/* ----------------------------------------------------------------------- Copyright: 2010-2015, iMinds-Vision Lab, University of Antwerp 2014-2015, CWI, Amsterdam Contact: astra@uantwerpen.be Website: http://sf.net/projects/astra-toolbox This file is part of the ASTRA Toolbox. The ASTRA Toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. The ASTRA Toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the ASTRA Toolbox. If not, see <http://www.gnu.org/licenses/>. ----------------------------------------------------------------------- $Id$ */ #include "astra/CudaForwardProjectionAlgorithm3D.h" #ifdef ASTRA_CUDA #include <boost/lexical_cast.hpp> #include "astra/AstraObjectManager.h" #include "astra/CudaProjector3D.h" #include "astra/ConeProjectionGeometry3D.h" #include "astra/ParallelProjectionGeometry3D.h" #include "astra/ParallelVecProjectionGeometry3D.h" #include "astra/ConeVecProjectionGeometry3D.h" #include "../cuda/3d/astra3d.h" using namespace std; namespace astra { // type of the algorithm, needed to register with CAlgorithmFactory std::string CCudaForwardProjectionAlgorithm3D::type = "FP3D_CUDA"; //---------------------------------------------------------------------------------------- // Constructor CCudaForwardProjectionAlgorithm3D::CCudaForwardProjectionAlgorithm3D() { m_bIsInitialized = false; m_iGPUIndex = -1; m_iDetectorSuperSampling = 1; m_pProjector = 0; m_pProjections = 0; m_pVolume = 0; } //---------------------------------------------------------------------------------------- // Destructor CCudaForwardProjectionAlgorithm3D::~CCudaForwardProjectionAlgorithm3D() { } //--------------------------------------------------------------------------------------- // Initialize - Config bool CCudaForwardProjectionAlgorithm3D::initialize(const Config& _cfg) { ASTRA_ASSERT(_cfg.self); ConfigStackCheck<CAlgorithm> CC("CudaForwardProjectionAlgorithm3D", this, _cfg); XMLNode* node; int id; // sinogram data node = _cfg.self->getSingleNode("ProjectionDataId"); ASTRA_CONFIG_CHECK(node, "CudaForwardProjection3D", "No ProjectionDataId tag specified."); id = boost::lexical_cast<int>(node->getContent()); m_pProjections = dynamic_cast<CFloat32ProjectionData3DMemory*>(CData3DManager::getSingleton().get(id)); ASTRA_DELETE(node); CC.markNodeParsed("ProjectionDataId"); // reconstruction data node = _cfg.self->getSingleNode("VolumeDataId"); ASTRA_CONFIG_CHECK(node, "CudaForwardProjection3D", "No VolumeDataId tag specified."); id = boost::lexical_cast<int>(node->getContent()); m_pVolume = dynamic_cast<CFloat32VolumeData3DMemory*>(CData3DManager::getSingleton().get(id)); ASTRA_DELETE(node); CC.markNodeParsed("VolumeDataId"); // optional: projector node = _cfg.self->getSingleNode("ProjectorId"); if (node) { id = boost::lexical_cast<int>(node->getContent()); m_pProjector = CProjector3DManager::getSingleton().get(id); ASTRA_DELETE(node); } else { m_pProjector = 0; // TODO: or manually construct default projector? } CC.markNodeParsed("ProjectorId"); // GPU number m_iGPUIndex = (int)_cfg.self->getOptionNumerical("GPUindex", -1); CC.markOptionParsed("GPUindex"); m_iDetectorSuperSampling = (int)_cfg.self->getOptionNumerical("DetectorSuperSampling", 1); CC.markOptionParsed("DetectorSuperSampling"); // success m_bIsInitialized = check(); if (!m_bIsInitialized) return false; return true; } bool CCudaForwardProjectionAlgorithm3D::initialize(CProjector3D* _pProjector, CFloat32ProjectionData3DMemory* _pProjections, CFloat32VolumeData3DMemory* _pVolume, int _iGPUindex, int _iDetectorSuperSampling) { m_pProjector = _pProjector; // required classes m_pProjections = _pProjections; m_pVolume = _pVolume; m_iDetectorSuperSampling = _iDetectorSuperSampling; m_iGPUIndex = _iGPUindex; // success m_bIsInitialized = check(); if (!m_bIsInitialized) return false; return true; } //---------------------------------------------------------------------------------------- // Check bool CCudaForwardProjectionAlgorithm3D::check() { // check pointers //ASTRA_CONFIG_CHECK(m_pProjector, "Reconstruction2D", "Invalid Projector Object."); ASTRA_CONFIG_CHECK(m_pProjections, "FP3D_CUDA", "Invalid Projection Data Object."); ASTRA_CONFIG_CHECK(m_pVolume, "FP3D_CUDA", "Invalid Volume Data Object."); // check initializations //ASTRA_CONFIG_CHECK(m_pProjector->isInitialized(), "Reconstruction2D", "Projector Object Not Initialized."); ASTRA_CONFIG_CHECK(m_pProjections->isInitialized(), "FP3D_CUDA", "Projection Data Object Not Initialized."); ASTRA_CONFIG_CHECK(m_pVolume->isInitialized(), "FP3D_CUDA", "Volume Data Object Not Initialized."); ASTRA_CONFIG_CHECK(m_iDetectorSuperSampling >= 1, "FP3D_CUDA", "DetectorSuperSampling must be a positive integer."); ASTRA_CONFIG_CHECK(m_iGPUIndex >= -1, "FP3D_CUDA", "GPUIndex must be a non-negative integer."); // check compatibility between projector and data classes // ASTRA_CONFIG_CHECK(m_pSinogram->getGeometry()->isEqual(m_pProjector->getProjectionGeometry()), "SIRT_CUDA", "Projection Data not compatible with the specified Projector."); // ASTRA_CONFIG_CHECK(m_pReconstruction->getGeometry()->isEqual(m_pProjector->getVolumeGeometry()), "SIRT_CUDA", "Reconstruction Data not compatible with the specified Projector."); // todo: turn some of these back on // ASTRA_CONFIG_CHECK(m_pProjectionGeometry, "SIRT_CUDA", "ProjectionGeometry not specified."); // ASTRA_CONFIG_CHECK(m_pProjectionGeometry->isInitialized(), "SIRT_CUDA", "ProjectionGeometry not initialized."); // ASTRA_CONFIG_CHECK(m_pReconstructionGeometry, "SIRT_CUDA", "ReconstructionGeometry not specified."); // ASTRA_CONFIG_CHECK(m_pReconstructionGeometry->isInitialized(), "SIRT_CUDA", "ReconstructionGeometry not initialized."); // check dimensions //ASTRA_CONFIG_CHECK(m_pSinogram->getAngleCount() == m_pProjectionGeometry->getProjectionAngleCount(), "SIRT_CUDA", "Sinogram data object size mismatch."); //ASTRA_CONFIG_CHECK(m_pSinogram->getDetectorCount() == m_pProjectionGeometry->getDetectorCount(), "SIRT_CUDA", "Sinogram data object size mismatch."); //ASTRA_CONFIG_CHECK(m_pReconstruction->getWidth() == m_pReconstructionGeometry->getGridColCount(), "SIRT_CUDA", "Reconstruction data object size mismatch."); //ASTRA_CONFIG_CHECK(m_pReconstruction->getHeight() == m_pReconstructionGeometry->getGridRowCount(), "SIRT_CUDA", "Reconstruction data object size mismatch."); // check restrictions // TODO: check restrictions built into cuda code // success m_bIsInitialized = true; return true; } void CCudaForwardProjectionAlgorithm3D::setGPUIndex(int _iGPUIndex) { m_iGPUIndex = _iGPUIndex; } //--------------------------------------------------------------------------------------- // Information - All map<string,boost::any> CCudaForwardProjectionAlgorithm3D::getInformation() { map<string,boost::any> res; res["ProjectionGeometry"] = getInformation("ProjectionGeometry"); res["VolumeGeometry"] = getInformation("VolumeGeometry"); res["ProjectionDataId"] = getInformation("ProjectionDataId"); res["VolumeDataId"] = getInformation("VolumeDataId"); res["GPUindex"] = getInformation("GPUindex"); res["GPUindex"] = getInformation("GPUindex"); res["DetectorSuperSampling"] = getInformation("DetectorSuperSampling"); return mergeMap<string,boost::any>(CAlgorithm::getInformation(), res); } //--------------------------------------------------------------------------------------- // Information - Specific boost::any CCudaForwardProjectionAlgorithm3D::getInformation(std::string _sIdentifier) { // TODO: store these so we can return them? if (_sIdentifier == "ProjectionGeometry") { return string("not implemented"); } if (_sIdentifier == "VolumeGeometry") { return string("not implemented"); } if (_sIdentifier == "GPUindex") { return m_iGPUIndex; } if (_sIdentifier == "DetectorSuperSampling") { return m_iDetectorSuperSampling; } if (_sIdentifier == "ProjectionDataId") { int iIndex = CData3DManager::getSingleton().getIndex(m_pProjections); if (iIndex != 0) return iIndex; return std::string("not in manager"); } if (_sIdentifier == "VolumeDataId") { int iIndex = CData3DManager::getSingleton().getIndex(m_pVolume); if (iIndex != 0) return iIndex; return std::string("not in manager"); } return CAlgorithm::getInformation(_sIdentifier); } //---------------------------------------------------------------------------------------- // Run void CCudaForwardProjectionAlgorithm3D::run(int) { // check initialized assert(m_bIsInitialized); const CProjectionGeometry3D* projgeom = m_pProjections->getGeometry(); const CConeProjectionGeometry3D* conegeom = dynamic_cast<const CConeProjectionGeometry3D*>(projgeom); const CParallelProjectionGeometry3D* par3dgeom = dynamic_cast<const CParallelProjectionGeometry3D*>(projgeom); const CConeVecProjectionGeometry3D* conevecgeom = dynamic_cast<const CConeVecProjectionGeometry3D*>(projgeom); const CParallelVecProjectionGeometry3D* parvec3dgeom = dynamic_cast<const CParallelVecProjectionGeometry3D*>(projgeom); const CVolumeGeometry3D& volgeom = *m_pVolume->getGeometry(); Cuda3DProjectionKernel projKernel = ker3d_default; if (m_pProjector) { CCudaProjector3D* projector = dynamic_cast<CCudaProjector3D*>(m_pProjector); projKernel = projector->getProjectionKernel(); } #if 0 // Debugging code that gives the coordinates of the corners of the volume // projected on the detector. { float fX[] = { volgeom.getWindowMinX(), volgeom.getWindowMaxX() }; float fY[] = { volgeom.getWindowMinY(), volgeom.getWindowMaxY() }; float fZ[] = { volgeom.getWindowMinZ(), volgeom.getWindowMaxZ() }; for (int a = 0; a < projgeom->getProjectionCount(); ++a) for (int i = 0; i < 2; ++i) for (int j = 0; j < 2; ++j) for (int k = 0; k < 2; ++k) { float fU, fV; projgeom->projectPoint(fX[i], fY[j], fZ[k], a, fU, fV); fprintf(stderr, "%3d %c1,%c1,%c1 -> %12f %12f\n", a, i ? ' ' : '-', j ? ' ' : '-', k ? ' ' : '-', fU, fV); } } #endif if (conegeom) { astraCudaConeFP(m_pVolume->getDataConst(), m_pProjections->getData(), volgeom.getGridColCount(), volgeom.getGridRowCount(), volgeom.getGridSliceCount(), conegeom->getProjectionCount(), conegeom->getDetectorColCount(), conegeom->getDetectorRowCount(), conegeom->getOriginSourceDistance(), conegeom->getOriginDetectorDistance(), conegeom->getDetectorSpacingX(), conegeom->getDetectorSpacingY(), conegeom->getProjectionAngles(), m_iGPUIndex, m_iDetectorSuperSampling); } else if (par3dgeom) { astraCudaPar3DFP(m_pVolume->getDataConst(), m_pProjections->getData(), volgeom.getGridColCount(), volgeom.getGridRowCount(), volgeom.getGridSliceCount(), par3dgeom->getProjectionCount(), par3dgeom->getDetectorColCount(), par3dgeom->getDetectorRowCount(), par3dgeom->getDetectorSpacingX(), par3dgeom->getDetectorSpacingY(), par3dgeom->getProjectionAngles(), m_iGPUIndex, m_iDetectorSuperSampling, projKernel); } else if (parvec3dgeom) { astraCudaPar3DFP(m_pVolume->getDataConst(), m_pProjections->getData(), volgeom.getGridColCount(), volgeom.getGridRowCount(), volgeom.getGridSliceCount(), parvec3dgeom->getProjectionCount(), parvec3dgeom->getDetectorColCount(), parvec3dgeom->getDetectorRowCount(), parvec3dgeom->getProjectionVectors(), m_iGPUIndex, m_iDetectorSuperSampling, projKernel); } else if (conevecgeom) { astraCudaConeFP(m_pVolume->getDataConst(), m_pProjections->getData(), volgeom.getGridColCount(), volgeom.getGridRowCount(), volgeom.getGridSliceCount(), conevecgeom->getProjectionCount(), conevecgeom->getDetectorColCount(), conevecgeom->getDetectorRowCount(), conevecgeom->getProjectionVectors(), m_iGPUIndex, m_iDetectorSuperSampling); } else { ASTRA_ASSERT(false); } } } #endif