/* ----------------------------------------------------------------------- Copyright: 2010-2016, iMinds-Vision Lab, University of Antwerp 2014-2016, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://www.astra-toolbox.com/ This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see . ----------------------------------------------------------------------- */ template void CParallelBeamBlobKernelProjector2D::project(Policy& p) { projectBlock_internal(0, m_pProjectionGeometry->getProjectionAngleCount(), 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamBlobKernelProjector2D::projectSingleProjection(int _iProjection, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, 0, m_pProjectionGeometry->getDetectorCount(), p); } template void CParallelBeamBlobKernelProjector2D::projectSingleRay(int _iProjection, int _iDetector, Policy& p) { projectBlock_internal(_iProjection, _iProjection + 1, _iDetector, _iDetector + 1, p); } //---------------------------------------------------------------------------------------- // PROJECT BLOCK - vector projection geometry // // Kernel limitations: isotropic pixels (PixelLengthX == PixelLengthY) // // For each angle/detector pair: // // Let D=(Dx,Dy) denote the centre of the detector (point) in volume coordinates, and // let R=(Rx,Ry) denote the direction of the ray (vector). // // For mainly vertical rays (|Rx|<=|Ry|), // let E=(Ex,Ey) denote the centre of the most upper left pixel: // E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), // and let F=(Fx,Fy) denote a vector to the next pixel // F = (PixelLengthX, 0) // // The intersection of the ray (D+aR) with the centre line of the upper row of pixels (E+bF) is // { Dx + a*Rx = Ex + b*Fx // { Dy + a*Ry = Ey + b*Fy // Solving for (a,b) results in: // a = (Ey + b*Fy - Dy)/Ry // = (Ey - Dy)/Ry // b = (Dx + a*Rx - Ex)/Fx // = (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx // // Define c as the x-value of the intersection of the ray with the upper row in pixel coordinates. // c = b // // The intersection of the ray (D+aR) with the centre line of the second row of pixels (E'+bF) with // E'=(WindowMinX + PixelLengthX/2, WindowMaxY - 3*PixelLengthY/2) // expressed in x-value pixel coordinates is // c' = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx. // And thus: // deltac = c' - c = (Dx + (Ey' - Dy)*Rx/Ry - Ex)/Fx - (Dx + (Ey - Dy)*Rx/Ry - Ex)/Fx // = [(Ey' - Dy)*Rx/Ry - (Ey - Dy)*Rx/Ry]/Fx // = [Ey' - Ey]*(Rx/Ry)/Fx // = [Ey' - Ey]*(Rx/Ry)/Fx // = -PixelLengthY*(Rx/Ry)/Fx. // // Given c on a certain row, its pixel directly on its left (col), and the distance (offset) to it, can be found: // col = floor(c) // offset = c - col // // The index of this pixel is // volumeIndex = row * colCount + col // // // Mainly horizontal rays (|Rx|<=|Ry|) are handled in a similar fashion: // // E = (WindowMinX + PixelLengthX/2, WindowMaxY - PixelLengthY/2), // F = (0, -PixelLengthX) // // a = (Ex + b*Fx - Dx)/Rx = (Ex - Dx)/Rx // b = (Dy + a*Ry - Ey)/Fy = (Dy + (Ex - Dx)*Ry/Rx - Ey)/Fy // r = b // deltar = PixelLengthX*(Ry/Rx)/Fy. // row = floor(r+1/2) // offset = r - row // template void CParallelBeamBlobKernelProjector2D::projectBlock_internal(int _iProjFrom, int _iProjTo, int _iDetFrom, int _iDetTo, Policy& p) { // get vector geometry const CParallelVecProjectionGeometry2D* pVecProjectionGeometry; if (dynamic_cast(m_pProjectionGeometry)) { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry)->toVectorGeometry(); } else { pVecProjectionGeometry = dynamic_cast(m_pProjectionGeometry); } // precomputations const float32 pixelLengthX = m_pVolumeGeometry->getPixelLengthX(); const float32 pixelLengthY = m_pVolumeGeometry->getPixelLengthY(); const float32 inv_pixelLengthX = 1.0f / m_pVolumeGeometry->getPixelLengthX(); const float32 inv_pixelLengthY = 1.0f / m_pVolumeGeometry->getPixelLengthY(); const int colCount = m_pVolumeGeometry->getGridColCount(); const int rowCount = m_pVolumeGeometry->getGridRowCount(); const int detCount = pVecProjectionGeometry->getDetectorCount(); // loop angles for (int iAngle = _iProjFrom; iAngle < _iProjTo; ++iAngle) { // variables float32 Dx, Dy, Ex, Ey, c, r, deltac, deltar, offset, invBlobExtent, RxOverRy, RyOverRx; int iVolumeIndex, iRayIndex, row, col, iDetector; int col_left, col_right, row_top, row_bottom, index; const SParProjection * proj = &pVecProjectionGeometry->getProjectionVectors()[iAngle]; bool vertical = fabs(proj->fRayX) < fabs(proj->fRayY); if (vertical) { RxOverRy = proj->fRayX/proj->fRayY; deltac = -m_pVolumeGeometry->getPixelLengthY() * (proj->fRayX/proj->fRayY) * inv_pixelLengthX; invBlobExtent = m_pVolumeGeometry->getPixelLengthY() / abs(m_fBlobSize * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / proj->fRayY); } else { RyOverRx = proj->fRayY/proj->fRayX; deltar = -m_pVolumeGeometry->getPixelLengthX() * (proj->fRayY/proj->fRayX) * inv_pixelLengthY; invBlobExtent = m_pVolumeGeometry->getPixelLengthX() / abs(m_fBlobSize * sqrt(proj->fRayY*proj->fRayY + proj->fRayX*proj->fRayX) / proj->fRayX); } Ex = m_pVolumeGeometry->getWindowMinX() + pixelLengthX*0.5f; Ey = m_pVolumeGeometry->getWindowMaxY() - pixelLengthY*0.5f; // loop detectors for (iDetector = _iDetFrom; iDetector < _iDetTo; ++iDetector) { iRayIndex = iAngle * m_pProjectionGeometry->getDetectorCount() + iDetector; // POLICY: RAY PRIOR if (!p.rayPrior(iRayIndex)) continue; Dx = proj->fDetSX + (iDetector+0.5f) * proj->fDetUX; Dy = proj->fDetSY + (iDetector+0.5f) * proj->fDetUY; // vertically if (vertical) { // calculate c for row 0 c = (Dx + (Ey - Dy)*RxOverRy - Ex) * inv_pixelLengthX; // loop rows for (row = 0; row < rowCount; ++row, c += deltac) { col_left = int(c - 0.5f - m_fBlobSize); col_right = int(c + 0.5f + m_fBlobSize); if (col_left < 0) col_left = 0; if (col_right > colCount-1) col_right = colCount-1; // loop columns for (col = col_left; col <= col_right; ++col) { iVolumeIndex = row * colCount + col; // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { offset = abs(c - float32(col)) * invBlobExtent; index = (int)(offset*m_iBlobSampleCount+0.5f); p.addWeight(iRayIndex, iVolumeIndex, m_pfBlobValues[min(index,m_iBlobSampleCount-1)]); p.pixelPosterior(iVolumeIndex); } } } } // horizontally else { // calculate r for col 0 r = -(Dy + (Ex - Dx)*RyOverRx - Ey) * inv_pixelLengthY; // loop columns for (col = 0; col < colCount; ++col, r += deltar) { row_top = int(r - 0.5f - m_fBlobSize); row_bottom = int(r + 0.5f + m_fBlobSize); if (row_top < 0) row_top = 0; if (row_bottom > rowCount-1) row_bottom = rowCount-1; // loop rows for (row = row_top; row <= row_bottom; ++row) { iVolumeIndex = row * colCount + col; // POLICY: PIXEL PRIOR + ADD + POSTERIOR if (p.pixelPrior(iVolumeIndex)) { offset = abs(r - float32(row)) * invBlobExtent; index = (int)(offset*m_iBlobSampleCount+0.5f); p.addWeight(iRayIndex, iVolumeIndex, m_pfBlobValues[min(index,m_iBlobSampleCount-1)]); p.pixelPosterior(iVolumeIndex); } } } } // POLICY: RAY POSTERIOR p.rayPosterior(iRayIndex); } // end loop detector } // end loop angles }