summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-05-12 21:39:07 +0100
committerGitHub <noreply@github.com>2018-05-12 21:39:07 +0100
commitf62562b93d0070211fc7fff3ad7d3c144b828a80 (patch)
treec09b8386a880f2f6dd158fecdbf62d540813119c /Wrappers/Python
parent992146ad44767f9f34515393b608ec2ca0304cd1 (diff)
parent653e0adc87c255a392f30590af446fc78043e194 (diff)
downloadframework-plugins-f62562b93d0070211fc7fff3ad7d3c144b828a80.tar.gz
framework-plugins-f62562b93d0070211fc7fff3ad7d3c144b828a80.tar.bz2
framework-plugins-f62562b93d0070211fc7fff3ad7d3c144b828a80.tar.xz
framework-plugins-f62562b93d0070211fc7fff3ad7d3c144b828a80.zip
Merge pull request #11 from vais-ral/RGLTK_TV_denoising_demo
Rgltk tv denoising demo
Diffstat (limited to 'Wrappers/Python')
-rw-r--r--Wrappers/Python/ccpi/plugins/regularisers.py7
-rw-r--r--Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py163
2 files changed, 117 insertions, 53 deletions
diff --git a/Wrappers/Python/ccpi/plugins/regularisers.py b/Wrappers/Python/ccpi/plugins/regularisers.py
index e9c88a4..46464a9 100644
--- a/Wrappers/Python/ccpi/plugins/regularisers.py
+++ b/Wrappers/Python/ccpi/plugins/regularisers.py
@@ -25,7 +25,6 @@ from ccpi.optimisation.ops import Operator
import numpy as np
-
class _ROF_TV_(Operator):
def __init__(self,lambdaReg,iterationsTV,tolerance,time_marchstep,device):
# set parameters
@@ -36,7 +35,7 @@ class _ROF_TV_(Operator):
def __call__(self,x):
# evaluate objective function of TV gradient
EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2)
- return EnergyValTV
+ return 0.5*EnergyValTV[0]
def prox(self,x,Lipshitz):
pars = {'algorithm' : ROF_TV, \
'input' : np.asarray(x.as_array(), dtype=np.float32),\
@@ -63,7 +62,7 @@ class _FGP_TV_(Operator):
def __call__(self,x):
# evaluate objective function of TV gradient
EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2)
- return EnergyValTV
+ return 0.5*EnergyValTV[0]
def prox(self,x,Lipshitz):
pars = {'algorithm' : FGP_TV, \
'input' : np.asarray(x.as_array(), dtype=np.float32),\
@@ -96,7 +95,7 @@ class _SB_TV_(Operator):
def __call__(self,x):
# evaluate objective function of TV gradient
EnergyValTV = TV_ENERGY(np.asarray(x.as_array(), dtype=np.float32), np.asarray(x.as_array(), dtype=np.float32), self.lambdaReg, 2)
- return EnergyValTV
+ return 0.5*EnergyValTV[0]
def prox(self,x,Lipshitz):
pars = {'algorithm' : SB_TV, \
'input' : np.asarray(x.as_array(), dtype=np.float32),\
diff --git a/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py b/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py
index 559679e..911cff4 100644
--- a/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py
+++ b/Wrappers/Python/wip/demo_compare_RGLTK_TV_denoising.py
@@ -1,12 +1,22 @@
+# This demo illustrates how the CCPi Regularisation Toolkit can be used
+# as TV denoising for use with the FISTA algorithm of the modular
+# optimisation framework and compares with the FBPD TV implementation as well
+# as CVXPY.
+
+# All own imports
from ccpi.framework import ImageData, ImageGeometry, AcquisitionGeometry, DataContainer
from ccpi.optimisation.algs import FISTA, FBPD, CGLS
from ccpi.optimisation.funcs import Norm2sq, ZeroFun, Norm1, TV2D
-
from ccpi.optimisation.ops import LinearOperatorMatrix, Identity
-from ccpi.plugins.regularisers import _ROF_TV_, _FGP_TV_
+from ccpi.plugins.regularisers import _ROF_TV_, _FGP_TV_, _SB_TV_
+
+# All external imports
+import numpy as np
+import matplotlib.pyplot as plt
+#%%
# Requires CVXPY, see http://www.cvxpy.org/
# CVXPY can be installed in anaconda using
# conda install -c cvxgrp cvxpy libgcc
@@ -16,11 +26,7 @@ use_cvxpy = True
if use_cvxpy:
from cvxpy import *
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-# Now try 1-norm and TV denoising with FBPD, first 1-norm.
+#%%
# Set up phantom size NxN by creating ImageGeometry, initialising the
# ImageData object with this geometry and empty array and finally put some
@@ -45,6 +51,7 @@ y = I.direct(Phantom)
np.random.seed(0)
y.array = y.array + 0.1*np.random.randn(N, N)
+# Display noisy image
plt.imshow(y.array)
plt.title('Noisy image')
plt.show()
@@ -52,9 +59,8 @@ plt.show()
#%% TV parameter
lam_tv = 1.0
-#%% Do CVX as high quality ground truth
+#%% Do CVX as high quality ground truth for comparison.
if use_cvxpy:
- # Compare to CVXPY
# Construct the problem.
xtv_denoise = Variable(N,N)
@@ -64,72 +70,118 @@ if use_cvxpy:
# The optimal objective is returned by prob.solve().
resulttv_denoise = probtv_denoise.solve(verbose=False,solver=SCS,eps=1e-12)
- # The optimal solution for x is stored in x.value and optimal objective value
- # is in result as well as in objective.value
- print("CVXPY least squares plus TV solution and objective value:")
- # print(xtv_denoise.value)
- # print(objectivetv_denoise.value)
+ # The optimal solution for x is stored in x.value and optimal objective
+ # value is in result as well as in objective.value
-plt.imshow(xtv_denoise.value)
-plt.title('CVX TV')
-plt.show()
-print(objectivetv_denoise.value)
-
-
-#%% THen FBPD
+ # Display
+ plt.figure()
+ plt.imshow(xtv_denoise.value)
+ plt.title('CVX TV with objective equal to {:.2f}'.format(objectivetv_denoise.value))
+ plt.show()
+ print(objectivetv_denoise.value)
+#%%
# Data fidelity term
f_denoise = Norm2sq(I,y,c=0.5)
+#%%
+
+#%% Then run FBPD algorithm for TV denoising
+
# Initial guess
x_init_denoise = ImageData(np.zeros((N,N)))
+# Set up TV function
gtv = TV2D(lam_tv)
-gtv(gtv.op.direct(x_init_denoise))
-opt_tv = {'tol': 1e-4, 'iter': 10000}
+# Evalutate TV of noisy image.
+gtv(gtv.op.direct(y))
+# Specify FBPD options and run FBPD.
+opt_tv = {'tol': 1e-4, 'iter': 10000}
x_fbpdtv_denoise, itfbpdtv_denoise, timingfbpdtv_denoise, criterfbpdtv_denoise = FBPD(x_init_denoise, None, f_denoise, gtv,opt=opt_tv)
-
-print("CVXPY least squares plus TV solution and objective value:")
+print("FBPD least squares plus TV solution and objective value:")
+plt.figure()
plt.imshow(x_fbpdtv_denoise.as_array())
-plt.title('FBPD TV')
+plt.title('FBPD TV with objective equal to {:.2f}'.format(criterfbpdtv_denoise[-1]))
plt.show()
print(criterfbpdtv_denoise[-1])
-#%%
-plt.loglog([0,opt_tv['iter']], [objectivetv_denoise.value,objectivetv_denoise.value], label='CVX TV')
+# Also plot history of criterion vs. CVX
+if use_cvxpy:
+ plt.loglog([0,opt_tv['iter']], [objectivetv_denoise.value,objectivetv_denoise.value], label='CVX TV')
plt.loglog(criterfbpdtv_denoise, label='FBPD TV')
+plt.legend()
plt.show()
#%% FISTA with ROF-TV regularisation
-g_rof = _ROF_TV_(lambdaReg = lam_tv,iterationsTV=5000,tolerance=1e-5,time_marchstep=0.01,device='cpu')
+g_rof = _ROF_TV_(lambdaReg = lam_tv,
+ iterationsTV=2000,
+ tolerance=0,
+ time_marchstep=0.0009,
+ device='cpu')
+# Evaluating the proximal operator corresponds to denoising.
xtv_rof = g_rof.prox(y,1.0)
+# Display denoised image and final criterion value.
print("CCPi-RGL TV ROF:")
+plt.figure()
plt.imshow(xtv_rof.as_array())
-plt.title('ROF TV prox')
+EnergytotalROF = f_denoise(xtv_rof) + g_rof(xtv_rof)
+plt.title('ROF TV prox with objective equal to {:.2f}'.format(EnergytotalROF))
plt.show()
-print(g_rof(xtv_rof))
+print(EnergytotalROF)
#%% FISTA with FGP-TV regularisation
-g_fgp = _FGP_TV_(lambdaReg = lam_tv,iterationsTV=5000,tolerance=1e-5,methodTV=0,nonnegativity=0,printing=0,device='cpu')
-
+g_fgp = _FGP_TV_(lambdaReg = lam_tv,
+ iterationsTV=5000,
+ tolerance=0,
+ methodTV=0,
+ nonnegativity=0,
+ printing=0,
+ device='cpu')
+
+# Evaluating the proximal operator corresponds to denoising.
xtv_fgp = g_fgp.prox(y,1.0)
+# Display denoised image and final criterion value.
print("CCPi-RGL TV FGP:")
+plt.figure()
plt.imshow(xtv_fgp.as_array())
-plt.title('FGP TV prox')
+EnergytotalFGP = f_denoise(xtv_fgp) + g_fgp(xtv_fgp)
+plt.title('FGP TV prox with objective equal to {:.2f}'.format(EnergytotalFGP))
plt.show()
-print(g_fgp(xtv_fgp))
+print(EnergytotalFGP)
+
+#%% Split-Bregman-TV regularisation
+g_sb = _SB_TV_(lambdaReg = lam_tv,
+ iterationsTV=1000,
+ tolerance=0,
+ methodTV=0,
+ printing=0,
+ device='cpu')
+
+# Evaluating the proximal operator corresponds to denoising.
+xtv_sb = g_sb.prox(y,1.0)
+
+# Display denoised image and final criterion value.
+print("CCPi-RGL TV SB:")
+plt.figure()
+plt.imshow(xtv_sb.as_array())
+EnergytotalSB = f_denoise(xtv_sb) + g_fgp(xtv_sb)
+plt.title('SB TV prox with objective equal to {:.2f}'.format(EnergytotalSB))
+plt.show()
+print(EnergytotalSB)
+
+#%%
# Compare all reconstruction
clims = (-0.2,1.2)
dlims = (-0.2,0.2)
-cols = 3
+cols = 4
rows = 2
current = 1
@@ -153,18 +205,31 @@ plt.axis('off')
current = current + 1
a=fig.add_subplot(rows,cols,current)
-a.set_title('FBPD - CVX')
-imgplot = plt.imshow(x_fbpdtv_denoise.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
-plt.axis('off')
-
-current = current + 1
-a=fig.add_subplot(rows,cols,current)
-a.set_title('ROF - TV')
-imgplot = plt.imshow(xtv_rof.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+a.set_title('SB')
+imgplot = plt.imshow(xtv_sb.as_array(),vmin=clims[0],vmax=clims[1])
plt.axis('off')
-current = current + 1
-a=fig.add_subplot(rows,cols,current)
-a.set_title('FGP - TV')
-imgplot = plt.imshow(xtv_fgp.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
-plt.axis('off')
+if use_cvxpy:
+ current = current + 1
+ a=fig.add_subplot(rows,cols,current)
+ a.set_title('FBPD - CVX')
+ imgplot = plt.imshow(x_fbpdtv_denoise.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+ plt.axis('off')
+
+ current = current + 1
+ a=fig.add_subplot(rows,cols,current)
+ a.set_title('ROF - CVX')
+ imgplot = plt.imshow(xtv_rof.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+ plt.axis('off')
+
+ current = current + 1
+ a=fig.add_subplot(rows,cols,current)
+ a.set_title('FGP - CVX')
+ imgplot = plt.imshow(xtv_fgp.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+ plt.axis('off')
+
+ current = current + 1
+ a=fig.add_subplot(rows,cols,current)
+ a.set_title('SB - CVX')
+ imgplot = plt.imshow(xtv_sb.as_array()-xtv_denoise.value,vmin=dlims[0],vmax=dlims[1])
+ plt.axis('off')