/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- */ #include "astra/cuda/2d/sart.h" #include "astra/cuda/2d/util.h" #include "astra/cuda/2d/arith.h" #include "astra/cuda/2d/fan_fp.h" #include "astra/cuda/2d/fan_bp.h" #include "astra/cuda/2d/par_fp.h" #include "astra/cuda/2d/par_bp.h" #include <cstdio> #include <cassert> namespace astraCUDA { // FIXME: Remove these functions. (Outdated) __global__ void devMUL_SART(float* pfOut, const float* pfIn, unsigned int pitch, unsigned int width) { unsigned int x = threadIdx.x + 16*blockIdx.x; if (x >= width) return; pfOut[x] *= pfIn[x]; } void MUL_SART(float* pfOut, const float* pfIn, unsigned int pitch, unsigned int width) { dim3 blockSize(16,16); dim3 gridSize((width+15)/16, 1); devMUL_SART<<<gridSize, blockSize>>>(pfOut, pfIn, pitch, width); cudaTextForceKernelsCompletion(); } SART::SART() : ReconAlgo() { D_projData = 0; D_tmpData = 0; D_lineWeight = 0; projectionOrder = 0; projectionCount = 0; iteration = 0; customOrder = false; fRelaxation = 1.0f; } SART::~SART() { reset(); } void SART::reset() { cudaFree(D_projData); cudaFree(D_tmpData); cudaFree(D_lineWeight); D_projData = 0; D_tmpData = 0; D_lineWeight = 0; useVolumeMask = false; useSinogramMask = false; if (projectionOrder != NULL) delete[] projectionOrder; projectionOrder = 0; projectionCount = 0; iteration = 0; customOrder = false; fRelaxation = 1.0f; ReconAlgo::reset(); } bool SART::init() { if (useVolumeMask) { allocateVolumeData(D_tmpData, tmpPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); } // NB: Non-standard dimensions SDimensions linedims = dims; linedims.iProjAngles = 1; allocateProjectionData(D_projData, projPitch, linedims); zeroProjectionData(D_projData, projPitch, linedims); allocateProjectionData(D_lineWeight, linePitch, dims); zeroProjectionData(D_lineWeight, linePitch, dims); // We can't precompute lineWeights when using a mask if (!useVolumeMask) precomputeWeights(); // TODO: check if allocations succeeded return true; } bool SART::setProjectionOrder(int* _projectionOrder, int _projectionCount) { customOrder = true; projectionCount = _projectionCount; projectionOrder = new int[projectionCount]; for (int i = 0; i < projectionCount; i++) { projectionOrder[i] = _projectionOrder[i]; } return true; } bool SART::precomputeWeights() { zeroProjectionData(D_lineWeight, linePitch, dims); if (useVolumeMask) { callFP(D_maskData, maskPitch, D_lineWeight, linePitch, 1.0f); } else { // Allocate tmpData temporarily allocateVolumeData(D_tmpData, tmpPitch, dims); zeroVolumeData(D_tmpData, tmpPitch, dims); processVol<opSet>(D_tmpData, 1.0f, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_lineWeight, linePitch, 1.0f); cudaFree(D_tmpData); D_tmpData = 0; } processSino<opInvert>(D_lineWeight, linePitch, dims); return true; } bool SART::iterate(unsigned int iterations) { if (useVolumeMask) precomputeWeights(); // iteration for (unsigned int iter = 0; iter < iterations && !astra::shouldAbort(); ++iter) { int angle; if (customOrder) { angle = projectionOrder[iteration % projectionCount]; } else { angle = iteration % dims.iProjAngles; } // copy one line of sinogram to projection data // NB: Non-standard dimensions SDimensions linedims = dims; linedims.iProjAngles = 1; duplicateProjectionData(D_projData, D_sinoData + angle*sinoPitch, sinoPitch, linedims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims); processVol<opMul>(D_tmpData, D_maskData, tmpPitch, dims); callFP_SART(D_tmpData, tmpPitch, D_projData, projPitch, angle, -1.0f); } else { callFP_SART(D_volumeData, volumePitch, D_projData, projPitch, angle, -1.0f); } MUL_SART(D_projData, D_lineWeight + angle*linePitch, projPitch, dims.iProjDets); if (useVolumeMask) { // BP, mask, and add back // TODO: Try putting the masking directly in the BP zeroVolumeData(D_tmpData, tmpPitch, dims); callBP_SART(D_tmpData, tmpPitch, D_projData, projPitch, angle, fRelaxation); processVol<opAddMul>(D_volumeData, D_maskData, D_tmpData, volumePitch, dims); } else { callBP_SART(D_volumeData, volumePitch, D_projData, projPitch, angle, fRelaxation); } if (useMinConstraint) processVol<opClampMin>(D_volumeData, fMinConstraint, volumePitch, dims); if (useMaxConstraint) processVol<opClampMax>(D_volumeData, fMaxConstraint, volumePitch, dims); iteration++; } return true; } float SART::computeDiffNorm() { unsigned int pPitch; float *D_p; allocateProjectionData(D_p, pPitch, dims); // copy sinogram to D_p duplicateProjectionData(D_p, D_sinoData, sinoPitch, dims); // do FP, subtracting projection from sinogram if (useVolumeMask) { duplicateVolumeData(D_tmpData, D_volumeData, volumePitch, dims); processVol<opMul>(D_tmpData, D_maskData, tmpPitch, dims); callFP(D_tmpData, tmpPitch, D_p, pPitch, -1.0f); } else { callFP(D_volumeData, volumePitch, D_p, pPitch, -1.0f); } // compute norm of D_p float s = dotProduct2D(D_p, pPitch, dims.iProjDets, dims.iProjAngles); cudaFree(D_p); return sqrt(s); } bool SART::callFP_SART(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, unsigned int angle, float outputScale) { SDimensions d = dims; d.iProjAngles = 1; if (parProjs) { assert(!fanProjs); return FP(D_volumeData, volumePitch, D_projData, projPitch, d, &parProjs[angle], outputScale * fProjectorScale); } else { assert(fanProjs); return FanFP(D_volumeData, volumePitch, D_projData, projPitch, d, &fanProjs[angle], outputScale * fProjectorScale); } } bool SART::callBP_SART(float* D_volumeData, unsigned int volumePitch, float* D_projData, unsigned int projPitch, unsigned int angle, float outputScale) { // NB: No fProjectorScale here, as that it is cancelled out in the SART weighting if (parProjs) { assert(!fanProjs); return BP_SART(D_volumeData, volumePitch, D_projData, projPitch, angle, dims, parProjs, outputScale); } else { assert(fanProjs); return FanBP_SART(D_volumeData, volumePitch, D_projData, projPitch, angle, dims, fanProjs, outputScale); } } }