summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorepapoutsellis <epapoutsellis@gmail.com>2019-06-10 13:52:43 +0100
committerepapoutsellis <epapoutsellis@gmail.com>2019-06-10 13:52:43 +0100
commit34d7a6a2d96c35b4f4978b11a4fe8673dc47769e (patch)
tree9720146882a5fea0eef078a71135e900a48de3f7 /Wrappers
parentd5cb6fd1f42d98b24a0bd2ae2646d6f8914ba863 (diff)
downloadframework-34d7a6a2d96c35b4f4978b11a4fe8673dc47769e.tar.gz
framework-34d7a6a2d96c35b4f4978b11a4fe8673dc47769e.tar.bz2
framework-34d7a6a2d96c35b4f4978b11a4fe8673dc47769e.tar.xz
framework-34d7a6a2d96c35b4f4978b11a4fe8673dc47769e.zip
fix tomophantom demo
Diffstat (limited to 'Wrappers')
-rw-r--r--Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TV_Denoising_Gaussian_3D.py17
1 files changed, 6 insertions, 11 deletions
diff --git a/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TV_Denoising_Gaussian_3D.py b/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TV_Denoising_Gaussian_3D.py
index 3d91bf9..15709cd 100644
--- a/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TV_Denoising_Gaussian_3D.py
+++ b/Wrappers/Python/demos/PDHG_examples/GatherAll/PDHG_TV_Denoising_Gaussian_3D.py
@@ -20,7 +20,7 @@
#=========================================================================
"""
-Total Variation (3D) Denoising using PDHG algorithm:
+Total Variation (3D) Denoising using PDHG algorithm and Tomophantom:
Problem: min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}^{2}
@@ -39,19 +39,14 @@ Problem: min_{x} \alpha * ||\nabla x||_{2,1} + \frac{1}{2} * || x - g ||_{2}
"""
-from ccpi.framework import ImageData, ImageGeometry
-
+from ccpi.framework import ImageData, ImageGeometry
import matplotlib.pyplot as plt
-
from ccpi.optimisation.algorithms import PDHG
-
-from ccpi.optimisation.operators import BlockOperator, Identity, Gradient
-from ccpi.optimisation.functions import ZeroFunction, L2NormSquared, \
- MixedL21Norm, BlockFunction
+from ccpi.optimisation.operators import Gradient
+from ccpi.optimisation.functions import L2NormSquared, MixedL21Norm
from skimage.util import random_noise
-# Create phantom for TV Gaussian denoising
import timeit
import os
from tomophantom import TomoP3D
@@ -105,9 +100,9 @@ sigma = 1
tau = 1/(sigma*normK**2)
pdhg = PDHG(f=f,g=g,operator=operator, tau=tau, sigma=sigma, memopt=True)
-pdhg.max_iteration = 2000
+pdhg.max_iteration = 1000
pdhg.update_objective_interval = 200
-pdhg.run(2000, verbose = True)
+pdhg.run(1000, verbose = True)
# Show results
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(10, 8))