; const float fSubStep = 1.0f/(dims.iRaysPerPixelDim * dims.fDetScale); float* volData = (float*)D_volData; float fVal = 0.0f; float fA = startAngle + 0.5f; const float fT_base = 0.5f*dims.iProjDets - 0.5f + 0.5f; fOutputScale /= (dims.iRaysPerPixelDim * dims.iRaysPerPixelDim); if (offsets) { for (int angle = startAngle; angle < endAngle; ++angle) { const float cos_theta = gC_angle_cos[angle]; const float sin_theta = gC_angle_sin[angle]; const float TOffset = gC_angle_offset[angle]; float fT = fT_base + fX * cos_theta - fY * sin_theta + TOffset; for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) { float fTy = fT; fT += fSubStep * cos_theta; for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) { fVal += tex2D(gT_projTexture, fTy, fA); fTy -= fSubStep * sin_theta; } } fA += 1.0f; } } else { for (int angle = startAngle; angle < endAngle; ++angle) { const float cos_theta = gC_angle_cos[angle]; const float sin_theta = gC_angle_sin[angle]; float fT = fT_base + fX * cos_theta - fY * sin_theta; for (int iSubX = 0; iSubX < dims.iRaysPerPixelDim; ++iSubX) { float fTy = fT; fT += fSubStep * cos_theta; for (int iSubY = 0; iSubY < dims.iRaysPerPixelDim; ++iSubY) { fVal += tex2D(gT_projTexture, fTy, fA); fTy -= fSubStep * sin_theta; } } fA += 1.0f; } } volData[Y*volPitch+X] += fVal * fOutputScale; } __global__ void devBP_SART(float* D_volData, unsigned int volPitch, float offset, float angle_sin, float angle_cos, const SDimensions dims, float fOutputScale) { const int relX = threadIdx.x; const int relY = threadIdx.y; const int X = blockIdx.x * g_blockSlices + relX; const int Y = blockIdx.y * g_blockSliceSize + relY; if (X >= dims.iVolWidth || Y >= dims.iVolHeight) return; const float fX = ( X - 0.5f*dims.iVolWidth + 0.5f ) / dims.fDetScale; const float fY = ( Y - 0.5f*dims.iVolHeight + 0.5f ) / dims.fDetScale; const float fT_base = 0.5f*dims.iProjDets - 0.5f + 0.5f; const float fT = fT_base + fX * angle_cos - fY * angle_sin + offset; const float fVal = tex2D(gT_projTexture, fT, 0.5f); D_volData[Y*volPitch+X] += fVal * fOutputScale; } bool BP_internal(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const float* angles, const float* TOffsets, float fOutputScale) { // TODO: process angles block by block assert(dims.iProjAngles <= g_MaxAngles); float* angle_sin = new float[dims.iProjAngles]; float* angle_cos = new float[dims.iProjAngles]; bindProjDataTexture(D_projData, projPitch, dims.iProjDets, dims.iProjAngles); for (unsigned int i = 0; i < dims.iProjAngles; ++i) { angle_sin[i] = sinf(angles[i]); angle_cos[i] = cosf(angles[i]); } cudaError_t e1 = cudaMemcpyToSymbol(gC_angle_sin, angle_sin, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); cudaError_t e2 = cudaMemcpyToSymbol(gC_angle_cos, angle_cos, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); assert(e1 == cudaSuccess); assert(e2 == cudaSuccess); if (TOffsets) { cudaError_t e3 = cudaMemcpyToSymbol(gC_angle_offset, TOffsets, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); assert(e3 == cudaSuccess); } delete[] angle_sin; delete[] angle_cos; dim3 dimBlock(g_blockSlices, g_blockSliceSize); dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices, (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize); cudaStream_t stream; cudaStreamCreate(&stream); for (unsigned int i = 0; i < dims.iProjAngles; i += g_anglesPerBlock) { if (dims.iRaysPerPixelDim > 1) devBP_SS<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, (TOffsets != 0), dims, fOutputScale); else devBP<<<dimGrid, dimBlock, 0, stream>>>(D_volumeData, volumePitch, i, (TOffsets != 0), dims, fOutputScale); } cudaThreadSynchronize(); cudaTextForceKernelsCompletion(); cudaStreamDestroy(stream); return true; } bool BP(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, const SDimensions& dims, const float* angles, const float* TOffsets, float fOutputScale) { for (unsigned int iAngle = 0; iAngle < dims.iProjAngles; iAngle += g_MaxAngles) { SDimensions subdims = dims; unsigned int iEndAngle = iAngle + g_MaxAngles; if (iEndAngle >= dims.iProjAngles) iEndAngle = dims.iProjAngles; subdims.iProjAngles = iEndAngle - iAngle; bool ret; ret = BP_internal(D_volumeData, volumePitch, D_projData + iAngle * projPitch, projPitch, subdims, angles + iAngle, TOffsets ? TOffsets + iAngle : 0, fOutputScale); if (!ret) return false; } return true; } bool BP_SART(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, unsigned int angle, const SDimensions& dims, const float* angles, const float* TOffsets, float fOutputScale) { // Only one angle. // We need to Clamp to the border pixels instead of to zero, because // SART weights with ray length. bindProjDataTexture(D_projData, projPitch, dims.iProjDets, 1, cudaAddressModeClamp); float angle_sin = sinf(angles[angle]); float angle_cos = cosf(angles[angle]); float offset = 0.0f; if (TOffsets) offset = TOffsets[angle]; dim3 dimBlock(g_blockSlices, g_blockSliceSize); dim3 dimGrid((dims.iVolWidth+g_blockSlices-1)/g_blockSlices, (dims.iVolHeight+g_blockSliceSize-1)/g_blockSliceSize); devBP_SART<<<dimGrid, dimBlock>>>(D_volumeData, volumePitch, offset, angle_sin, angle_cos, dims, fOutputScale); cudaThreadSynchronize(); cudaTextForceKernelsCompletion(); return true; } } #ifdef STANDALONE using namespace astraCUDA; int main() { float* D_volumeData; float* D_projData; SDimensions dims; dims.iVolWidth = 1024; dims.iVolHeight = 1024; dims.iProjAngles = 512; dims.iProjDets = 1536; dims.fDetScale = 1.0f; dims.iRaysPerDet = 1; unsigned int volumePitch, projPitch; allocateVolume(D_volumeData, dims.iVolWidth, dims.iVolHeight, volumePitch); printf("pitch: %u\n", volumePitch); allocateVolume(D_projData, dims.iProjDets, dims.iProjAngles, projPitch); printf("pitch: %u\n", projPitch); unsigned int y, x; float* sino = loadImage("sino.png", y, x); float* img = new float[dims.iVolWidth*dims.iVolHeight]; memset(img, 0, dims.iVolWidth*dims.iVolHeight*sizeof(float)); copyVolumeToDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch); copySinogramToDevice(sino, dims.iProjDets, dims.iProjDets, dims.iProjAngles, D_projData, projPitch); float* angle = new float[dims.iProjAngles]; for (unsigned int i = 0; i < dims.iProjAngles; ++i) angle[i] = i*(M_PI/dims.iProjAngles); BP(D_volumeData, volumePitch, D_projData, projPitch, dims, angle, 0, 1.0f); delete[] angle; copyVolumeFromDevice(img, dims.iVolWidth, dims.iVolWidth, dims.iVolHeight, D_volumeData, volumePitch); saveImage("vol.png",dims.iVolHeight,dims.iVolWidth,img); return 0; } #endif