/*
-----------------------------------------------------------------------
Copyright 2012 iMinds-Vision Lab, University of Antwerp
Contact: astra@ua.ac.be
Website: http://astra.ua.ac.be
This file is part of the
All Scale Tomographic Reconstruction Antwerp Toolbox ("ASTRA Toolbox").
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
$Id$
*/
#include
#include
#include
#include
#include
#include "util3d.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#include "dims3d.h"
typedef texture texture3D;
static texture3D gT_coneVolumeTexture;
namespace astraCUDA3d {
static const unsigned int g_anglesPerBlock = 4;
// thickness of the slices we're splitting the volume up into
static const unsigned int g_blockSlices = 64;
static const unsigned int g_detBlockU = 32;
static const unsigned int g_detBlockV = 32;
static const unsigned g_MaxAngles = 1024;
__constant__ float gC_SrcX[g_MaxAngles];
__constant__ float gC_SrcY[g_MaxAngles];
__constant__ float gC_SrcZ[g_MaxAngles];
__constant__ float gC_DetSX[g_MaxAngles];
__constant__ float gC_DetSY[g_MaxAngles];
__constant__ float gC_DetSZ[g_MaxAngles];
__constant__ float gC_DetUX[g_MaxAngles];
__constant__ float gC_DetUY[g_MaxAngles];
__constant__ float gC_DetUZ[g_MaxAngles];
__constant__ float gC_DetVX[g_MaxAngles];
__constant__ float gC_DetVY[g_MaxAngles];
__constant__ float gC_DetVZ[g_MaxAngles];
bool bindVolumeDataTexture(const cudaArray* array)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
gT_coneVolumeTexture.addressMode[0] = cudaAddressModeClamp;
gT_coneVolumeTexture.addressMode[1] = cudaAddressModeClamp;
gT_coneVolumeTexture.addressMode[2] = cudaAddressModeClamp;
gT_coneVolumeTexture.filterMode = cudaFilterModeLinear;
gT_coneVolumeTexture.normalized = false;
cudaBindTextureToArray(gT_coneVolumeTexture, array, channelDesc);
// TODO: error value?
return true;
}
// threadIdx: x = ??? detector (u?)
// y = relative angle
// blockIdx: x = ??? detector (u+v?)
// y = angle block
#define CONE_FP_BODY(c0,c1,c2) \
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \
if (angle >= endAngle) \
return; \
\
const float fSrcX = gC_SrcX[angle]; \
const float fSrcY = gC_SrcY[angle]; \
const float fSrcZ = gC_SrcZ[angle]; \
const float fDetUX = gC_DetUX[angle]; \
const float fDetUY = gC_DetUY[angle]; \
const float fDetUZ = gC_DetUZ[angle]; \
const float fDetVX = gC_DetVX[angle]; \
const float fDetVY = gC_DetVY[angle]; \
const float fDetVZ = gC_DetVZ[angle]; \
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \
\
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \
int endDetectorV = startDetectorV + g_detBlockV; \
if (endDetectorV > dims.iProjV) \
endDetectorV = dims.iProjV; \
\
int endSlice = startSlice + g_blockSlices; \
if (endSlice > dims.iVol##c0) \
endSlice = dims.iVol##c0; \
\
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \
{ \
/* Trace ray from Src to (detectorU,detectorV) from */ \
/* X = startSlice to X = endSlice */ \
\
const float fDetX = fDetSX + detectorU*fDetUX + detectorV*fDetVX; \
const float fDetY = fDetSY + detectorU*fDetUY + detectorV*fDetVY; \
const float fDetZ = fDetSZ + detectorU*fDetUZ + detectorV*fDetVZ; \
\
/* (x) ( 1) ( 0) */ \
/* ray: (y) = (ay) * x + (by) */ \
/* (z) (az) (bz) */ \
\
const float a##c1 = (fSrc##c1 - fDet##c1) / (fSrc##c0 - fDet##c0); \
const float a##c2 = (fSrc##c2 - fDet##c2) / (fSrc##c0 - fDet##c0); \
const float b##c1 = fSrc##c1 - a##c1 * fSrc##c0; \
const float b##c2 = fSrc##c2 - a##c2 * fSrc##c0; \
\
const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \
\
float fVal = 0.0f; \
\
float f##c0 = startSlice + 1.5f; \
float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 1.5f; \
float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 1.5f; \
\
for (int s = startSlice; s < endSlice; ++s) \
{ \
fVal += tex3D(gT_coneVolumeTexture, fX, fY, fZ); \
f##c0 += 1.0f; \
f##c1 += a##c1; \
f##c2 += a##c2; \
} \
\
fVal *= fDistCorr; \
\
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fVal; \
}
#define CONE_FP_SS_BODY(c0,c1,c2) \
int angle = startAngle + blockIdx.y * g_anglesPerBlock + threadIdx.y; \
if (angle >= endAngle) \
return; \
\
const float fSrcX = gC_SrcX[angle]; \
const float fSrcY = gC_SrcY[angle]; \
const float fSrcZ = gC_SrcZ[angle]; \
const float fDetUX = gC_DetUX[angle]; \
const float fDetUY = gC_DetUY[angle]; \
const float fDetUZ = gC_DetUZ[angle]; \
const float fDetVX = gC_DetVX[angle]; \
const float fDetVY = gC_DetVY[angle]; \
const float fDetVZ = gC_DetVZ[angle]; \
const float fDetSX = gC_DetSX[angle] + 0.5f * fDetUX + 0.5f * fDetVX; \
const float fDetSY = gC_DetSY[angle] + 0.5f * fDetUY + 0.5f * fDetVY; \
const float fDetSZ = gC_DetSZ[angle] + 0.5f * fDetUZ + 0.5f * fDetVZ; \
\
const int detectorU = (blockIdx.x%((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockU + threadIdx.x; \
const int startDetectorV = (blockIdx.x/((dims.iProjU+g_detBlockU-1)/g_detBlockU)) * g_detBlockV; \
int endDetectorV = startDetectorV + g_detBlockV; \
if (endDetectorV > dims.iProjV) \
endDetectorV = dims.iProjV; \
\
int endSlice = startSlice + g_blockSlices; \
if (endSlice > dims.iVolX) \
endSlice = dims.iVolX; \
\
const float fSubStep = 1.0f/dims.iRaysPerDetDim; \
\
for (int detectorV = startDetectorV; detectorV < endDetectorV; ++detectorV) \
{ \
/* Trace ray from Src to (detectorU,detectorV) from */ \
/* X = startSlice to X = endSlice */ \
\
float fV = 0.0f; \
\
float fdU = detectorU - 0.5f + 0.5f*fSubStep; \
for (int iSubU = 0; iSubU < dims.iRaysPerDetDim; ++iSubU, fdU+=fSubStep) { \
float fdV = detectorV - 0.5f + 0.5f*fSubStep; \
for (int iSubV = 0; iSubV < dims.iRaysPerDetDim; ++iSubV, fdV+=fSubStep) { \
\
const float fDetX = fDetSX + fdU*fDetUX + fdV*fDetVX; \
const float fDetY = fDetSY + fdU*fDetUY + fdV*fDetVY; \
const float fDetZ = fDetSZ + fdU*fDetUZ + fdV*fDetVZ; \
\
/* (x) ( 1) ( 0) */ \
/* ray: (y) = (ay) * x + (by) */ \
/* (z) (az) (bz) */ \
\
const float a##c1 = (fSrc##c1 - fDet##c1) / (fSrc##c0 - fDet##c0); \
const float a##c2 = (fSrc##c2 - fDet##c2) / (fSrc##c0 - fDet##c0); \
const float b##c1 = fSrc##c1 - a##c1 * fSrc##c0; \
const float b##c2 = fSrc##c2 - a##c2 * fSrc##c0; \
\
const float fDistCorr = sqrt(a##c1*a##c1+a##c2*a##c2+1.0f) * fOutputScale; \
\
float fVal = 0.0f; \
\
float f##c0 = startSlice + 1.5f; \
float f##c1 = a##c1 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c1 + 0.5f*dims.iVol##c1 - 0.5f + 1.5f; \
float f##c2 = a##c2 * (startSlice - 0.5f*dims.iVol##c0 + 0.5f) + b##c2 + 0.5f*dims.iVol##c2 - 0.5f + 1.5f; \
\
for (int s = startSlice; s < endSlice; ++s) \
{ \
fVal += tex3D(gT_coneVolumeTexture, fX, fY, fZ); \
f##c0 += 1.0f; \
f##c1 += a##c1; \
f##c2 += a##c2; \
} \
\
fVal *= fDistCorr; \
fV += fVal; \
\
} \
} \
\
D_projData[(detectorV*dims.iProjAngles+angle)*projPitch+detectorU] += fV / (dims.iRaysPerDetDim * dims.iRaysPerDetDim);\
}
__global__ void FP_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
CONE_FP_BODY(X,Y,Z)
}
__global__ void FP_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
CONE_FP_BODY(Y,X,Z)
}
__global__ void FP_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
CONE_FP_BODY(Z,X,Y)
}
__global__ void FP_SS_dirX(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
CONE_FP_SS_BODY(X,Y,Z)
}
__global__ void FP_SS_dirY(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
CONE_FP_SS_BODY(Y,X,Z)
}
__global__ void FP_SS_dirZ(float* D_projData, unsigned int projPitch, unsigned int startSlice, unsigned int startAngle, unsigned int endAngle, const SDimensions3D dims, float fOutputScale)
{
CONE_FP_SS_BODY(Z,X,Y)
}
bool ConeFP_Array(cudaArray *D_volArray,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SConeProjection* angles,
float fOutputScale)
{
bindVolumeDataTexture(D_volArray);
// transfer angles to constant memory
float* tmp = new float[dims.iProjAngles];
#define TRANSFER_TO_CONSTANT(name) do { for (unsigned int i = 0; i < dims.iProjAngles; ++i) tmp[i] = angles[i].f##name ; cudaMemcpyToSymbol(gC_##name, tmp, dims.iProjAngles*sizeof(float), 0, cudaMemcpyHostToDevice); } while (0)
TRANSFER_TO_CONSTANT(SrcX);
TRANSFER_TO_CONSTANT(SrcY);
TRANSFER_TO_CONSTANT(SrcZ);
TRANSFER_TO_CONSTANT(DetSX);
TRANSFER_TO_CONSTANT(DetSY);
TRANSFER_TO_CONSTANT(DetSZ);
TRANSFER_TO_CONSTANT(DetUX);
TRANSFER_TO_CONSTANT(DetUY);
TRANSFER_TO_CONSTANT(DetUZ);
TRANSFER_TO_CONSTANT(DetVX);
TRANSFER_TO_CONSTANT(DetVY);
TRANSFER_TO_CONSTANT(DetVZ);
#undef TRANSFER_TO_CONSTANT
delete[] tmp;
std::list streams;
dim3 dimBlock(g_detBlockU, g_anglesPerBlock); // region size, angles
// Run over all angles, grouping them into groups of the same
// orientation (roughly horizontal vs. roughly vertical).
// Start a stream of grids for each such group.
unsigned int blockStart = 0;
unsigned int blockEnd = 0;
int blockDirection = 0;
// timeval t;
// tic(t);
for (unsigned int a = 0; a <= dims.iProjAngles; ++a) {
int dir;
if (a != dims.iProjAngles) {
float dX = fabsf(angles[a].fSrcX - (angles[a].fDetSX + dims.iProjU*angles[a].fDetUX*0.5f + dims.iProjV*angles[a].fDetVX*0.5f));
float dY = fabsf(angles[a].fSrcY - (angles[a].fDetSY + dims.iProjU*angles[a].fDetUY*0.5f + dims.iProjV*angles[a].fDetVY*0.5f));
float dZ = fabsf(angles[a].fSrcZ - (angles[a].fDetSZ + dims.iProjU*angles[a].fDetUZ*0.5f + dims.iProjV*angles[a].fDetVZ*0.5f));
if (dX >= dY && dX >= dZ)
dir = 0;
else if (dY >= dX && dY >= dZ)
dir = 1;
else
dir = 2;
}
if (a == dims.iProjAngles || dir != blockDirection) {
// block done
blockEnd = a;
if (blockStart != blockEnd) {
dim3 dimGrid(
((dims.iProjU+g_detBlockU-1)/g_detBlockU)*((dims.iProjV+g_detBlockV-1)/g_detBlockV),
(blockEnd-blockStart+g_anglesPerBlock-1)/g_anglesPerBlock);
// TODO: check if we can't immediately
// destroy the stream after use
cudaStream_t stream;
cudaStreamCreate(&stream);
streams.push_back(stream);
// printf("angle block: %d to %d, %d (%dx%d, %dx%d)\n", blockStart, blockEnd, blockDirection, dimGrid.x, dimGrid.y, dimBlock.x, dimBlock.y);
if (blockDirection == 0) {
for (unsigned int i = 0; i < dims.iVolX; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
FP_dirX<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
FP_SS_dirX<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
} else if (blockDirection == 1) {
for (unsigned int i = 0; i < dims.iVolY; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
FP_dirY<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
FP_SS_dirY<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
} else if (blockDirection == 2) {
for (unsigned int i = 0; i < dims.iVolZ; i += g_blockSlices)
if (dims.iRaysPerDetDim == 1)
FP_dirZ<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
else
FP_SS_dirZ<<>>((float*)D_projData.ptr, D_projData.pitch/sizeof(float), i, blockStart, blockEnd, dims, fOutputScale);
}
}
blockDirection = dir;
blockStart = a;
}
}
for (std::list::iterator iter = streams.begin(); iter != streams.end(); ++iter)
cudaStreamDestroy(*iter);
streams.clear();
cudaTextForceKernelsCompletion();
// printf("%f\n", toc(t));
return true;
}
bool ConeFP(cudaPitchedPtr D_volumeData,
cudaPitchedPtr D_projData,
const SDimensions3D& dims, const SConeProjection* angles,
float fOutputScale)
{
// transfer volume to array
cudaArray* cuArray = allocateVolumeArray(dims);
transferVolumeToArray(D_volumeData, cuArray, dims);
bool ret = ConeFP_Array(cuArray, D_projData, dims, angles, fOutputScale);
cudaFreeArray(cuArray);
return ret;
}
}
#ifdef STANDALONE
int main()
{
SDimensions3D dims;
dims.iVolX = 256;
dims.iVolY = 256;
dims.iVolZ = 256;
dims.iProjAngles = 32;
dims.iProjU = 512;
dims.iProjV = 512;
dims.iRaysPerDet = 1;
cudaExtent extentV;
extentV.width = dims.iVolX*sizeof(float);
extentV.height = dims.iVolY;
extentV.depth = dims.iVolZ;
cudaPitchedPtr volData; // pitch, ptr, xsize, ysize
cudaMalloc3D(&volData, extentV);
cudaExtent extentP;
extentP.width = dims.iProjU*sizeof(float);
extentP.height = dims.iProjV;
extentP.depth = dims.iProjAngles;
cudaPitchedPtr projData; // pitch, ptr, xsize, ysize
cudaMalloc3D(&projData, extentP);
cudaMemset3D(projData, 0, extentP);
float* slice = new float[256*256];
cudaPitchedPtr ptr;
ptr.ptr = slice;
ptr.pitch = 256*sizeof(float);
ptr.xsize = 256*sizeof(float);
ptr.ysize = 256;
for (unsigned int i = 0; i < 256*256; ++i)
slice[i] = 1.0f;
for (unsigned int i = 0; i < 256; ++i) {
cudaExtent extentS;
extentS.width = dims.iVolX*sizeof(float);
extentS.height = dims.iVolY;
extentS.depth = 1;
cudaPos sp = { 0, 0, 0 };
cudaPos dp = { 0, 0, i };
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = sp;
p.srcPtr = ptr;
p.dstArray = 0;
p.dstPos = dp;
p.dstPtr = volData;
p.extent = extentS;
p.kind = cudaMemcpyHostToDevice;
cudaError err = cudaMemcpy3D(&p);
assert(!err);
}
SConeProjection angle[32];
angle[0].fSrcX = -1536;
angle[0].fSrcY = 0;
angle[0].fSrcZ = 200;
angle[0].fDetSX = 512;
angle[0].fDetSY = -256;
angle[0].fDetSZ = -256;
angle[0].fDetUX = 0;
angle[0].fDetUY = 1;
angle[0].fDetUZ = 0;
angle[0].fDetVX = 0;
angle[0].fDetVY = 0;
angle[0].fDetVZ = 1;
#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
for (int i = 1; i < 32; ++i) {
angle[i] = angle[0];
ROTATE0(Src, i, i*1*M_PI/180);
ROTATE0(DetS, i, i*1*M_PI/180);
ROTATE0(DetU, i, i*1*M_PI/180);
ROTATE0(DetV, i, i*1*M_PI/180);
}
#undef ROTATE0
astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
float* buf = new float[512*512];
cudaMemcpy(buf, ((float*)projData.ptr)+512*512*8, 512*512*sizeof(float), cudaMemcpyDeviceToHost);
printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
saveImage("proj.png", 512, 512, buf);
}
#endif