summaryrefslogtreecommitdiffstats
path: root/Wrappers
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2019-07-04 21:57:01 +0100
committerGitHub <noreply@github.com>2019-07-04 21:57:01 +0100
commit77b6dc865be1a0f6c26cf5d6525ea610d737ef2f (patch)
tree988dc9961a081902c406e88725ca9f71f8315d53 /Wrappers
parent6876bda04cde114642ebce3d6bd577da40fa34e9 (diff)
downloadframework-77b6dc865be1a0f6c26cf5d6525ea610d737ef2f.tar.gz
framework-77b6dc865be1a0f6c26cf5d6525ea610d737ef2f.tar.bz2
framework-77b6dc865be1a0f6c26cf5d6525ea610d737ef2f.tar.xz
framework-77b6dc865be1a0f6c26cf5d6525ea610d737ef2f.zip
Revert "Gf algorithm bug fix (#348)" (#349)
This reverts commit 6876bda04cde114642ebce3d6bd577da40fa34e9.
Diffstat (limited to 'Wrappers')
-rwxr-xr-xWrappers/Python/ccpi/optimisation/algorithms/CGLS.py33
-rwxr-xr-xWrappers/Python/ccpi/optimisation/algorithms/FISTA.py39
-rwxr-xr-xWrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py24
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py145
-rw-r--r--Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py25
-rwxr-xr-xWrappers/Python/ccpi/optimisation/functions/Norm2Sq.py27
-rw-r--r--Wrappers/Python/setup.py9
7 files changed, 207 insertions, 95 deletions
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
index 82fbb96..de904fb 100755
--- a/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/CGLS.py
@@ -34,25 +34,27 @@ class CGLS(Algorithm):
https://web.stanford.edu/group/SOL/software/cgls/
'''
-
+
+
+
def __init__(self, **kwargs):
super(CGLS, self).__init__()
- x_init = kwargs.get('x_init', None)
- operator = kwargs.get('operator', None)
- data = kwargs.get('data', None)
- tolerance = kwargs.get('tolerance', 1e-6)
-
- if x_init is not None and operator is not None and data is not None:
- print(self.__class__.__name__ , "set_up called from creator")
- self.set_up(x_init=x_init, operator=operator, data=data, tolerance=tolerance)
-
- def set_up(self, x_init, operator, data, tolerance=1e-6):
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ self.tolerance = kwargs.get('tolerance', 1e-6)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print (self.__class__.__name__ , "set_up called from creator")
+ self.set_up(x_init =kwargs['x_init'],
+ operator=kwargs['operator'],
+ data =kwargs['data'])
+
+
+ def set_up(self, x_init, operator , data ):
self.x = x_init * 0.
- self.operator = operator
- self.tolerance = tolerance
-
self.r = data - self.operator.direct(self.x)
self.s = self.operator.adjoint(self.r)
@@ -62,7 +64,8 @@ class CGLS(Algorithm):
##
self.norms = self.s.norm()
##
-
+
+
self.gamma = self.norms0**2
self.normx = self.x.norm()
self.xmax = self.normx
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
index fa1d8d8..9e40c95 100755
--- a/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/FISTA.py
@@ -39,31 +39,40 @@ class FISTA(Algorithm):
'''initialisation can be done at creation time if all
proper variables are passed or later with set_up'''
super(FISTA, self).__init__()
- f = kwargs.get('f', None)
- g = kwargs.get('g', ZeroFunction())
- x_init = kwargs.get('x_init', None)
-
- if x_init is not None and f is not None:
- print(self.__class__.__name__ , "set_up called from creator")
- self.set_up(x_init=x_init, f=f, g=g)
-
- def set_up(self, x_init, f, g=ZeroFunction()):
+ self.f = kwargs.get('f', None)
+ self.g = kwargs.get('g', ZeroFunction())
+ self.x_init = kwargs.get('x_init',None)
+ self.invL = None
+ self.t_old = 1
+ if self.x_init is not None and \
+ self.f is not None and self.g is not None:
+ print ("FISTA set_up called from creator")
+ self.set_up(self.x_init, self.f, self.g)
+
+ def set_up(self, x_init, f, g, opt=None, **kwargs):
+
+ self.f = f
+ self.g = g
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-4}
+
self.y = x_init.copy()
self.x_old = x_init.copy()
self.x = x_init.copy()
- self.u = x_init.copy()
+ self.u = x_init.copy()
- self.f = f
- self.g = g
self.invL = 1/f.L
- self.t = 1
+
+ self.t_old = 1
self.update_objective()
self.configured = True
def update(self):
- self.t_old = self.t
+
self.f.gradient(self.y, out=self.u)
self.u.__imul__( -self.invL )
self.u.__iadd__( self.y )
@@ -78,7 +87,7 @@ class FISTA(Algorithm):
self.y.__iadd__( self.x )
self.x_old.fill(self.x)
-
+ self.t_old = self.t
def update_objective(self):
self.loss.append( self.f(self.x) + self.g(self.x) )
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py b/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py
index 8c2b693..cbccd73 100755
--- a/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/GradientDescent.py
@@ -25,14 +25,18 @@ class GradientDescent(Algorithm):
'''initialisation can be done at creation time if all
proper variables are passed or later with set_up'''
super(GradientDescent, self).__init__()
-
- x_init = kwargs.get('x_init', None)
- objective_function = kwargs.get('objective_function', None)
- rate = kwargs.get('rate', None)
-
- if x_init is not None and objective_function is not None and rate is not None:
- print(self.__class__.__name__, "set_up called from creator")
- self.set_up(x_init=x_init, objective_function=objective_function, rate=rate)
+ self.x = None
+ self.rate = 0
+ self.objective_function = None
+ self.regulariser = None
+ args = ['x_init', 'objective_function', 'rate']
+ for k,v in kwargs.items():
+ if k in args:
+ args.pop(args.index(k))
+ if len(args) == 0:
+ self.set_up(x_init=kwargs['x_init'],
+ objective_function=kwargs['objective_function'],
+ rate=kwargs['rate'])
def should_stop(self):
'''stopping cryterion, currently only based on number of iterations'''
@@ -43,17 +47,14 @@ class GradientDescent(Algorithm):
self.x = x_init.copy()
self.objective_function = objective_function
self.rate = rate
-
self.loss.append(objective_function(x_init))
self.iteration = 0
-
try:
self.memopt = self.objective_function.memopt
except AttributeError as ae:
self.memopt = False
if self.memopt:
self.x_update = x_init.copy()
-
self.configured = True
def update(self):
@@ -67,3 +68,4 @@ class GradientDescent(Algorithm):
def update_objective(self):
self.loss.append(self.objective_function(self.x))
+
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
index 8f37765..2503fe6 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/PDHG.py
@@ -24,42 +24,42 @@ from ccpi.optimisation.operators import BlockOperator
from ccpi.framework import BlockDataContainer
from ccpi.optimisation.functions import FunctionOperatorComposition
-
class PDHG(Algorithm):
'''Primal Dual Hybrid Gradient'''
def __init__(self, **kwargs):
super(PDHG, self).__init__(max_iteration=kwargs.get('max_iteration',0))
- f = kwargs.get('f', None)
- operator = kwargs.get('operator', None)
- g = kwargs.get('g', None)
- tau = kwargs.get('tau', None)
- sigma = kwargs.get('sigma', 1.)
-
- if f is not None and operator is not None and g is not None:
- print(self.__class__.__name__ , "set_up called from creator")
- self.set_up(f=f, g=g, operator=operator, tau=tau, sigma=sigma)
-
- def set_up(self, f, g, operator, tau=None, sigma=1.):
-
- # can't happen with default sigma
- if sigma is None and tau is None:
- raise ValueError('Need sigma*tau||K||^2<1')
-
+ self.f = kwargs.get('f', None)
+ self.operator = kwargs.get('operator', None)
+ self.g = kwargs.get('g', None)
+ self.tau = kwargs.get('tau', None)
+ self.sigma = kwargs.get('sigma', 1.)
+
+
+ if self.f is not None and self.operator is not None and \
+ self.g is not None:
+ if self.tau is None:
+ # Compute operator Norm
+ normK = self.operator.norm()
+ # Primal & dual stepsizes
+ self.tau = 1/(self.sigma*normK**2)
+ print ("Calling from creator")
+ self.set_up(self.f,
+ self.g,
+ self.operator,
+ self.tau,
+ self.sigma)
+
+ def set_up(self, f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
# algorithmic parameters
+ self.operator = operator
self.f = f
self.g = g
- self.operator = operator
-
self.tau = tau
self.sigma = sigma
-
- if self.tau is None:
- # Compute operator Norm
- normK = self.operator.norm()
- # Primal & dual stepsizes
- self.tau = 1 / (self.sigma * normK ** 2)
-
+ self.opt = opt
+ if sigma is None and tau is None:
+ raise ValueError('Need sigma*tau||K||^2<1')
self.x_old = self.operator.domain_geometry().allocate()
self.x_tmp = self.x_old.copy()
@@ -83,7 +83,7 @@ class PDHG(Algorithm):
self.y_tmp *= self.sigma
self.y_tmp += self.y_old
- # self.y = self.f.proximal_conjugate(self.y_old, self.sigma)
+ #self.y = self.f.proximal_conjugate(self.y_old, self.sigma)
self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y)
# Gradient ascent, Primal problem solution
@@ -91,9 +91,10 @@ class PDHG(Algorithm):
self.x_tmp *= -1*self.tau
self.x_tmp += self.x_old
+
self.g.proximal(self.x_tmp, self.tau, out=self.x)
- # Update
+ #Update
self.x.subtract(self.x_old, out=self.xbar)
self.xbar *= self.theta
self.xbar += self.x
@@ -106,4 +107,90 @@ class PDHG(Algorithm):
p1 = self.f(self.operator.direct(self.x)) + self.g(self.x)
d1 = -(self.f.convex_conjugate(self.y) + self.g.convex_conjugate(-1*self.operator.adjoint(self.y)))
- self.loss.append([p1, d1, p1-d1]) \ No newline at end of file
+ self.loss.append([p1,d1,p1-d1])
+
+
+
+def PDHG_old(f, g, operator, tau = None, sigma = None, opt = None, **kwargs):
+
+ # algorithmic parameters
+ if opt is None:
+ opt = {'tol': 1e-6, 'niter': 500, 'show_iter': 100, \
+ 'memopt': False}
+
+ if sigma is None and tau is None:
+ raise ValueError('Need sigma*tau||K||^2<1')
+
+ niter = opt['niter'] if 'niter' in opt.keys() else 1000
+ tol = opt['tol'] if 'tol' in opt.keys() else 1e-4
+ memopt = opt['memopt'] if 'memopt' in opt.keys() else False
+ show_iter = opt['show_iter'] if 'show_iter' in opt.keys() else False
+ stop_crit = opt['stop_crit'] if 'stop_crit' in opt.keys() else False
+
+ x_old = operator.domain_geometry().allocate()
+ y_old = operator.range_geometry().allocate()
+
+ xbar = x_old.copy()
+ x_tmp = x_old.copy()
+ x = x_old.copy()
+
+ y_tmp = y_old.copy()
+ y = y_tmp.copy()
+
+
+ # relaxation parameter
+ theta = 1
+
+ t = time.time()
+
+ primal = []
+ dual = []
+ pdgap = []
+
+
+ for i in range(niter):
+
+
+
+ if memopt:
+ operator.direct(xbar, out = y_tmp)
+ y_tmp *= sigma
+ y_tmp += y_old
+ else:
+ y_tmp = y_old + sigma * operator.direct(xbar)
+
+ f.proximal_conjugate(y_tmp, sigma, out=y)
+
+ if memopt:
+ operator.adjoint(y, out = x_tmp)
+ x_tmp *= -1*tau
+ x_tmp += x_old
+ else:
+ x_tmp = x_old - tau*operator.adjoint(y)
+
+ g.proximal(x_tmp, tau, out=x)
+
+ x.subtract(x_old, out=xbar)
+ xbar *= theta
+ xbar += x
+
+ x_old.fill(x)
+ y_old.fill(y)
+
+ if i%10==0:
+
+ p1 = f(operator.direct(x)) + g(x)
+ d1 = - ( f.convex_conjugate(y) + g.convex_conjugate(-1*operator.adjoint(y)) )
+ primal.append(p1)
+ dual.append(d1)
+ pdgap.append(p1-d1)
+ print(p1, d1, p1-d1)
+
+
+
+ t_end = time.time()
+
+ return x, t_end - t, primal, dual, pdgap
+
+
+
diff --git a/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py b/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py
index ca5b084..02ca937 100644
--- a/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py
+++ b/Wrappers/Python/ccpi/optimisation/algorithms/SIRT.py
@@ -31,17 +31,19 @@ class SIRT(Algorithm):
'''
def __init__(self, **kwargs):
super(SIRT, self).__init__()
+ self.x = kwargs.get('x_init', None)
+ self.operator = kwargs.get('operator', None)
+ self.data = kwargs.get('data', None)
+ self.constraint = kwargs.get('constraint', None)
+ if self.x is not None and self.operator is not None and \
+ self.data is not None:
+ print ("Calling from creator")
+ self.set_up(x_init=kwargs['x_init'],
+ operator=kwargs['operator'],
+ data=kwargs['data'],
+ constraint=kwargs['constraint'])
- x_init = kwargs.get('x_init', None)
- operator = kwargs.get('operator', None)
- data = kwargs.get('data', None)
- constraint = kwargs.get('constraint', None)
-
- if x_init is not None and operator is not None and data is not None:
- print(self.__class__.__name__, "set_up called from creator")
- self.set_up(x_init=x_init, operator=operator, data=data, constraint=constraint)
-
- def set_up(self, x_init, operator, data, constraint=None):
+ def set_up(self, x_init, operator , data, constraint=None ):
self.x = x_init.copy()
self.operator = operator
@@ -55,7 +57,6 @@ class SIRT(Algorithm):
# Set up scaling matrices D and M.
self.M = 1/self.operator.direct(self.operator.domain_geometry().allocate(value=1.0))
self.D = 1/self.operator.adjoint(self.operator.range_geometry().allocate(value=1.0))
- self.update_objective()
self.configured = True
@@ -66,7 +67,7 @@ class SIRT(Algorithm):
self.x += self.relax_par * (self.D*self.operator.adjoint(self.M*self.r))
if self.constraint is not None:
- self.x = self.constraint.proximal(self.x, None)
+ self.x = self.constraint.proximal(self.x,None)
# self.constraint.proximal(self.x,None, out=self.x)
def update_objective(self):
diff --git a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py b/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
index eea300d..204fdc4 100755
--- a/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
+++ b/Wrappers/Python/ccpi/optimisation/functions/Norm2Sq.py
@@ -36,14 +36,27 @@ class Norm2Sq(Function):
'''
- def __init__(self, A, b, c=1.0):
+ def __init__(self,A,b,c=1.0,memopt=False):
super(Norm2Sq, self).__init__()
self.A = A # Should be an operator, default identity
self.b = b # Default zero DataSet?
self.c = c # Default 1.
- self.range_tmp = A.range_geometry().allocate()
-
+ if memopt:
+ try:
+ self.range_tmp = A.range_geometry().allocate()
+ self.domain_tmp = A.domain_geometry().allocate()
+ self.memopt = True
+ except NameError as ne:
+ warnings.warn(str(ne))
+ self.memopt = False
+ except NotImplementedError as nie:
+ print (nie)
+ warnings.warn(str(nie))
+ self.memopt = False
+ else:
+ self.memopt = False
+
# Compute the Lipschitz parameter from the operator if possible
# Leave it initialised to None otherwise
try:
@@ -56,7 +69,7 @@ class Norm2Sq(Function):
#def grad(self,x):
# return self.gradient(x, out=None)
- def __call__(self, x):
+ def __call__(self,x):
#return self.c* np.sum(np.square((self.A.direct(x) - self.b).ravel()))
#if out is None:
# return self.c*( ( (self.A.direct(x)-self.b)**2).sum() )
@@ -71,8 +84,8 @@ class Norm2Sq(Function):
# added for compatibility with SIRF
return (y.norm()**2) * self.c
- def gradient(self, x, out=None):
- if out is not None:
+ def gradient(self, x, out = None):
+ if self.memopt:
#return 2.0*self.c*self.A.adjoint( self.A.direct(x) - self.b )
self.A.direct(x, out=self.range_tmp)
self.range_tmp -= self.b
@@ -80,4 +93,4 @@ class Norm2Sq(Function):
#self.direct_placehold.multiply(2.0*self.c, out=out)
out *= (self.c * 2.0)
else:
- return (2.0*self.c)*self.A.adjoint(self.A.direct(x) - self.b)
+ return (2.0*self.c)*self.A.adjoint( self.A.direct(x) - self.b )
diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py
index ea6181e..e680df3 100644
--- a/Wrappers/Python/setup.py
+++ b/Wrappers/Python/setup.py
@@ -37,12 +37,9 @@ setup(
'ccpi.processors',
'ccpi.contrib','ccpi.contrib.optimisation',
'ccpi.contrib.optimisation.algorithms'],
- data_files = [('share/ccpi', ['data/boat.tiff',
- 'data/peppers.tiff',
- 'data/camera.png',
- 'data/resolution_chart.tiff',
- 'data/shapes.png',
- 'data/24737_fd_normalised.nxs'])],
+ data_files = [('share/ccpi', ['data/boat.tiff', 'data/peppers.tiff',
+ 'data/camera.png',
+ 'data/resolution_chart.tiff', 'data/shapes.png'])],
# Project uses reStructuredText, so ensure that the docutils get
# installed or upgraded on the target machine