/* ----------------------------------------------------------------------- Copyright: 2010-2018, imec Vision Lab, University of Antwerp 2014-2018, CWI, Amsterdam Contact: astra@astra-toolbox.com Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- */ template <typename Policy> void CFanFlatBeamStripKernelProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template <typename Policy> void CFanFlatBeamStripKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template <typename Policy> void CFanFlatBeamStripKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- // PROJECT BLOCK template <typename Policy> void CFanFlatBeamStripKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { ASTRA_ASSERT(m_bIsInitialized); // Some variables float32 theta; int row, col; int iAngle, iDetector; float32 res; int x1L, x1R; float32 x2L, x2R; int iVolumeIndex, iRayIndex; CFanFlatProjectionGeometry2D* projgeom = static_cast<CFanFlatProjectionGeometry2D*>(m_pProjectionGeometry); // Other precalculations float32 PW = m_pVolumeGeometry->getPixelLengthX(); float32 PH = m_pVolumeGeometry->getPixelLengthY(); float32 DW = m_pProjectionGeometry->getDetectorWidth(); float32 inv_PW = 1.0f / PW; float32 inv_PH = 1.0f / PH; // calculate alpha's float32 alpha; float32* cos_alpha = new float32[m_pProjectionGeometry->getDetectorCount() + 1]; float32* sin_alpha = new float32[m_pProjectionGeometry->getDetectorCount() + 1]; for (int i = 0; i < m_pProjectionGeometry->getDetectorCount() + 1; ++i) { alpha = -atan((i - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW / projgeom->getSourceDetectorDistance()); cos_alpha[i] = cos(alpha); sin_alpha[i] = sin(alpha); } // loop angles for (iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // get values theta = m_pProjectionGeometry->getProjectionAngle(iAngle); bool switch_t = true; if (theta >= 7*PIdiv4) theta -= 2*PI; if (theta >= 3*PIdiv4) { theta -= PI; switch_t = false; } // Precalculate sin, cos, 1/cos float32 sin_theta = sin(theta); float32 cos_theta = cos(theta); // [-45?,45?] and [135?,225?] if (theta < PIdiv4) { // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() + (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW; dist_srcDetPixSquared = dist_srcDetPixSquared * dist_srcDetPixSquared / (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() * DW * DW); //float32 InvRayWidthSquared = (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance()) / dist_srcDetPixSquared; float32 sin_theta_left, cos_theta_left; float32 sin_theta_right, cos_theta_right; // get theta_l = alpha_left + theta and theta_r = alpha_right + theta float32 t_l, t_r; if (!switch_t) { sin_theta_left = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1]; sin_theta_right = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector]; cos_theta_left = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1]; cos_theta_right = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector]; t_l = sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance(); t_r = sin_alpha[iDetector] * projgeom->getOriginSourceDistance(); } else { sin_theta_left = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector]; sin_theta_right = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1]; cos_theta_left = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector]; cos_theta_right = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1]; t_l = -sin_alpha[iDetector] * projgeom->getOriginSourceDistance(); t_r = -sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance(); } float32 inv_cos_theta_left = 1.0f / cos_theta_left; float32 inv_cos_theta_right = 1.0f / cos_theta_right; float32 updateX_left = sin_theta_left * inv_cos_theta_left; // tan(theta_left) float32 updateX_right = sin_theta_right * inv_cos_theta_right; // tan(theta_right) // Precalculate kernel limits // BUG: If updateX_left > 1 (which can happen if theta_left >= pi/4 > theta), then T_l > U_l, and the expressions for res are no longer correct float32 S_l = -0.5f * updateX_left; if (S_l > 0) {S_l = -S_l;} float32 T_l = -S_l; float32 U_l = 1.0f + S_l; float32 V_l = 1.0f - S_l; float32 inv_4T_l = 0.25f / T_l; float32 S_r = -0.5f * updateX_right; if (S_r > 0) {S_r = -S_r;} float32 T_r = -S_r; float32 U_r = 1.0f + S_r; float32 V_r = 1.0f - S_r; float32 inv_4T_r = 0.25f / T_r; // calculate strip extremes (volume coordinates) float32 PL = (t_l - sin_theta_left * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta_left; float32 PR = (t_r - sin_theta_right * m_pVolumeGeometry->pixelRowToCenterY(0)) * inv_cos_theta_right; float32 PLimitL = PL + S_l * PH; float32 PLimitR = PR - S_r * PH; // calculate strip extremes (pixel coordinates) float32 XLimitL = (PLimitL - m_pVolumeGeometry->getWindowMinX()) * inv_PW; float32 XLimitR = (PLimitR - m_pVolumeGeometry->getWindowMinX()) * inv_PW; float32 xL = (PL - m_pVolumeGeometry->getWindowMinX()) * inv_PW; float32 xR = (PR - m_pVolumeGeometry->getWindowMinX()) * inv_PW; // for each row for (row = 0; row < m_pVolumeGeometry->getGridRowCount(); ++row) { // get strip extremes in column indices x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f); x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f); // get coords w.r.t leftmost column hit by strip x2L = xL - x1L; x2R = xR - x1L; // update strip extremes for the next row XLimitL += updateX_left; XLimitR += updateX_right; xL += updateX_left; xR += updateX_right; float32 diffSrcYSquared; if (switch_t) diffSrcYSquared = m_pVolumeGeometry->pixelRowToCenterY(row) + cos_theta * projgeom->getOriginSourceDistance(); else diffSrcYSquared = m_pVolumeGeometry->pixelRowToCenterY(row) - cos_theta * projgeom->getOriginSourceDistance(); diffSrcYSquared = diffSrcYSquared * diffSrcYSquared; // for each affected col for (col = x1L; col <= x1R; ++col) { if (col < 0 || col >= m_pVolumeGeometry->getGridColCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; } // right if (x2R >= V_r) res = 1.0f; else if (x2R > U_r) res = x2R - (x2R-U_r)*(x2R-U_r)*inv_4T_r; else if (x2R >= T_r) res = x2R; else if (x2R > S_r) res = (x2R-S_r)*(x2R-S_r) * inv_4T_r; else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; } // left if (x2L <= S_l) {} else if (x2L < T_l) res -= (x2L-S_l)*(x2L-S_l) * inv_4T_l; else if (x2L <= U_l) res -= x2L; else if (x2L < V_l) res -= x2L - (x2L-U_l)*(x2L-U_l)*inv_4T_l; else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; } float32 diffSrcX; if (switch_t) diffSrcX = m_pVolumeGeometry->pixelColToCenterX(col) - sin_theta * projgeom->getOriginSourceDistance(); else diffSrcX = m_pVolumeGeometry->pixelColToCenterX(col) + sin_theta * projgeom->getOriginSourceDistance(); float32 scale = sqrt(dist_srcDetPixSquared / (diffSrcYSquared + diffSrcX * diffSrcX)); // POLICY: ADD p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res * scale); // POLICY: PIXEL POSTERIOR p.pixelPosterior(iVolumeIndex); x2L -= 1.0f; x2R -= 1.0f; } // end col loop } // end row loop // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end detector loop // [45?,135?] and [225?,315?] // horizontaly } else { // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; float32 dist_srcDetPixSquared = projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() + (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * (iDetector + 0.5f - m_pProjectionGeometry->getDetectorCount()*0.5f) * DW * DW; dist_srcDetPixSquared = dist_srcDetPixSquared * dist_srcDetPixSquared / (projgeom->getSourceDetectorDistance() * projgeom->getSourceDetectorDistance() * DW * DW); // get theta_l = alpha_left + theta and theta_r = alpha_right + theta float32 sin_theta_left, cos_theta_left; float32 sin_theta_right, cos_theta_right; float32 t_l, t_r; if (!switch_t) { sin_theta_left = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector]; sin_theta_right = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1]; cos_theta_left = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector]; cos_theta_right = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1]; t_l = sin_alpha[iDetector] * projgeom->getOriginSourceDistance(); t_r = sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance(); } else { sin_theta_left = sin_theta * cos_alpha[iDetector+1] + cos_theta * sin_alpha[iDetector+1]; sin_theta_right = sin_theta * cos_alpha[iDetector] + cos_theta * sin_alpha[iDetector]; cos_theta_left = cos_theta * cos_alpha[iDetector+1] - sin_theta * sin_alpha[iDetector+1]; cos_theta_right = cos_theta * cos_alpha[iDetector] - sin_theta * sin_alpha[iDetector]; t_l = -sin_alpha[iDetector+1] * projgeom->getOriginSourceDistance(); t_r = -sin_alpha[iDetector] * projgeom->getOriginSourceDistance(); } float32 inv_sin_theta_left = 1.0f / sin_theta_left; float32 inv_sin_theta_right = 1.0f / sin_theta_right; float32 updateX_left = cos_theta_left * inv_sin_theta_left; float32 updateX_right = cos_theta_right * inv_sin_theta_right; // Precalculate kernel limits // BUG: If updateX_left > 1 (which can happen if theta_left < pi/4 <= theta), then T_l > U_l, and the expressions for res are no longer correct float32 S_l = -0.5f * updateX_left; if (S_l > 0) { S_l = -S_l; } float32 T_l = -S_l; float32 U_l = 1.0f + S_l; float32 V_l = 1.0f - S_l; float32 inv_4T_l = 0.25f / T_l; float32 S_r = -0.5f * updateX_right; if (S_r > 0) { S_r = -S_r; } float32 T_r = -S_r; float32 U_r = 1.0f + S_r; float32 V_r = 1.0f - S_r; float32 inv_4T_r = 0.25f / T_r; // calculate strip extremes (volume coordinates) float32 PL = (t_l - cos_theta_left * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta_left; float32 PR = (t_r - cos_theta_right * m_pVolumeGeometry->pixelColToCenterX(0)) * inv_sin_theta_right; float32 PLimitL = PL - S_l * PW; float32 PLimitR = PR + S_r * PW; // calculate strip extremes (pixel coordinates) float32 XLimitL = (m_pVolumeGeometry->getWindowMaxY() - PLimitL) * inv_PH; float32 XLimitR = (m_pVolumeGeometry->getWindowMaxY() - PLimitR) * inv_PH; float32 xL = (m_pVolumeGeometry->getWindowMaxY() - PL) * inv_PH; float32 xR = (m_pVolumeGeometry->getWindowMaxY() - PR) * inv_PH; // for each col for (col = 0; col < m_pVolumeGeometry->getGridColCount(); ++col) { // get strip extremes in column indices x1L = int((XLimitL > 0.0f) ? XLimitL : XLimitL-1.0f); x1R = int((XLimitR > 0.0f) ? XLimitR : XLimitR-1.0f); // get coords w.r.t leftmost column hit by strip x2L = xL - x1L; x2R = xR - x1L; // update strip extremes for the next row XLimitL += updateX_left; XLimitR += updateX_right; xL += updateX_left; xR += updateX_right; float32 diffSrcXSquared; if (switch_t) diffSrcXSquared = m_pVolumeGeometry->pixelColToCenterX(col) - sin_theta * projgeom->getOriginSourceDistance(); else diffSrcXSquared = m_pVolumeGeometry->pixelColToCenterX(col) + sin_theta * projgeom->getOriginSourceDistance(); diffSrcXSquared = diffSrcXSquared * diffSrcXSquared; // for each affected row for (row = x1L; row <= x1R; ++row) { if (row < 0 || row >= m_pVolumeGeometry->getGridRowCount()) { x2L -= 1.0f; x2R -= 1.0f; continue; } iVolumeIndex = m_pVolumeGeometry->pixelRowColToIndex(row, col); // POLICY: PIXEL PRIOR if (!p.pixelPrior(iVolumeIndex)) { x2L -= 1.0f; x2R -= 1.0f; continue; } // right if (x2R >= V_r) res = 1.0f; else if (x2R > U_r) res = x2R - (x2R-U_r)*(x2R-U_r)*inv_4T_r; else if (x2R >= T_r) res = x2R; else if (x2R > S_r) res = (x2R-S_r)*(x2R-S_r) * inv_4T_r; else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; } // left if (x2L <= S_l) {} else if (x2L < T_l) res -= (x2L-S_l)*(x2L-S_l) * inv_4T_l; else if (x2L <= U_l) res -= x2L; else if (x2L < V_l) res -= x2L - (x2L-U_l)*(x2L-U_l)*inv_4T_l; else { x2L -= 1.0f; x2R -= 1.0f; p.pixelPosterior(iVolumeIndex); continue; } float32 diffSrcY; if (switch_t) diffSrcY = m_pVolumeGeometry->pixelRowToCenterY(row) + cos_theta * projgeom->getOriginSourceDistance(); else diffSrcY = m_pVolumeGeometry->pixelRowToCenterY(row) - cos_theta * projgeom->getOriginSourceDistance(); float32 scale = sqrt(dist_srcDetPixSquared / (diffSrcXSquared + diffSrcY * diffSrcY)); // POLICY: ADD p.addWeight(iRayIndex, iVolumeIndex, PW*PH * res * scale); // POLICY: PIXEL POSTERIOR p.pixelPosterior(iVolumeIndex); x2L -= 1.0f; x2R -= 1.0f; } // end col loop } // end row loop // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end detector loop } // end theta switch } // end angle loop delete[] cos_alpha; delete[] sin_alpha; }