/*
-----------------------------------------------------------------------
Copyright: 2010-2018, imec Vision Lab, University of Antwerp
2014-2018, CWI, Amsterdam
Contact: astra@astra-toolbox.com
Website: http://www.astra-toolbox.com/
This file is part of the ASTRA Toolbox.
The ASTRA Toolbox is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The ASTRA Toolbox is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the ASTRA Toolbox. If not, see .
-----------------------------------------------------------------------
*/
#include "astra/cuda/3d/sirt3d.h"
#include "astra/cuda/3d/util3d.h"
#include "astra/cuda/3d/arith3d.h"
#include "astra/cuda/3d/cone_fp.h"
#ifdef STANDALONE
#include "testutil.h"
#endif
#include
#include
namespace astraCUDA3d {
SIRT::SIRT() : ReconAlgo3D()
{
D_maskData.ptr = 0;
D_smaskData.ptr = 0;
D_sinoData.ptr = 0;
D_volumeData.ptr = 0;
D_projData.ptr = 0;
D_tmpData.ptr = 0;
D_lineWeight.ptr = 0;
D_pixelWeight.ptr = 0;
useVolumeMask = false;
useSinogramMask = false;
useMinConstraint = false;
useMaxConstraint = false;
fRelaxation = 1.0f;
}
SIRT::~SIRT()
{
reset();
}
void SIRT::reset()
{
cudaFree(D_projData.ptr);
cudaFree(D_tmpData.ptr);
cudaFree(D_lineWeight.ptr);
cudaFree(D_pixelWeight.ptr);
D_maskData.ptr = 0;
D_smaskData.ptr = 0;
D_sinoData.ptr = 0;
D_volumeData.ptr = 0;
D_projData.ptr = 0;
D_tmpData.ptr = 0;
D_lineWeight.ptr = 0;
D_pixelWeight.ptr = 0;
useVolumeMask = false;
useSinogramMask = false;
fRelaxation = 1.0f;
ReconAlgo3D::reset();
}
bool SIRT::enableVolumeMask()
{
useVolumeMask = true;
return true;
}
bool SIRT::enableSinogramMask()
{
useSinogramMask = true;
return true;
}
bool SIRT::init()
{
D_pixelWeight = allocateVolumeData(dims);
zeroVolumeData(D_pixelWeight, dims);
D_tmpData = allocateVolumeData(dims);
zeroVolumeData(D_tmpData, dims);
D_projData = allocateProjectionData(dims);
zeroProjectionData(D_projData, dims);
D_lineWeight = allocateProjectionData(dims);
zeroProjectionData(D_lineWeight, dims);
// We can't precompute lineWeights and pixelWeights when using a mask
if (!useVolumeMask && !useSinogramMask)
precomputeWeights();
// TODO: check if allocations succeeded
return true;
}
bool SIRT::setMinConstraint(float fMin)
{
fMinConstraint = fMin;
useMinConstraint = true;
return true;
}
bool SIRT::setMaxConstraint(float fMax)
{
fMaxConstraint = fMax;
useMaxConstraint = true;
return true;
}
bool SIRT::precomputeWeights()
{
zeroProjectionData(D_lineWeight, dims);
if (useVolumeMask) {
callFP(D_maskData, D_lineWeight, 1.0f);
} else {
processVol3D(D_tmpData, 1.0f, dims);
callFP(D_tmpData, D_lineWeight, 1.0f);
}
processSino3D(D_lineWeight, dims);
if (useSinogramMask) {
// scale line weights with sinogram mask to zero out masked sinogram pixels
processSino3D(D_lineWeight, D_smaskData, dims);
}
zeroVolumeData(D_pixelWeight, dims);
if (useSinogramMask) {
callBP(D_pixelWeight, D_smaskData, 1.0f);
} else {
processSino3D(D_projData, 1.0f, dims);
callBP(D_pixelWeight, D_projData, 1.0f);
}
#if 0
float* bufp = new float[512*512];
for (int i = 0; i < 180; ++i) {
for (int j = 0; j < 512; ++j) {
cudaMemcpy(bufp+512*j, ((float*)D_projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
}
char fname[20];
sprintf(fname, "ray%03d.png", i);
saveImage(fname, 512, 512, bufp);
}
#endif
#if 0
float* buf = new float[256*256];
for (int i = 0; i < 256; ++i) {
cudaMemcpy(buf, ((float*)D_pixelWeight.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
char fname[20];
sprintf(fname, "pix%03d.png", i);
saveImage(fname, 256, 256, buf);
}
#endif
processVol3D(D_pixelWeight, dims);
if (useVolumeMask) {
// scale pixel weights with mask to zero out masked pixels
processVol3D(D_pixelWeight, D_maskData, dims);
}
processVol3D(D_pixelWeight, fRelaxation, dims);
return true;
}
bool SIRT::setVolumeMask(cudaPitchedPtr& _D_maskData)
{
assert(useVolumeMask);
D_maskData = _D_maskData;
return true;
}
bool SIRT::setSinogramMask(cudaPitchedPtr& _D_smaskData)
{
assert(useSinogramMask);
D_smaskData = _D_smaskData;
return true;
}
bool SIRT::setBuffers(cudaPitchedPtr& _D_volumeData,
cudaPitchedPtr& _D_projData)
{
D_volumeData = _D_volumeData;
D_sinoData = _D_projData;
return true;
}
bool SIRT::iterate(unsigned int iterations)
{
shouldAbort = false;
if (useVolumeMask || useSinogramMask)
precomputeWeights();
#if 0
float* buf = new float[256*256];
for (int i = 0; i < 256; ++i) {
cudaMemcpy(buf, ((float*)D_pixelWeight.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
char fname[20];
sprintf(fname, "pix%03d.png", i);
saveImage(fname, 256, 256, buf);
}
#endif
#if 0
float* bufp = new float[512*512];
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < 512; ++j) {
cudaMemcpy(bufp+512*j, ((float*)D_lineWeight.ptr)+100*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
}
char fname[20];
sprintf(fname, "ray%03d.png", i);
saveImage(fname, 512, 512, bufp);
}
#endif
// iteration
for (unsigned int iter = 0; iter < iterations && !shouldAbort; ++iter) {
// copy sinogram to projection data
duplicateProjectionData(D_projData, D_sinoData, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_tmpData, D_volumeData, dims);
processVol3D(D_tmpData, D_maskData, dims);
callFP(D_tmpData, D_projData, -1.0f);
} else {
callFP(D_volumeData, D_projData, -1.0f);
}
processSino3D(D_projData, D_lineWeight, dims);
zeroVolumeData(D_tmpData, dims);
#if 0
float* bufp = new float[512*512];
printf("Dumping projData: %p\n", (void*)D_projData.ptr);
for (int i = 0; i < 180; ++i) {
for (int j = 0; j < 512; ++j) {
cudaMemcpy(bufp+512*j, ((float*)D_projData.ptr)+180*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
}
char fname[20];
sprintf(fname, "diff%03d.png", i);
saveImage(fname, 512, 512, bufp);
}
#endif
callBP(D_tmpData, D_projData, 1.0f);
#if 0
printf("Dumping tmpData: %p\n", (void*)D_tmpData.ptr);
float* buf = new float[256*256];
for (int i = 0; i < 256; ++i) {
cudaMemcpy(buf, ((float*)D_tmpData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
char fname[20];
sprintf(fname, "add%03d.png", i);
saveImage(fname, 256, 256, buf);
}
#endif
// pixel weights also contain the volume mask and relaxation factor
processVol3D(D_volumeData, D_tmpData, D_pixelWeight, dims);
if (useMinConstraint)
processVol3D(D_volumeData, fMinConstraint, dims);
if (useMaxConstraint)
processVol3D(D_volumeData, fMaxConstraint, dims);
}
return true;
}
float SIRT::computeDiffNorm()
{
// copy sinogram to projection data
duplicateProjectionData(D_projData, D_sinoData, dims);
// do FP, subtracting projection from sinogram
if (useVolumeMask) {
duplicateVolumeData(D_tmpData, D_volumeData, dims);
processVol3D(D_tmpData, D_maskData, dims);
callFP(D_tmpData, D_projData, -1.0f);
} else {
callFP(D_volumeData, D_projData, -1.0f);
}
float s = dotProduct3D(D_projData, dims.iProjU, dims.iProjAngles, dims.iProjV);
return sqrt(s);
}
bool doSIRT(cudaPitchedPtr& D_volumeData,
cudaPitchedPtr& D_sinoData,
cudaPitchedPtr& D_maskData,
const SDimensions3D& dims, const SConeProjection* angles,
unsigned int iterations)
{
SIRT sirt;
bool ok = true;
ok &= sirt.setConeGeometry(dims, angles, SProjectorParams3D());
if (D_maskData.ptr)
ok &= sirt.enableVolumeMask();
if (!ok)
return false;
ok = sirt.init();
if (!ok)
return false;
if (D_maskData.ptr)
ok &= sirt.setVolumeMask(D_maskData);
ok &= sirt.setBuffers(D_volumeData, D_sinoData);
if (!ok)
return false;
ok = sirt.iterate(iterations);
return ok;
}
}
#ifdef STANDALONE
using namespace astraCUDA3d;
int main()
{
SDimensions3D dims;
dims.iVolX = 256;
dims.iVolY = 256;
dims.iVolZ = 256;
dims.iProjAngles = 100;
dims.iProjU = 512;
dims.iProjV = 512;
dims.iRaysPerDet = 1;
SConeProjection angle[100];
angle[0].fSrcX = -2905.6;
angle[0].fSrcY = 0;
angle[0].fSrcZ = 0;
angle[0].fDetSX = 694.4;
angle[0].fDetSY = -122.4704;
angle[0].fDetSZ = -122.4704;
angle[0].fDetUX = 0;
angle[0].fDetUY = .4784;
//angle[0].fDetUY = .5;
angle[0].fDetUZ = 0;
angle[0].fDetVX = 0;
angle[0].fDetVY = 0;
angle[0].fDetVZ = .4784;
#define ROTATE0(name,i,alpha) do { angle[i].f##name##X = angle[0].f##name##X * cos(alpha) - angle[0].f##name##Y * sin(alpha); angle[i].f##name##Y = angle[0].f##name##X * sin(alpha) + angle[0].f##name##Y * cos(alpha); } while(0)
for (int i = 1; i < 100; ++i) {
angle[i] = angle[0];
ROTATE0(Src, i, i*2*M_PI/100);
ROTATE0(DetS, i, i*2*M_PI/100);
ROTATE0(DetU, i, i*2*M_PI/100);
ROTATE0(DetV, i, i*2*M_PI/100);
}
#undef ROTATE0
cudaPitchedPtr volData = allocateVolumeData(dims);
cudaPitchedPtr projData = allocateProjectionData(dims);
zeroProjectionData(projData, dims);
float* pbuf = new float[100*512*512];
copyProjectionsFromDevice(pbuf, projData, dims);
copyProjectionsToDevice(pbuf, projData, dims);
delete[] pbuf;
#if 0
float* slice = new float[256*256];
cudaPitchedPtr ptr;
ptr.ptr = slice;
ptr.pitch = 256*sizeof(float);
ptr.xsize = 256*sizeof(float);
ptr.ysize = 256;
for (unsigned int i = 0; i < 256; ++i) {
for (unsigned int y = 0; y < 256; ++y)
for (unsigned int x = 0; x < 256; ++x)
slice[y*256+x] = (i-127.5)*(i-127.5)+(y-127.5)*(y-127.5)+(x-127.5)*(x-127.5) < 4900 ? 1.0f : 0.0f;
cudaExtent extentS;
extentS.width = dims.iVolX*sizeof(float);
extentS.height = dims.iVolY;
extentS.depth = 1;
cudaPos sp = { 0, 0, 0 };
cudaPos dp = { 0, 0, i };
cudaMemcpy3DParms p;
p.srcArray = 0;
p.srcPos = sp;
p.srcPtr = ptr;
p.dstArray = 0;
p.dstPos = dp;
p.dstPtr = volData;
p.extent = extentS;
p.kind = cudaMemcpyHostToDevice;
cudaMemcpy3D(&p);
}
astraCUDA3d::ConeFP(volData, projData, dims, angle, 1.0f);
#else
for (int i = 0; i < 100; ++i) {
char fname[32];
sprintf(fname, "Tiffs/%04d.png", 4*i);
unsigned int w,h;
float* bufp = loadImage(fname, w,h);
for (int j = 0; j < 512*512; ++j) {
float v = bufp[j];
if (v > 236.0f) v = 236.0f;
v = logf(236.0f / v);
bufp[j] = 256*v;
}
for (int j = 0; j < 512; ++j) {
cudaMemcpy(((float*)projData.ptr)+100*512*j+512*i, bufp+512*j, 512*sizeof(float), cudaMemcpyHostToDevice);
}
delete[] bufp;
}
#endif
#if 0
float* bufs = new float[100*512];
for (int i = 0; i < 512; ++i) {
cudaMemcpy(bufs, ((float*)projData.ptr)+100*512*i, 100*512*sizeof(float), cudaMemcpyDeviceToHost);
printf("%d %d %d\n", projData.pitch, projData.xsize, projData.ysize);
char fname[20];
sprintf(fname, "sino%03d.png", i);
saveImage(fname, 100, 512, bufs);
}
float* bufp = new float[512*512];
for (int i = 0; i < 100; ++i) {
for (int j = 0; j < 512; ++j) {
cudaMemcpy(bufp+512*j, ((float*)projData.ptr)+100*512*j+512*i, 512*sizeof(float), cudaMemcpyDeviceToHost);
}
char fname[20];
sprintf(fname, "proj%03d.png", i);
saveImage(fname, 512, 512, bufp);
}
#endif
zeroVolumeData(volData, dims);
cudaPitchedPtr maskData;
maskData.ptr = 0;
astraCUDA3d::doSIRT(volData, projData, maskData, dims, angle, 50);
#if 1
float* buf = new float[256*256];
for (int i = 0; i < 256; ++i) {
cudaMemcpy(buf, ((float*)volData.ptr)+256*256*i, 256*256*sizeof(float), cudaMemcpyDeviceToHost);
char fname[20];
sprintf(fname, "vol%03d.png", i);
saveImage(fname, 256, 256, buf);
}
#endif
return 0;
}
#endif