/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- $Id$ */ #ifndef _CUDA_ASTRA3D_H #define _CUDA_ASTRA3D_H #include "dims3d.h" namespace astra { // TODO: Switch to a class hierarchy as with the 2D algorithms enum Cuda3DProjectionKernel { ker3d_default = 0, ker3d_sum_square_weights }; class CProjectionGeometry3D; class CParallelProjectionGeometry3D; class CParallelVecProjectionGeometry3D; class CConeProjectionGeometry3D; class CConeVecProjectionGeometry3D; class CVolumeGeometry3D; class AstraSIRT3d_internal; class _AstraExport AstraSIRT3d { public: AstraSIRT3d(); ~AstraSIRT3d(); // Set the volume and projection geometry bool setGeometry(const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom); // Enable supersampling. // // The number of rays used in FP is the square of iDetectorSuperSampling. // The number of rays used in BP is the cube of iVoxelSuperSampling. bool enableSuperSampling(unsigned int iVoxelSuperSampling, unsigned int iDetectorSuperSampling); // Enable volume/sinogram masks // // This may optionally be called before init(). // If it is called, setVolumeMask()/setSinogramMask() must be called between // setSinogram() and iterate(). bool enableVolumeMask(); bool enableSinogramMask(); // Set GPU index // // This should be called before init(). Note that setting the GPU index // in a thread which has already used the GPU may not work. bool setGPUIndex(int index); // Allocate GPU buffers and // precompute geometry-specific data. // // This must be called after calling setReconstructionGeometry() and // setProjectionGeometry() or setFanProjectionGeometry(). bool init(); // Setup input sinogram for a slice. // pfSinogram must be a float array of size XXX // NB: iSinogramPitch is measured in floats, not in bytes. // // This must be called after init(), and before iterate(). It may be // called again after iterate()/getReconstruction() to start a new slice. // // pfSinogram will only be read from during this call. bool setSinogram(const float* pfSinogram, unsigned int iSinogramPitch); // Setup volume mask for a slice. // pfMask must be a float array of size XXX // NB: iMaskPitch is measured in floats, not in bytes. // // It may only contain the exact values 0.0f and 1.0f. Only volume pixels // for which pfMask[z] is 1.0f are processed. bool setVolumeMask(const float* pfMask, unsigned int iMaskPitch); // Setup sinogram mask for a slice. // pfMask must be a float array of size XXX // NB: iMaskPitch is measured in floats, not in bytes. // // It may only contain the exact values 0.0f and 1.0f. Only sinogram pixels // for which pfMask[z] is 1.0f are processed. bool setSinogramMask(const float* pfMask, unsigned int iMaskPitch); // Set the starting reconstruction for SIRT. // pfReconstruction must be a float array of size XXX // NB: iReconstructionPitch is measured in floats, not in bytes. // // This may be called between setSinogram() and iterate(). // If this function is not called before iterate(), SIRT will start // from a zero reconstruction. // // pfReconstruction will only be read from during this call. bool setStartReconstruction(const float* pfReconstruction, unsigned int iReconstructionPitch); // Enable min/max constraint. // // These may optionally be called between init() and iterate() bool setMinConstraint(float fMin); bool setMaxConstraint(float fMax); // Perform a number of (additive) SIRT iterations. // This must be called after setSinogram(). // // If called multiple times, without calls to setSinogram() or // setStartReconstruction() in between, iterate() will continue from // the result of the previous call. // Calls to getReconstruction() are allowed between calls to iterate() and // do not change the state. bool iterate(unsigned int iIterations); // Get the reconstructed slice. // pfReconstruction must be a float array of size XXX // NB: iReconstructionPitch is measured in floats, not in bytes. // // This may be called after iterate(). bool getReconstruction(float* pfReconstruction, unsigned int iReconstructionPitch) const; // Compute the norm of the difference of the FP of the current // reconstruction and the sinogram. (This performs one FP.) // It can be called after iterate(). float computeDiffNorm(); // Signal the algorithm that it should abort after the current iteration. // This is intended to be called from another thread. void signalAbort(); protected: AstraSIRT3d_internal *pData; }; class AstraCGLS3d_internal; class _AstraExport AstraCGLS3d { public: AstraCGLS3d(); ~AstraCGLS3d(); // Set the volume and projection geometry bool setGeometry(const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom); // Enable supersampling. // // The number of rays used in FP is the square of iDetectorSuperSampling. // The number of rays used in BP is the cube of iVoxelSuperSampling. bool enableSuperSampling(unsigned int iVoxelSuperSampling, unsigned int iDetectorSuperSampling); // Enable volume/sinogram masks // // This may optionally be called before init(). // If it is called, setVolumeMask()/setSinogramMask() must be called between // setSinogram() and iterate(). bool enableVolumeMask(); //bool enableSinogramMask(); // Set GPU index // // This should be called before init(). Note that setting the GPU index // in a thread which has already used the GPU may not work. bool setGPUIndex(int index); // Allocate GPU buffers and // precompute geometry-specific data. // // This must be called after calling setReconstructionGeometry() and // setProjectionGeometry() or setFanProjectionGeometry(). bool init(); // Setup input sinogram for a slice. // pfSinogram must be a float array of size XXX // NB: iSinogramPitch is measured in floats, not in bytes. // // This must be called after init(), and before iterate(). It may be // called again after iterate()/getReconstruction() to start a new slice. // // pfSinogram will only be read from during this call. bool setSinogram(const float* pfSinogram, unsigned int iSinogramPitch); // Setup volume mask for a slice. // pfMask must be a float array of size XXX // NB: iMaskPitch is measured in floats, not in bytes. // // It may only contain the exact values 0.0f and 1.0f. Only volume pixels // for which pfMask[z] is 1.0f are processed. bool setVolumeMask(const float* pfMask, unsigned int iMaskPitch); // Setup sinogram mask for a slice. // pfMask must be a float array of size XXX // NB: iMaskPitch is measured in floats, not in bytes. // // It may only contain the exact values 0.0f and 1.0f. Only sinogram pixels // for which pfMask[z] is 1.0f are processed. //bool setSinogramMask(const float* pfMask, unsigned int iMaskPitch); // Set the starting reconstruction for SIRT. // pfReconstruction must be a float array of size XXX // NB: iReconstructionPitch is measured in floats, not in bytes. // // This may be called between setSinogram() and iterate(). // If this function is not called before iterate(), SIRT will start // from a zero reconstruction. // // pfReconstruction will only be read from during this call. bool setStartReconstruction(const float* pfReconstruction, unsigned int iReconstructionPitch); // Enable min/max constraint. // // These may optionally be called between init() and iterate() //bool setMinConstraint(float fMin); //bool setMaxConstraint(float fMax); // Perform a number of (additive) SIRT iterations. // This must be called after setSinogram(). // // If called multiple times, without calls to setSinogram() or // setStartReconstruction() in between, iterate() will continue from // the result of the previous call. // Calls to getReconstruction() are allowed between calls to iterate() and // do not change the state. bool iterate(unsigned int iIterations); // Get the reconstructed slice. // pfReconstruction must be a float array of size XXX // NB: iReconstructionPitch is measured in floats, not in bytes. // // This may be called after iterate(). bool getReconstruction(float* pfReconstruction, unsigned int iReconstructionPitch) const; // Compute the norm of the difference of the FP of the current // reconstruction and the sinogram. (This performs one FP.) // It can be called after iterate(). float computeDiffNorm(); // Signal the algorithm that it should abort after the current iteration. // This is intended to be called from another thread. void signalAbort(); protected: AstraCGLS3d_internal *pData; }; bool convertAstraGeometry_dims(const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom, astraCUDA3d::SDimensions3D& dims); bool convertAstraGeometry(const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom, SPar3DProjection*& pParProjs, SConeProjection*& pConeProjs, float& fOutputScale); _AstraExport bool astraCudaFP(const float* pfVolume, float* pfProjections, const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom, int iGPUIndex, int iDetectorSuperSampling, Cuda3DProjectionKernel projKernel); _AstraExport bool astraCudaBP(float* pfVolume, const float* pfProjections, const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom, int iGPUIndex, int iVoxelSuperSampling); _AstraExport bool astraCudaBP_SIRTWeighted(float* pfVolume, const float* pfProjections, const CVolumeGeometry3D* pVolGeom, const CProjectionGeometry3D* pProjGeom, int iGPUIndex, int iVoxelSuperSampling); _AstraExport bool astraCudaFDK(float* pfVolume, const float* pfProjections, const CVolumeGeometry3D* pVolGeom, const CConeProjectionGeometry3D* pProjGeom, bool bShortScan, int iGPUIndex, int iVoxelSuperSampling); } #endif