diff options
author | jakobsj <jakobsj@users.noreply.github.com> | 2018-05-11 10:58:27 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-05-11 10:58:27 +0100 |
commit | 9672ed45af9b1ef05aff282c90264d48bc2b6d74 (patch) | |
tree | ee4cccc391de9a85fc341e40bbca81329a7070b6 | |
parent | 7d48b476a2000c148d5b5280f7196d349087eb90 (diff) | |
parent | a3dd21598a1d61fec1bc8b7e17abe74d5dbd6a51 (diff) | |
download | framework-plugins-9672ed45af9b1ef05aff282c90264d48bc2b6d74.tar.gz framework-plugins-9672ed45af9b1ef05aff282c90264d48bc2b6d74.tar.bz2 framework-plugins-9672ed45af9b1ef05aff282c90264d48bc2b6d74.tar.xz framework-plugins-9672ed45af9b1ef05aff282c90264d48bc2b6d74.zip |
Merge pull request #5 from vais-ral/demo_nexus_tidyup
Demo nexus tidyup
-rwxr-xr-x | Wrappers/Python/wip/demo_nexus.py | 129 |
1 files changed, 59 insertions, 70 deletions
diff --git a/Wrappers/Python/wip/demo_nexus.py b/Wrappers/Python/wip/demo_nexus.py index 4dcc9f8..03739b1 100755 --- a/Wrappers/Python/wip/demo_nexus.py +++ b/Wrappers/Python/wip/demo_nexus.py @@ -1,27 +1,26 @@ -# -*- coding: utf-8 -*-
-"""
-Created on Wed Mar 21 14:26:21 2018
-@author: ofn77899
-"""
+# This script demonstrates how to load a parallel beam data set in Nexus
+# format, apply dark and flat field correction and reconstruct using the
+# modular optimisation framework.
+#
+# The data set is available from
+# https://github.com/DiamondLightSource/Savu/blob/master/test_data/data/24737_fd.nxs
+# and should be downloaded to a local directory to be specified below.
-from ccpi.framework import ImageData , AcquisitionData, ImageGeometry, AcquisitionGeometry
+# All own imports
+from ccpi.framework import ImageData, AcquisitionData, ImageGeometry, AcquisitionGeometry
from ccpi.optimisation.algs import FISTA, FBPD, CGLS
from ccpi.optimisation.funcs import Norm2sq, Norm1
-from ccpi.reconstruction.ccpiops import CCPiProjectorSimple
-from ccpi.reconstruction.parallelbeam import alg as pbalg
-from ccpi.reconstruction.processors import CCPiForwardProjector, CCPiBackwardProjector , \
-Normalizer , CenterOfRotationFinder , AcquisitionDataPadder
-
+from ccpi.plugins.ops import CCPiProjectorSimple
+from ccpi.processors import Normalizer, CenterOfRotationFinder, AcquisitionDataPadder
from ccpi.io.reader import NexusReader
+# All external imports
import numpy
import matplotlib.pyplot as plt
-
import os
-import pickle
-
+# Define utility function to average over flat and dark images.
def avg_img(image):
shape = list(numpy.shape(image))
l = shape.pop(0)
@@ -30,116 +29,110 @@ def avg_img(image): avg += image[i] / l
return avg
+# Set up a reader object pointing to the Nexus data set. Revise path as needed.
+reader = NexusReader(os.path.join(".." ,".." ,".." , "..", "CCPi-ReconstructionFramework","data" , "24737_fd.nxs" ))
-reader = NexusReader(os.path.join(".." ,".." ,".." , "data" , "24737_fd.nxs" ))
-
+# Read and print the dimensions of the raw projections
dims = reader.get_projection_dimensions()
print (dims)
+# Load and average all flat and dark images in preparation for normalising data.
flat = avg_img(reader.load_flat())
dark = avg_img(reader.load_dark())
+# Set up normaliser object for normalising data by flat and dark images.
norm = Normalizer(flat_field=flat, dark_field=dark)
+# Load the raw projections and pass as input to the normaliser.
norm.set_input(reader.get_acquisition_data())
+# Set up CenterOfRotationFinder object to center data.
cor = CenterOfRotationFinder()
+
+# Set the output of the normaliser as the input and execute to determine center.
cor.set_input(norm.get_output())
center_of_rotation = cor.get_output()
-voxel_per_pixel = 1
+# Set up AcquisitionDataPadder to pad data for centering using the computed
+# center, set the output of the normaliser as input and execute to produce
+# padded/centered data.
padder = AcquisitionDataPadder(center_of_rotation=center_of_rotation)
padder.set_input(norm.get_output())
padded_data = padder.get_output()
-pg = padded_data.geometry
-geoms = pbalg.pb_setup_geometry_from_acquisition(padded_data.as_array(),
- pg.angles,
- center_of_rotation,
- voxel_per_pixel )
-vg = ImageGeometry(voxel_num_x=geoms['output_volume_x'],
- voxel_num_y=geoms['output_volume_y'],
- voxel_num_z=geoms['output_volume_z'])
-#data = numpy.reshape(reader.getAcquisitionData())
-print ("define projector")
-Cop = CCPiProjectorSimple(vg, pg)
+# Create Acquisition and Image Geometries for setting up projector.
+ag = padded_data.geometry
+ig = ImageGeometry(voxel_num_x=ag.pixel_num_h,
+ voxel_num_y=ag.pixel_num_h,
+ voxel_num_z=ag.pixel_num_v)
+
+# Define the projector object
+print ("Define projector")
+Cop = CCPiProjectorSimple(ig, ag)
+
# Create least squares object instance with projector and data.
print ("Create least squares object instance with projector and data.")
f = Norm2sq(Cop,padded_data,c=0.5)
+
+# Set initial guess
print ("Initial guess")
-# Initial guess
-x_init = ImageData(geometry=vg, dimension_labels=['horizontal_x','horizontal_y','vertical'])
+x_init = ImageData(geometry=ig, dimension_labels=['horizontal_x','horizontal_y','vertical'])
-#%%
-print ("run FISTA")
-# Run FISTA for least squares without regularization
+# Run FISTA reconstruction for least squares without regularization
+print ("Run FISTA for least squares")
opt = {'tol': 1e-4, 'iter': 10}
x_fista0, it0, timing0, criter0 = FISTA(x_init, f, None, opt=opt)
-pickle.dump(x_fista0, open("fista0.pkl", "wb"))
-
plt.imshow(x_fista0.subset(horizontal_x=80).array)
-plt.title('FISTA0')
-#plt.show()
+plt.title('FISTA LS')
+plt.show()
-# Now least squares plus 1-norm regularization
+# Set up 1-norm function for FISTA least squares plus 1-norm regularisation
+print ("Run FISTA for least squares plus 1-norm regularisation")
lam = 0.1
g0 = Norm1(lam)
# Run FISTA for least squares plus 1-norm function.
x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g0,opt=opt)
-pickle.dump(x_fista1, open("fista1.pkl", "wb"))
plt.imshow(x_fista0.subset(horizontal_x=80).array)
-plt.title('FISTA1')
-#plt.show()
-
-plt.semilogy(criter1)
-#plt.show()
+plt.title('FISTA LS+1')
+plt.show()
# Run FBPD=Forward Backward Primal Dual method on least squares plus 1-norm
+print ("Run FBPD for least squares plus 1-norm regularisation")
x_fbpd1, it_fbpd1, timing_fbpd1, criter_fbpd1 = FBPD(x_init,None,f,g0,opt=opt)
-pickle.dump(x_fbpd1, open("fbpd1.pkl", "wb"))
plt.imshow(x_fbpd1.subset(horizontal_x=80).array)
-plt.title('FBPD1')
-#plt.show()
-
-plt.semilogy(criter_fbpd1)
-#plt.show()
+plt.title('FBPD LS+1')
+plt.show()
-# Run CGLS, which should agree with the FISTA0
+# Run CGLS, which should agree with the FISTA least squares
+print ("Run CGLS for least squares")
x_CGLS, it_CGLS, timing_CGLS, criter_CGLS = CGLS(x_init, Cop, padded_data, opt=opt)
-pickle.dump(x_CGLS, open("cgls.pkl", "wb"))
plt.imshow(x_CGLS.subset(horizontal_x=80).array)
plt.title('CGLS')
-plt.title('CGLS recon, compare FISTA0')
-#plt.show()
-
-plt.semilogy(criter_CGLS)
-plt.title('CGLS criterion')
-#plt.show()
-
+plt.show()
+# Display all reconstructions and decay of objective function
cols = 4
rows = 1
current = 1
fig = plt.figure()
-# projections row
current = current
a=fig.add_subplot(rows,cols,current)
-a.set_title('FISTA0')
+a.set_title('FISTA LS')
imgplot = plt.imshow(x_fista0.subset(horizontal_x=80).as_array())
current = current + 1
a=fig.add_subplot(rows,cols,current)
-a.set_title('FISTA1')
+a.set_title('FISTA LS+1')
imgplot = plt.imshow(x_fista1.subset(horizontal_x=80).as_array())
current = current + 1
a=fig.add_subplot(rows,cols,current)
-a.set_title('FBPD1')
+a.set_title('FBPD LS+1')
imgplot = plt.imshow(x_fbpd1.subset(horizontal_x=80).as_array())
current = current + 1
@@ -149,16 +142,12 @@ imgplot = plt.imshow(x_CGLS.subset(horizontal_x=80).as_array()) plt.show()
-
-#%%
fig = plt.figure()
-# projections row
b=fig.add_subplot(1,1,1)
b.set_title('criteria')
-imgplot = plt.loglog(criter0 , label='FISTA0')
-imgplot = plt.loglog(criter1 , label='FISTA1')
-imgplot = plt.loglog(criter_fbpd1, label='FBPD1')
+imgplot = plt.loglog(criter0 , label='FISTA LS')
+imgplot = plt.loglog(criter1 , label='FISTA LS+1')
+imgplot = plt.loglog(criter_fbpd1, label='FBPD LS+1')
imgplot = plt.loglog(criter_CGLS, label='CGLS')
-#imgplot = plt.loglog(criter_fbpdtv, label='FBPD TV')
b.legend(loc='right')
plt.show()
\ No newline at end of file |