diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2019-01-15 15:23:43 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-01-15 15:23:43 +0000 |
commit | 34d0b9f85c3bc73416f1dc2bb25ef669b9ff8076 (patch) | |
tree | 314ae9ddaaad207a67226961d6302b5817764a16 | |
parent | 3b114face28547468da9e1b491c67bd5ea53603b (diff) | |
download | regularization-34d0b9f85c3bc73416f1dc2bb25ef669b9ff8076.tar.gz regularization-34d0b9f85c3bc73416f1dc2bb25ef669b9ff8076.tar.bz2 regularization-34d0b9f85c3bc73416f1dc2bb25ef669b9ff8076.tar.xz regularization-34d0b9f85c3bc73416f1dc2bb25ef669b9ff8076.zip |
added jenkins build status
-rw-r--r-- | Readme.md | 1 |
1 files changed, 1 insertions, 0 deletions
@@ -1,3 +1,4 @@ +[![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) # CCPi-Regularisation Toolkit (CCPi-RGL) **Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.** |