summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2017-11-10 14:03:37 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2017-11-10 14:03:37 +0000
commit4b74129efead9b8af67f92c3c67a0d9e2b18cdf4 (patch)
tree8ad51231ce6912b33264fc03de1340a0b088623d
parent28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1 (diff)
downloadregularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.tar.gz
regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.tar.bz2
regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.tar.xz
regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.zip
code refactoring step1
-rw-r--r--CMake/FindAnacondaEnvironment.cmake154
-rw-r--r--CMakeLists.txt6
-rw-r--r--Core/CCPiDefines.h35
-rw-r--r--Core/CMakeLists.txt25
-rw-r--r--Core/recipe/bld.bat12
-rw-r--r--Core/recipe/build.sh17
-rw-r--r--Core/recipe/meta.yaml22
-rw-r--r--Core/regularizers_CPU/FGP_TV.c216
-rw-r--r--Core/regularizers_CPU/FGP_TV_core.c266
-rw-r--r--Core/regularizers_CPU/FGP_TV_core.h71
-rw-r--r--Core/regularizers_CPU/LLT_model.c169
-rw-r--r--Core/regularizers_CPU/LLT_model_core.c318
-rw-r--r--Core/regularizers_CPU/LLT_model_core.h46
-rw-r--r--Core/regularizers_CPU/PatchBased_Regul.c140
-rw-r--r--Core/regularizers_CPU/PatchBased_Regul_core.c232
-rw-r--r--Core/regularizers_CPU/PatchBased_Regul_core.h69
-rw-r--r--Core/regularizers_CPU/SplitBregman_TV.c179
-rw-r--r--Core/regularizers_CPU/SplitBregman_TV_core.c259
-rw-r--r--Core/regularizers_CPU/SplitBregman_TV_core.h69
-rw-r--r--Core/regularizers_CPU/TGV_PD.c144
-rw-r--r--Core/regularizers_CPU/TGV_PD_core.c208
-rw-r--r--Core/regularizers_CPU/TGV_PD_core.h67
-rw-r--r--Core/regularizers_CPU/utils.c29
-rw-r--r--Core/regularizers_CPU/utils.h32
-rw-r--r--Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp114
-rw-r--r--Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu270
-rw-r--r--Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h6
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp171
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu239
-rw-r--r--Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h6
-rw-r--r--Core/test/test_regularizer.cpp3
-rw-r--r--Core/test/test_regularizer.h0
-rw-r--r--Wrappers/CMakeLists.txt14
-rw-r--r--Wrappers/Matlab/FISTA_REC.m704
-rw-r--r--Wrappers/Matlab/compile_mex.m11
-rw-r--r--Wrappers/Matlab/studentst.m47
-rw-r--r--Wrappers/Python/CMakeLists.txt183
-rw-r--r--Wrappers/Python/FindAnacondaEnvironment.cmake154
-rw-r--r--Wrappers/Python/ccpi/reconstruction/AstraDevice.py95
-rw-r--r--Wrappers/Python/ccpi/reconstruction/DeviceModel.py63
-rw-r--r--Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py882
-rw-r--r--Wrappers/Python/ccpi/reconstruction/Reconstructor.py598
-rw-r--r--Wrappers/Python/compile-fista.bat.in7
-rw-r--r--Wrappers/Python/compile-fista.sh.in9
-rw-r--r--Wrappers/Python/compile.bat.in7
-rw-r--r--Wrappers/Python/compile.sh.in9
-rw-r--r--Wrappers/Python/conda-recipe/bld.bat14
-rw-r--r--Wrappers/Python/conda-recipe/build.sh14
-rw-r--r--Wrappers/Python/conda-recipe/meta.yaml30
-rw-r--r--Wrappers/Python/fista-recipe/bld.bat11
-rw-r--r--Wrappers/Python/fista-recipe/build.sh10
-rw-r--r--Wrappers/Python/fista-recipe/meta.yaml29
-rw-r--r--Wrappers/Python/fista_module.cpp1047
-rw-r--r--Wrappers/Python/setup-fista.py.in27
-rw-r--r--Wrappers/Python/setup.py.in69
-rw-r--r--Wrappers/Python/test/astra_test.py85
-rw-r--r--Wrappers/Python/test/create_phantom_projections.py49
-rw-r--r--Wrappers/Python/test/readhd5.py42
-rw-r--r--Wrappers/Python/test/simple_astra_test.py25
-rw-r--r--Wrappers/Python/test/test_reconstructor-os_phantom.py480
-rw-r--r--Wrappers/Python/test/test_reconstructor.py359
-rw-r--r--Wrappers/Python/test/test_regularizers.py412
-rw-r--r--Wrappers/Python/test/test_regularizers_3d.py425
-rw-r--r--Wrappers/Python/test/view_result.py12
64 files changed, 9516 insertions, 1 deletions
diff --git a/CMake/FindAnacondaEnvironment.cmake b/CMake/FindAnacondaEnvironment.cmake
new file mode 100644
index 0000000..6475128
--- /dev/null
+++ b/CMake/FindAnacondaEnvironment.cmake
@@ -0,0 +1,154 @@
+# Copyright 2017 Edoardo Pasca
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# #.rst:
+# FindAnacondaEnvironment
+# --------------
+#
+# Find Python executable and library for a specific Anaconda environment
+#
+# This module finds the Python interpreter for a specific Anaconda enviroment,
+# if installed and determines where the include files and libraries are.
+# This code sets the following variables:
+#
+# ::
+# PYTHONINTERP_FOUND - if the Python interpret has been found
+# PYTHON_EXECUTABLE - the Python interpret found
+# PYTHON_LIBRARY - path to the python library
+# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated)
+# PYTHON_INCLUDE_DIRS - path to where Python.h is found
+# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8)
+# PYTHON_VERSION_MAJOR - major Python version
+# PYTHON_VERSION_MINOR - minor Python version
+# PYTHON_VERSION_PATCH - patch Python version
+
+
+
+function (findPythonForAnacondaEnvironment env)
+ if (WIN32)
+ file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE)
+ elseif (UNIX)
+ file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE)
+ endif()
+
+
+ message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE})
+ ####### FROM FindPythonInterpr ########
+ # determine python version string
+ if(PYTHON_EXECUTABLE)
+ execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c
+ "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))"
+ OUTPUT_VARIABLE _VERSION
+ RESULT_VARIABLE _PYTHON_VERSION_RESULT
+ ERROR_QUIET)
+ if(NOT _PYTHON_VERSION_RESULT)
+ string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}")
+ list(GET _VERSION 0 _PYTHON_VERSION_MAJOR)
+ list(GET _VERSION 1 _PYTHON_VERSION_MINOR)
+ list(GET _VERSION 2 _PYTHON_VERSION_PATCH)
+ if(PYTHON_VERSION_PATCH EQUAL 0)
+ # it's called "Python 2.7", not "2.7.0"
+ string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}")
+ endif()
+ else()
+ # sys.version predates sys.version_info, so use that
+ execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)"
+ OUTPUT_VARIABLE _VERSION
+ RESULT_VARIABLE _PYTHON_VERSION_RESULT
+ ERROR_QUIET)
+ if(NOT _PYTHON_VERSION_RESULT)
+ string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}")
+ string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}")
+ string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}")
+ if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)")
+ set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}")
+ else()
+ set(PYTHON_VERSION_PATCH "0")
+ endif()
+ else()
+ # sys.version was first documented for Python 1.5, so assume
+ # this is older.
+ set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE)
+ set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE)
+ set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE)
+ set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE)
+ endif()
+ endif()
+ unset(_PYTHON_VERSION_RESULT)
+ unset(_VERSION)
+ endif()
+ ###############################################
+
+ set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE)
+ set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE)
+ set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE)
+ set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE)
+ set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE)
+ set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE)
+ message("My version found " ${PYTHON_VERSION_STRING})
+ ## find conda executable
+ if (WIN32)
+ set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE)
+ elseif(UNIX)
+ set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE)
+ endif()
+endfunction()
+
+
+
+set(Python_ADDITIONAL_VERSIONS 3.5)
+
+find_package(PythonInterp)
+if (PYTHONINTERP_FOUND)
+
+ message("Found interpret " ${PYTHON_EXECUTABLE})
+ message("Python Library " ${PYTHON_LIBRARY})
+ message("Python Include Dir " ${PYTHON_INCLUDE_DIR})
+ message("Python Include Path " ${PYTHON_INCLUDE_PATH})
+
+ foreach(pv ${PYTHON_VERSION_STRING})
+ message("Found interpret " ${pv})
+ endforeach()
+endif()
+
+
+
+find_package(PythonLibs)
+if (PYTHONLIB_FOUND)
+ message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES})
+ message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH})
+ message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS})
+ message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} )
+else()
+ message("No PythonLibs Found")
+endif()
+
+
+
+
+function(findPythonPackagesPath)
+ execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())"
+ RESULT_VARIABLE PYTHON_CVPY_PROCESS
+ OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH
+ OUTPUT_STRIP_TRAILING_WHITESPACE)
+ #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH})
+ if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages")
+ set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages")
+ endif()
+
+ SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE)
+
+endfunction()
+
+
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4cfad7e..4b2aca9 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -27,4 +27,8 @@ set (CIL_VERSION_PATCH 1)
set (CIL_VERSION '${CIL_VERSION_MAJOR}.${CIL_VERSION_MINOR}.${CIL_VERSION_PATCH}' CACHE INTERNAL "Core Imaging Library version" FORCE)
-add_subdirectory(src)
+# set the Python variables for the Conda environment
+include(${CMAKE_SOURCE_DIR}/CMake/FindAnacondaEnvironment.cmake)
+
+add_subdirectory(Core)
+add_subdirectory(Wrappers)
diff --git a/Core/CCPiDefines.h b/Core/CCPiDefines.h
new file mode 100644
index 0000000..c6ddc7d
--- /dev/null
+++ b/Core/CCPiDefines.h
@@ -0,0 +1,35 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+#ifndef CCPIDEFINES_H
+#define CCPIDEFINES_H
+
+#if defined(_WIN32) || defined(__WIN32__)
+ #if defined(CCPiCore_EXPORTS) || defined(CCPiNexusWidget_EXPORTS) || defined(ContourTreeSegmentation_EXPORTS) || defined(ContourTree_EXPORTS)// add by CMake
+ #define CCPI_EXPORT __declspec(dllexport)
+ #define EXPIMP_TEMPLATE
+ #else
+ #define CCPI_EXPORT __declspec(dllimport)
+ #define EXPIMP_TEMPLATE extern
+ #endif /* CCPi_EXPORTS */
+#elif defined(linux) || defined(__linux) || defined(__APPLE__)
+ #define CCPI_EXPORT
+#endif
+
+#endif
diff --git a/Core/CMakeLists.txt b/Core/CMakeLists.txt
new file mode 100644
index 0000000..146b6a0
--- /dev/null
+++ b/Core/CMakeLists.txt
@@ -0,0 +1,25 @@
+# Copyright 2017 Edoardo Pasca
+cmake_minimum_required (VERSION 3.0)
+
+project(regularizers)
+
+## Build the regularizers package as a library
+message("Adding regularizers as shared library")
+set(CMAKE_C_FLAGS "-fopenmp -O2 -funsigned-char -Wall -std=c++0x")
+#set(CMAKE_C_COMPILER /apps/pgi/linux86-64/17.4/bin/pgcc)
+#set(CMAKE_C_FLAGS "-acc -Minfo -ta=tesla:cc20 -openmp")
+#set(CMAKE_C_FLAGS "-acc -Minfo -ta=multicore -openmp -fPIC")
+add_library(regularizers_lib SHARED
+ ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/FGP_TV_core.c
+ ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/LLT_model_core.c
+ ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/PatchBased_Regul_core.c
+ ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/SplitBregman_TV_core.c
+ ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/TGV_PD_core.c
+ ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/utils.c
+ )
+#GENERATE_EXPORT_HEADER(regularizers_lib)
+install (TARGETS regularizers_lib DESTINATION $ENV{PREFIX}/lib)
+
+add_executable(regularizer_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regularizer.cpp)
+
+target_link_libraries (regularizer_test LINK_PUBLIC regularizers_lib) \ No newline at end of file
diff --git a/Core/recipe/bld.bat b/Core/recipe/bld.bat
new file mode 100644
index 0000000..1b97893
--- /dev/null
+++ b/Core/recipe/bld.bat
@@ -0,0 +1,12 @@
+IF NOT DEFINED CIL_VERSION (
+ECHO CIL_VERSION Not Defined.
+exit 1
+)
+
+mkdir "%SRC_DIR%\build"
+
+cd %SRC_DIR%\build
+
+BUILD_CONFIG=Release
+
+cmake .. -Wno-dev -DCMAKE_BUILD_TYPE=$BUILD_CONFIG -DCMAKE_PREFIX_PATH:PATH="${PREFIX}" -DCMAKE_INSTALL_PREFIX:PATH="${PREFIX}" -DCMAKE_INSTALL_RPATH:PATH="${PREFIX}/lib"
diff --git a/Core/recipe/build.sh b/Core/recipe/build.sh
new file mode 100644
index 0000000..ab5474b
--- /dev/null
+++ b/Core/recipe/build.sh
@@ -0,0 +1,17 @@
+#!/usr/bin/env bash
+
+mkdir build
+cd build
+
+#configure
+BUILD_CONFIG=Release
+echo `pwd`
+cmake .. -G "Ninja" \
+ -Wno-dev \
+ -DCMAKE_BUILD_TYPE=$BUILD_CONFIG \
+ -DCMAKE_PREFIX_PATH:PATH="${PREFIX}" \
+ -DCMAKE_INSTALL_PREFIX:PATH="${PREFIX}" \
+ -DCMAKE_INSTALL_RPATH:PATH="${PREFIX}/lib"
+
+# compile & install
+ninja install
diff --git a/Core/recipe/meta.yaml b/Core/recipe/meta.yaml
new file mode 100644
index 0000000..1fca6bf
--- /dev/null
+++ b/Core/recipe/meta.yaml
@@ -0,0 +1,22 @@
+package:
+ name: regularizer
+ version: {{ environ['CIL_VERSION'] }}
+
+source:
+ path: ../
+
+build:
+ preserve_egg_dir: False
+ script_env:
+ - CIL_VERSION
+
+requirements:
+ build:
+ - toolchain
+ - cmake
+ - ninja
+
+about:
+ home: http://www.ccpi.ac.uk
+ license: Apache v2.0
+ summary: Regularizer package from CCPi
diff --git a/Core/regularizers_CPU/FGP_TV.c b/Core/regularizers_CPU/FGP_TV.c
new file mode 100644
index 0000000..30cea1a
--- /dev/null
+++ b/Core/regularizers_CPU/FGP_TV.c
@@ -0,0 +1,216 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+#include "matrix.h"
+#include "mex.h"
+#include "FGP_TV_core.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon: tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ * [2] last function value
+ *
+ * Example of image denoising:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+ *
+ * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ *
+ * D. Kazantsev, 2016-17
+ *
+ */
+
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+ const int *dim_array;
+ float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+ A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */
+ iter = 50; /* default iterations number */
+ epsil = 0.0001; /* default tolerance constant */
+ methTV = 0; /* default isotropic TV penalty */
+
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+ if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ if (nrhs == 5) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ /*output function value (last iteration) */
+ plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
+ float *funcvalA = (float *) mxGetData(plhs[1]);
+
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ tk = 1.0f;
+ tkp1=1.0f;
+ count = 0;
+ re_old = 0.0f;
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* begin iterations */
+ for(ll=0; ll<iter; ll++) {
+
+ /* computing the gradient of the objective function */
+ Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
+
+ /*Taking a step towards minus of the gradient*/
+ Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
+
+ /* projection step */
+ Proj_func2D(P1, P2, methTV, dimX, dimY);
+
+ /*updating R and t*/
+ tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+ Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
+
+ /* calculate norm */
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(D[j] - D_old[j],2);
+ re1 += pow(D[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) {
+ Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
+ break; }
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) {
+ Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
+ break; }}
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*storing old values*/
+ copyIm(D, D_old, dimX, dimY, dimZ);
+ copyIm(P1, P1_old, dimX, dimY, dimZ);
+ copyIm(P2, P2_old, dimX, dimY, dimZ);
+ tk = tkp1;
+
+ /* calculating the objective function value */
+ if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY);
+ }
+ printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+ }
+ if (number_of_dims == 3) {
+ D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /* begin iterations */
+ for(ll=0; ll<iter; ll++) {
+
+ /* computing the gradient of the objective function */
+ Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ);
+
+ /*Taking a step towards minus of the gradient*/
+ Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+
+ /* projection step */
+ Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
+
+ /*updating R and t*/
+ tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+ Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
+
+ /* calculate norm - stopping rules*/
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(D[j] - D_old[j],2);
+ re1 += pow(D[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ /* stop if the norm residual is less than the tolerance EPS */
+ if (re < epsil) count++;
+ if (count > 3) {
+ Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
+ break;}
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) {
+ Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
+ }}
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*storing old values*/
+ copyIm(D, D_old, dimX, dimY, dimZ);
+ copyIm(P1, P1_old, dimX, dimY, dimZ);
+ copyIm(P2, P2_old, dimX, dimY, dimZ);
+ copyIm(P3, P3_old, dimX, dimY, dimZ);
+ tk = tkp1;
+
+ if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ);
+ }
+ printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+ }
+}
diff --git a/Core/regularizers_CPU/FGP_TV_core.c b/Core/regularizers_CPU/FGP_TV_core.c
new file mode 100644
index 0000000..03cd445
--- /dev/null
+++ b/Core/regularizers_CPU/FGP_TV_core.c
@@ -0,0 +1,266 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "FGP_TV_core.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume [REQUIRED]
+ * 2. lambda - regularization parameter [REQUIRED]
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon: tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * [1] Filtered/regularized image
+ * [2] last function value
+ *
+ * Example of image denoising:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+ *
+ * This function is based on the Matlab's code and paper by
+ * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+ *
+ * D. Kazantsev, 2016-17
+ *
+ */
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY)
+{
+ int i,j;
+ float f1, f2, val1, val2;
+
+ /*data-related term */
+ f1 = 0.0f;
+ for(i=0; i<dimX*dimY; i++) f1 += pow(D[i] - A[i],2);
+
+ /*TV-related term */
+ f2 = 0.0f;
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(i+1)*dimY + (j)] - A[(i)*dimY + (j)];}
+ if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(i)*dimY + (j+1)] - A[(i)*dimY + (j)];}
+ f2 += sqrt(pow(val1,2) + pow(val2,2));
+ }}
+
+ /* sum of two terms */
+ funcvalA[0] = 0.5f*f1 + lambda*f2;
+ return *funcvalA;
+}
+
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+ float val1, val2;
+ int i, j;
+#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == 0) { val1 = 0.0f; }
+ else { val1 = R1[(i - 1)*dimY + (j)]; }
+ if (j == 0) { val2 = 0.0f; }
+ else { val2 = R2[(i)*dimY + (j - 1)]; }
+ D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2);
+ }
+ }
+ return *D;
+}
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY)
+{
+ float val1, val2, multip;
+ int i, j;
+ multip = (1.0f / (8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* boundary conditions */
+ if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)];
+ if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)];
+ P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1;
+ P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2;
+ }
+ }
+ return 1;
+}
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY)
+{
+ float val1, val2, denom;
+ int i, j;
+ if (methTV == 0) {
+ /* isotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,denom)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2);
+ if (denom > 1) {
+ P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom);
+ P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom);
+ }
+ }
+ }
+ }
+ else {
+ /* anisotropic TV*/
+#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ val1 = fabs(P1[(i)*dimY + (j)]);
+ val2 = fabs(P2[(i)*dimY + (j)]);
+ if (val1 < 1.0f) { val1 = 1.0f; }
+ if (val2 < 1.0f) { val2 = 1.0f; }
+ P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1;
+ P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2;
+ }
+ }
+ }
+ return 1;
+}
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY)
+{
+ int i, j;
+ float multip;
+ multip = ((tk - 1.0f) / tkp1);
+#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]);
+ R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]);
+ }
+ }
+ return 1;
+}
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ)
+{
+ int i,j,k;
+ float f1, f2, val1, val2, val3;
+
+ /*data-related term */
+ f1 = 0.0f;
+ for(i=0; i<dimX*dimY*dimZ; i++) f1 += pow(D[i] - A[i],2);
+
+ /*TV-related term */
+ f2 = 0.0f;
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(dimX*dimY)*k + (i+1)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
+ if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(dimX*dimY)*k + (i)*dimY + (j+1)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
+ if (k == dimZ-1) {val3 = 0.0f;} else {val3 = A[(dimX*dimY)*(k+1) + (i)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];}
+ f2 += sqrt(pow(val1,2) + pow(val2,2) + pow(val3,2));
+ }}}
+ /* sum of two terms */
+ funcvalA[0] = 0.5f*f1 + lambda*f2;
+ return *funcvalA;
+}
+
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3;
+ int i, j, k;
+#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == 0) { val1 = 0.0f; }
+ else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; }
+ if (j == 0) { val2 = 0.0f; }
+ else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; }
+ if (k == 0) { val3 = 0.0f; }
+ else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; }
+ D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3);
+ }
+ }
+ }
+ return *D;
+}
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3, multip;
+ int i, j, k;
+ multip = (1.0f / (8.0f*lambda));
+#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ /* boundary conditions */
+ if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)];
+ if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)];
+ if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)];
+ P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1;
+ P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2;
+ P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3;
+ }
+ }
+ }
+ return 1;
+}
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ)
+{
+ float val1, val2, val3;
+ int i, j, k;
+#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]);
+ val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]);
+ val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]);
+ if (val1 < 1.0f) { val1 = 1.0f; }
+ if (val2 < 1.0f) { val2 = 1.0f; }
+ if (val3 < 1.0f) { val3 = 1.0f; }
+
+ P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1;
+ P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2;
+ P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3;
+ }
+ }
+ }
+ return 1;
+}
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ)
+{
+ int i, j, k;
+ float multip;
+ multip = ((tk - 1.0f) / tkp1);
+#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]);
+ }
+ }
+ }
+ return 1;
+}
+
+
diff --git a/Core/regularizers_CPU/FGP_TV_core.h b/Core/regularizers_CPU/FGP_TV_core.h
new file mode 100644
index 0000000..6430bf2
--- /dev/null
+++ b/Core/regularizers_CPU/FGP_TV_core.h
@@ -0,0 +1,71 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+#include "utils.h"
+
+/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case)
+*
+* Input Parameters:
+* 1. Noisy image/volume [REQUIRED]
+* 2. lambda - regularization parameter [REQUIRED]
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon: tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* [1] Filtered/regularized image
+* [2] last function value
+*
+* Example of image denoising:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .05*randn(size(Im)); % adding noise
+* u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+*
+* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* This function is based on the Matlab's code and paper by
+* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems"
+*
+* D. Kazantsev, 2016-17
+*
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY);
+float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY);
+float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY);
+float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY);
+
+float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ);
+float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ);
+float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ);
+float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/LLT_model.c b/Core/regularizers_CPU/LLT_model.c
new file mode 100644
index 0000000..0b07b47
--- /dev/null
+++ b/Core/regularizers_CPU/LLT_model.c
@@ -0,0 +1,169 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "matrix.h"
+#include "LLT_model_core.h"
+
+/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
+*
+* Input Parameters:
+* 1. U0 - original noise image/volume
+* 2. lambda - regularization parameter
+* 3. tau - time-step for explicit scheme
+* 4. iter - iterations number
+* 5. epsil - tolerance constant (to terminate earlier)
+* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* [Den] = LLT_model(single(u0), 10, 0.1, 1);
+*
+*
+* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
+*
+* 28.11.16/Harwell
+*/
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher;
+ const int *dim_array;
+ float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old;
+ unsigned short *Map=NULL;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ U0 = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+ lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
+ tau = (float) mxGetScalar(prhs[2]); /* time-step */
+ iter = (int) mxGetScalar(prhs[3]); /*iterations number*/
+ epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */
+ switcher = (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
+
+ if (number_of_dims == 2) {
+ /*2D case*/
+ U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ }
+ else if (number_of_dims == 3) {
+ /*3D case*/
+ dimZ = dim_array[2];
+ U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ if (switcher != 0) {
+ Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+ }
+ }
+ else {mexErrMsgTxt("The input data should be 2D or 3D");}
+
+ /*Copy U0 to U*/
+ copyIm(U0, U, dimX, dimY, dimZ);
+
+ count = 1;
+ re_old = 0.0f;
+ if (number_of_dims == 2) {
+ for(ll = 0; ll < iter; ll++) {
+
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*estimate inner derrivatives */
+ der2D(U, D1, D2, dimX, dimY, dimZ);
+ /* calculate div^2 and update */
+ div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j],2);
+ re1 += pow(U_old[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+
+ } /*end of iterations*/
+ printf("HO iterations stopped at iteration: %i\n", ll);
+ }
+ /*3D version*/
+ if (number_of_dims == 3) {
+
+ if (switcher == 1) {
+ /* apply restrictive smoothing */
+ calcMap(U, Map, dimX, dimY, dimZ);
+ /*clear outliers */
+ cleanMap(Map, dimX, dimY, dimZ);
+ }
+ for(ll = 0; ll < iter; ll++) {
+
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*estimate inner derrivatives */
+ der3D(U, D1, D2, D3, dimX, dimY, dimZ);
+ /* calculate div^2 and update */
+ div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j],2);
+ re1 += pow(U_old[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+
+ } /*end of iterations*/
+ printf("HO iterations stopped at iteration: %i\n", ll);
+ }
+}
diff --git a/Core/regularizers_CPU/LLT_model_core.c b/Core/regularizers_CPU/LLT_model_core.c
new file mode 100644
index 0000000..3a853d2
--- /dev/null
+++ b/Core/regularizers_CPU/LLT_model_core.c
@@ -0,0 +1,318 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "LLT_model_core.h"
+
+/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty
+*
+* Input Parameters:
+* 1. U0 - origanal noise image/volume
+* 2. lambda - regularization parameter
+* 3. tau - time-step for explicit scheme
+* 4. iter - iterations number
+* 5. epsil - tolerance constant (to terminate earlier)
+* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test)
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* [Den] = LLT_model(single(u0), 10, 0.1, 1);
+*
+* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE
+*
+* 28.11.16/Harwell
+*/
+
+
+float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ)
+{
+ int i, j, i_p, i_m, j_m, j_p;
+ float dxx, dyy, denom_xx, denom_yy;
+#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+
+ dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j];
+ dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m];
+
+ denom_xx = fabs(dxx) + EPS;
+ denom_yy = fabs(dyy) + EPS;
+
+ D1[i*dimY + j] = dxx / denom_xx;
+ D2[i*dimY + j] = dyy / denom_yy;
+ }
+ }
+ return 1;
+}
+float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+ int i, j, i_p, i_m, j_m, j_p;
+ float div, dxx, dyy;
+#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+
+ dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j];
+ dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m];
+
+ div = dxx + dyy;
+
+ U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]);
+ }
+ }
+ return *U0;
+}
+
+float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ)
+{
+ int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
+ float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz;
+#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz)
+ for (i = 0; i<dimX; i++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ for (j = 0; j<dimY; j++) {
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+ for (k = 0; k<dimZ; k++) {
+ k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+ k_m = k - 1; if (k_m < 0) k_m = k + 1;
+
+ dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
+ dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
+ dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
+
+ denom_xx = fabs(dxx) + EPS;
+ denom_yy = fabs(dyy) + EPS;
+ denom_zz = fabs(dzz) + EPS;
+
+ D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx;
+ D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy;
+ D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz;
+
+ }
+ }
+ }
+ return 1;
+}
+
+float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+ int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m;
+ float div, dxx, dyy, dzz;
+#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz)
+ for (i = 0; i<dimX; i++) {
+ /* symmetric boundary conditions (Neuman) */
+ i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+ i_m = i - 1; if (i_m < 0) i_m = i + 1;
+ for (j = 0; j<dimY; j++) {
+ j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+ j_m = j - 1; if (j_m < 0) j_m = j + 1;
+ for (k = 0; k<dimZ; k++) {
+ k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+ k_m = k - 1; if (k_m < 0) k_m = k + 1;
+ // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
+ // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
+
+ dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j];
+ dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m];
+ dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
+
+ if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0;
+ div = dxx + dyy + dzz;
+
+ // if (switcher == 1) {
+ // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0;
+ //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
+ // div = dzz + dzz2;
+ // }
+
+ // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j];
+ // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j];
+ // div = dzz + dzz2;
+
+ U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]);
+ }
+ }
+ }
+ return *U0;
+}
+
+// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ)
+// {
+// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1;
+// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2;
+// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1)
+// for(i=0; i<dimX; i++) {
+// /* symmetric boundary conditions (Neuman) */
+// i_p = i + 1; if (i_p == dimX) i_p = i - 1;
+// i_m = i - 1; if (i_m < 0) i_m = i + 1;
+// for(j=0; j<dimY; j++) {
+// j_p = j + 1; if (j_p == dimY) j_p = j - 1;
+// j_m = j - 1; if (j_m < 0) j_m = j + 1;
+// for(k=0; k<dimZ; k++) {
+// k_p = k + 1; if (k_p == dimZ) k_p = k - 1;
+// k_m = k - 1; if (k_m < 0) k_m = k + 1;
+// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2;
+// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2;
+//
+// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j];
+// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m];
+// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j];
+// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j];
+//
+// denom_xx = fabs(dxx) + EPS;
+// denom_yy = fabs(dyy) + EPS;
+// denom_zz = fabs(dzz) + EPS;
+// denom_zz2 = fabs(dzz2) + EPS;
+//
+// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx;
+// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy;
+// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz;
+// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2;
+// }}}
+// return 1;
+// }
+
+float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ)
+{
+ int i, j, k, i1, j1, i2, j2, windowSize;
+ float val1, val2, thresh_val, maxval;
+ windowSize = 1;
+ thresh_val = 0.0001; /*thresh_val = 0.0035;*/
+
+ /* normalize volume first */
+ maxval = 0.0f;
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j];
+ }
+ }
+ }
+
+ if (maxval != 0.0f) {
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+ U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval;
+ }
+ }
+ }
+ }
+ else {
+ printf("%s \n", "Maximum value is zero!");
+ return 0;
+ }
+
+#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+
+ Map[dimX*dimY*k + i*dimY + j] = 0;
+ // Map2[dimX*dimY*k + i*dimY + j] = 0;
+
+ val1 = 0.0f; val2 = 0.0f;
+ for (i1 = -windowSize; i1 <= windowSize; i1++) {
+ for (j1 = -windowSize; j1 <= windowSize; j1++) {
+ i2 = i + i1;
+ j2 = j + j1;
+
+ if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
+ if (k == 0) {
+ val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
+ }
+ else if (k == dimZ - 1) {
+ val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
+ }
+ // else if (k == 1) {
+ // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
+ // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
+ // }
+ // else if (k == dimZ-2) {
+ // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2);
+ // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
+ // }
+ else {
+ val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2);
+ val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2);
+ // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2);
+ // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2);
+ }
+ }
+ }
+ }
+
+ val1 = 0.111f*val1; val2 = 0.111f*val2;
+ // val3 = 0.111f*val3; val4 = 0.111f*val4;
+ if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1;
+ // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1;
+ }
+ }
+ }
+ return 1;
+}
+
+float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ)
+{
+ int i, j, k, i1, j1, i2, j2, counter;
+#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter)
+ for (i = 0; i<dimX; i++) {
+ for (j = 0; j<dimY; j++) {
+ for (k = 0; k<dimZ; k++) {
+
+ counter = 0;
+ for (i1 = -3; i1 <= 3; i1++) {
+ for (j1 = -3; j1 <= 3; j1++) {
+ i2 = i + i1;
+ j2 = j + j1;
+ if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) {
+ if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++;
+ }
+ }
+ }
+ if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1;
+ }
+ }
+ }
+ return *Map;
+}
+
+
+/*********************3D *********************/ \ No newline at end of file
diff --git a/Core/regularizers_CPU/LLT_model_core.h b/Core/regularizers_CPU/LLT_model_core.h
new file mode 100644
index 0000000..13fce5a
--- /dev/null
+++ b/Core/regularizers_CPU/LLT_model_core.h
@@ -0,0 +1,46 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+#include "utils.h"
+
+#define EPS 0.01
+
+/* 2D functions */
+#ifdef __cplusplus
+extern "C" {
+#endif
+float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ);
+float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau);
+
+float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ);
+float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau);
+
+float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ);
+float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ);
+
+//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/PatchBased_Regul.c b/Core/regularizers_CPU/PatchBased_Regul.c
new file mode 100644
index 0000000..5d89b0c
--- /dev/null
+++ b/Core/regularizers_CPU/PatchBased_Regul.c
@@ -0,0 +1,140 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include "matrix.h"
+#include "PatchBased_Regul_core.h"
+
+
+/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
+ * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+ *
+ * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+ * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+ *
+ * Input Parameters:
+ * 1. Image (2D or 3D) [required]
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
+ * 4. h - parameter for the PB penalty function [optional]
+ * 5. lambda - regularization parameter [optional]
+
+ * Output:
+ * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+ *
+ * 2D denoising example in Matlab:
+ Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
+ *
+ * Matlab + C/mex compilers needed
+ * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+ *
+ * D. Kazantsev *
+ * 02/07/2014
+ * Harwell, UK
+ */
+
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+{
+ int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
+ const int *dims;
+ float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda;
+
+ numdims = mxGetNumberOfDimensions(prhs[0]);
+ dims = mxGetDimensions(prhs[0]);
+
+ N = dims[0];
+ M = dims[1];
+ Z = dims[2];
+
+ if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");}
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+
+ if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
+
+ /*Handling inputs*/
+ A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */
+ SearchW_real = 3; /*default value*/
+ SimilW = 1; /*default value*/
+ h = 0.1;
+ lambda = 0.1;
+
+ if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
+ if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
+ if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */
+
+
+ if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
+ if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
+
+ SearchW = SearchW_real + 2*SimilW;
+
+ /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
+ /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
+
+ padXY = SearchW + 2*SimilW; /* padding sizes */
+ newsizeX = N + 2*(padXY); /* the X size of the padded array */
+ newsizeY = M + 2*(padXY); /* the Y size of the padded array */
+ newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
+ int N_dims[] = {newsizeX, newsizeY, newsizeZ};
+
+ /******************************2D case ****************************/
+ if (numdims == 2) {
+ /*Handling output*/
+ B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+ /*allocating memory for the padded arrays */
+ Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+ Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+ /**************************************************************************/
+ /*Perform padding of image A to the size of [newsizeX * newsizeY] */
+ switchpad_crop = 0; /*padding*/
+ pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+
+ /* Do PB regularization with the padded array */
+ PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
+
+ switchpad_crop = 1; /*cropping*/
+ pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+ }
+ else
+ {
+ /******************************3D case ****************************/
+ /*Handling output*/
+ B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+ /*allocating memory for the padded arrays */
+ Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ /**************************************************************************/
+
+ /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
+ switchpad_crop = 0; /*padding*/
+ pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+
+ /* Do PB regularization with the padded array */
+ PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
+
+ switchpad_crop = 1; /*cropping*/
+ pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+ } /*end else ndims*/
+}
diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.c b/Core/regularizers_CPU/PatchBased_Regul_core.c
new file mode 100644
index 0000000..fe88ffb
--- /dev/null
+++ b/Core/regularizers_CPU/PatchBased_Regul_core.c
@@ -0,0 +1,232 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "PatchBased_Regul_core.h"
+#include <string.h>
+/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
+ * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+ *
+ * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+ * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+ *
+ * Input Parameters:
+ * 1. Image (2D or 3D) [required]
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional]
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional]
+ * 4. h - parameter for the PB penalty function [optional]
+ * 5. lambda - regularization parameter [optional]
+
+ * Output:
+ * 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+ *
+ * 2D denoising example in Matlab:
+ Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05);
+
+ * D. Kazantsev *
+ * 02/07/2014
+ * Harwell, UK
+ */
+
+/*2D version function */
+float PB_FUNC2D(float *Ap, float *Bp, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda)
+{
+ int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full;
+ float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1;
+
+ float A[dimX*dimY], B[dimX*dimY];
+
+ //fill the structures
+ int index=0;
+ for (i=0;i<dimX;i++){
+ for (j=0;j<dimY;j++){
+ int index = j + dimX * i;
+
+ float val = (*(Ap + index));
+ memcpy(A + index , &val, sizeof(float));
+ val = (*(Bp + index));
+ memcpy(B + index , &val, sizeof(float));
+ }
+ }
+ /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
+ SimilW_full = 2*SimilW + 1; /* the full similarity window size */
+ h2 = h*h;
+ denh2 = 1/(2*h2);
+
+ /*Gaussian kernel */
+ Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float));
+ count = 0;
+ for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+ for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+ t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2);
+ Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW));
+ count = count + 1;
+ }} /*main neighb loop */
+
+ #pragma acc kernels copy(A[0:dimX*dimY], B[0:dimX*dimY], Eucl_Vec[0:SimilW_full*SimilW_full])
+ {
+ /*The NLM code starts here*/
+ /* setting OMP here */
+ //#pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value)
+
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) {
+
+ /* Massive Search window loop */
+ Weight_norm = 0; value = 0.0;
+ for(i_m=-SearchW; i_m<=SearchW; i_m++) {
+ for(j_m=-SearchW; j_m<=SearchW; j_m++) {
+ /*checking boundaries*/
+ i1 = i+i_m; j1 = j+j_m;
+
+ WeightGlob = 0.0;
+ /* if inside the searching window */
+ for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+ for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+ i2 = i1+i_l; j2 = j1+j_l;
+
+ i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */
+
+ count = 0; normsum = 0.0;
+ for(i_p=-SimilW; i_p<=SimilW; i_p++) {
+ for(j_p=-SimilW; j_p<=SimilW; j_p++) {
+ i5 = i2 + i_p; j5 = j2 + j_p;
+ normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2);
+ count = count + 1;
+ }}
+ if (normsum != 0) Weight = (exp(-normsum*denh2));
+ else Weight = 0.0;
+ WeightGlob += Weight;
+ }}
+
+ value += A[i1*dimY+j1]
+ * WeightGlob;
+ Weight_norm += WeightGlob;
+ }} /*search window loop end*/
+
+ /* the final loop to average all values in searching window with weights */
+ denom = 1 + lambda*Weight_norm;
+ B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom;
+ }
+ }} /*main loop*/
+
+ } // OpenAcc pragma
+ return (*B);
+ free(Eucl_Vec);
+}
+
+/*3D version*/
+ float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda)
+ {
+ int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5;
+ float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob;
+
+ /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
+ SimilW_full = 2*SimilW + 1; /* the full similarity window size */
+ h2 = h*h;
+ denh2 = 1/(2*h2);
+
+ /*Gaussian kernel */
+ Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float));
+ count = 0;
+ for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+ for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+ for(k_n=-SimilW; k_n<=SimilW; k_n++) {
+ Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW));
+ count = count + 1;
+ }}} /*main neighb loop */
+
+ /*The NLM code starts here*/
+ /* setting OMP here */
+ #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) {
+ /* take all elements around the pixel of interest */
+ /* Massive Search window loop */
+ Weight_norm = 0; value = 0.0;
+ for(i_m=-SearchW; i_m<=SearchW; i_m++) {
+ for(j_m=-SearchW; j_m<=SearchW; j_m++) {
+ for(k_m=-SearchW; k_m<=SearchW; k_m++) {
+ /*checking boundaries*/
+ i1 = i+i_m; j1 = j+j_m; k1 = k+k_m;
+
+ WeightGlob = 0.0;
+ /* if inside the searching window */
+ for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+ for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+ for(k_l=-SimilW; k_l<=SimilW; k_l++) {
+ i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
+
+ i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */
+
+ count = 0; normsum = 0.0;
+ for(i_p=-SimilW; i_p<=SimilW; i_p++) {
+ for(j_p=-SimilW; j_p<=SimilW; j_p++) {
+ for(k_p=-SimilW; k_p<=SimilW; k_p++) {
+ i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p;
+ normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2);
+ count = count + 1;
+ }}}
+ if (normsum != 0) Weight = (exp(-normsum*denh2));
+ else Weight = 0.0;
+ WeightGlob += Weight;
+ }}}
+ value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob;
+ Weight_norm += WeightGlob;
+
+ }}} /*search window loop end*/
+
+ /* the final loop to average all values in searching window with weights */
+ denom = 1 + lambda*Weight_norm;
+ B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom;
+ }
+ }}} /*main loop*/
+ free(Eucl_Vec);
+ return *B;
+}
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
+{
+ /* padding-cropping function */
+ int i,j,k;
+ if (NewSizeZ > 1) {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ for (k=0; k < NewSizeZ; k++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
+ if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
+ }
+ }}}
+ }
+ else {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
+ if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
+ }
+ }}
+ }
+ return *Ap;
+}
diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.h b/Core/regularizers_CPU/PatchBased_Regul_core.h
new file mode 100644
index 0000000..d4a8a46
--- /dev/null
+++ b/Core/regularizers_CPU/PatchBased_Regul_core.h
@@ -0,0 +1,69 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#define _USE_MATH_DEFINES
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases).
+* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+*
+* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+*
+* Input Parameters (mandatory):
+* 1. Image (2D or 3D)
+* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
+* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
+* 4. h - parameter for the PB penalty function
+* 5. lambda - regularization parameter
+
+* Output:
+* 1. regularized (denoised) Image (N x N)/volume (N x N x N)
+*
+* Quick 2D denoising example in Matlab:
+Im = double(imread('lena_gray_256.tif'))/255; % loading image
+u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+*
+* Please see more tests in a file:
+TestTemporalSmoothing.m
+
+*
+* Matlab + C/mex compilers needed
+* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp"
+*
+* D. Kazantsev *
+* 02/07/2014
+* Harwell, UK
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
+float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda);
+float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda);
+#ifdef __cplusplus
+}
+#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/SplitBregman_TV.c b/Core/regularizers_CPU/SplitBregman_TV.c
new file mode 100644
index 0000000..38f6a9d
--- /dev/null
+++ b/Core/regularizers_CPU/SplitBregman_TV.c
@@ -0,0 +1,179 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "mex.h"
+#include <matrix.h>
+#include "SplitBregman_TV_core.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume
+ * 2. lambda - regularization parameter
+ * 3. Number of iterations [OPTIONAL parameter]
+ * 4. eplsilon - tolerance constant [OPTIONAL parameter]
+ * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+ *
+ * Output:
+ * Filtered/regularized image
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+ * u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+ *
+ * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * References:
+ * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+ * D. Kazantsev, 2016*
+ */
+
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV;
+ const int *dim_array;
+ float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+ /*Handling Matlab input data*/
+ A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */
+ iter = 35; /* default iterations number */
+ epsil = 0.0001; /* default tolerance constant */
+ methTV = 0; /* default isotropic TV penalty */
+ if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */
+ if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */
+ if (nrhs == 5) {
+ char *penalty_type;
+ penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ mxFree(penalty_type);
+ }
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); }
+
+ lambda = 2.0f*mu;
+ count = 1;
+ re_old = 0.0f;
+ /*Handling Matlab output data*/
+ dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+
+ /* begin outer SB iterations */
+ for(ll=0; ll<iter; ll++) {
+
+ /*storing old values*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*GS iteration */
+ gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
+
+ if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+ else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+
+ updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j],2);
+ re1 += pow(U_old[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*copyIm(U_old, U, dimX, dimY, dimZ); */
+ }
+ printf("SB iterations stopped at iteration: %i\n", ll);
+ }
+ if (number_of_dims == 3) {
+ U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+
+ /* begin outer SB iterations */
+ for(ll=0; ll<iter; ll++) {
+
+ /*storing old values*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*GS iteration */
+ gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
+
+ if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+ else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+
+ updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for(j=0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U[j] - U_old[j],2);
+ re1 += pow(U[j],2);
+ }
+ re = sqrt(re)/sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break; }
+ /*printf("%f %i %i \n", re, ll, count); */
+ re_old = re;
+ }
+ printf("SB iterations stopped at iteration: %i\n", ll);
+ }
+} \ No newline at end of file
diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.c b/Core/regularizers_CPU/SplitBregman_TV_core.c
new file mode 100644
index 0000000..4109a4b
--- /dev/null
+++ b/Core/regularizers_CPU/SplitBregman_TV_core.c
@@ -0,0 +1,259 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "SplitBregman_TV_core.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+*
+* Input Parameters:
+* 1. Noisy image/volume
+* 2. lambda - regularization parameter
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon - tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+*
+* References:
+* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+* D. Kazantsev, 2016*
+*/
+
+
+/* 2D-case related Functions */
+/*****************************************************************/
+float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu)
+{
+ float sum, normConst;
+ int i,j,i1,i2,j1,j2;
+ normConst = 1.0f/(mu + 4.0f*lambda);
+
+#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum)
+ for(i=0; i<dimX; i++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ i2 = i-1; if (i2 < 0) i2 = i+1;
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ j2 = j-1; if (j2 < 0) j2 = j+1;
+
+ sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)];
+ sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]);
+ sum *= lambda;
+ sum += mu*A[(i)*dimY + (j)];
+ U[(i)*dimY + (j)] = normConst*sum;
+ }}
+ return *U;
+}
+
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+{
+ int i,j,i1,j1;
+ float val1, val11, val2, val22, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+
+ val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
+ val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
+
+ val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+ val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+
+ if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0;
+ if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0;
+
+ }}
+ return 1;
+}
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda)
+{
+ int i,j,i1,j1;
+ float val1, val11, val2, denom, denom_lam;
+ denom_lam = 1.0f/lambda;
+
+#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+
+ val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)];
+ val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)];
+
+ denom = sqrt(val1*val1 + val2*val2);
+
+ val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+
+ if (denom != 0.0f) {
+ Dx[(i)*dimY + (j)] = val11*(val1/denom);
+ Dy[(i)*dimY + (j)] = val11*(val2/denom);
+ }
+ else {
+ Dx[(i)*dimY + (j)] = 0;
+ Dy[(i)*dimY + (j)] = 0;
+ }
+ }}
+ return 1;
+}
+float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY)
+{
+ int i,j,i1,j1;
+#pragma omp parallel for shared(U) private(i,j,i1,j1)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+
+ Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]);
+ By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]);
+ }}
+ return 1;
+}
+
+
+/* 3D-case related Functions */
+/*****************************************************************/
+float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu)
+{
+ float normConst, d_val, b_val, sum;
+ int i,j,i1,i2,j1,j2,k,k1,k2;
+ normConst = 1.0f/(mu + 6.0f*lambda);
+#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ i2 = i-1; if (i2 < 0) i2 = i+1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ j2 = j-1; if (j2 < 0) j2 = j+1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+ k2 = k-1; if (k2 < 0) k2 = k+1;
+
+ d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)];
+ b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)];
+ sum = d_val + b_val;
+ sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)];
+ sum *= lambda;
+ sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)];
+ U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum;
+ }}}
+ return *U;
+}
+
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+ int i,j,i1,j1,k,k1,index;
+ float val1, val11, val2, val22, val3, val33, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ index = (dimX*dimY)*k + (i)*dimY + (j);
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+ val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+ val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+
+ val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0;
+ val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0;
+ val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0;
+
+ if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0;
+ if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0;
+ if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0;
+
+ }}}
+ return 1;
+}
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda)
+{
+ int i,j,i1,j1,k,k1,index;
+ float val1, val11, val2, val3, denom, denom_lam;
+ denom_lam = 1.0f/lambda;
+#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ index = (dimX*dimY)*k + (i)*dimY + (j);
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index];
+ val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index];
+ val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index];
+
+ denom = sqrt(val1*val1 + val2*val2 + val3*val3);
+
+ val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f;
+
+ if (denom != 0.0f) {
+ Dx[index] = val11*(val1/denom);
+ Dy[index] = val11*(val2/denom);
+ Dz[index] = val11*(val3/denom);
+ }
+ else {
+ Dx[index] = 0;
+ Dy[index] = 0;
+ Dz[index] = 0;
+ }
+ }}}
+ return 1;
+}
+float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ)
+{
+ int i,j,k,i1,j1,k1;
+#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* symmetric boundary conditions (Neuman) */
+ i1 = i+1; if (i1 == dimX) i1 = i-1;
+ j1 = j+1; if (j1 == dimY) j1 = j-1;
+ k1 = k+1; if (k1 == dimZ) k1 = k-1;
+
+ Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]);
+ By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]);
+ Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]);
+
+ }}}
+ return 1;
+}
diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.h b/Core/regularizers_CPU/SplitBregman_TV_core.h
new file mode 100644
index 0000000..6ed3ff9
--- /dev/null
+++ b/Core/regularizers_CPU/SplitBregman_TV_core.h
@@ -0,0 +1,69 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+
+#include "utils.h"
+
+/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D)
+*
+* Input Parameters:
+* 1. Noisy image/volume
+* 2. lambda - regularization parameter
+* 3. Number of iterations [OPTIONAL parameter]
+* 4. eplsilon - tolerance constant [OPTIONAL parameter]
+* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter]
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+* u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+*
+* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher.
+* D. Kazantsev, 2016*
+*/
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ);
+float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu);
+float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda);
+float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY);
+
+float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu);
+float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda);
+float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ);
+
+#ifdef __cplusplus
+}
+#endif \ No newline at end of file
diff --git a/Core/regularizers_CPU/TGV_PD.c b/Core/regularizers_CPU/TGV_PD.c
new file mode 100644
index 0000000..c9cb440
--- /dev/null
+++ b/Core/regularizers_CPU/TGV_PD.c
@@ -0,0 +1,144 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "TGV_PD_core.h"
+#include "mex.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume (2D)
+ * 2. lambda - regularization parameter
+ * 3. parameter to control first-order term (alpha1)
+ * 4. parameter to control the second-order term (alpha0)
+ * 5. Number of CP iterations
+ *
+ * Output:
+ * Filtered/regularized image
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .03*randn(size(Im)); % adding noise
+ * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc;
+ *
+ * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+ * References:
+ * K. Bredies "Total Generalized Variation"
+ *
+ * 28.11.16/Harwell
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+
+{
+ int number_of_dims, iter, dimX, dimY, dimZ, ll;
+ const int *dim_array;
+ float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
+
+ number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ dim_array = mxGetDimensions(prhs[0]);
+
+ /*Handling Matlab input data*/
+ A = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+ lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/
+ alpha1 = (float) mxGetScalar(prhs[2]); /*first-order term*/
+ alpha0 = (float) mxGetScalar(prhs[3]); /*second-order term*/
+ iter = (int) mxGetScalar(prhs[4]); /*iterations number*/
+ if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1];
+
+ if (number_of_dims == 2) {
+ /*2D case*/
+ dimZ = 1;
+ U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /*dual variables*/
+ P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+
+ /*printf("%i \n", i);*/
+ L2 = 12.0f; /*Lipshitz constant*/
+ tau = 1.0/pow(L2,0.5);
+ sigma = 1.0/pow(L2,0.5);
+
+ /*Copy A to U*/
+ copyIm(A, U, dimX, dimY, dimZ);
+
+ /* Here primal-dual iterations begin for 2D */
+ for(ll = 0; ll < iter; ll++) {
+
+ /* Calculate Dual Variable P */
+ DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
+
+ /*Projection onto convex set for P*/
+ ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
+
+ /* Calculate Dual Variable Q */
+ DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
+
+ /*Projection onto convex set for Q*/
+ ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
+
+ /*saving U into U_old*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*adjoint operation -> divergence and projection of P*/
+ DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
+
+ /*get updated solution U*/
+ newU(U, U_old, dimX, dimY, dimZ);
+
+ /*saving V into V_old*/
+ copyIm(V1, V1_old, dimX, dimY, dimZ);
+ copyIm(V2, V2_old, dimX, dimY, dimZ);
+
+ /* upd V*/
+ UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
+
+ /*get new V*/
+ newU(V1, V1_old, dimX, dimY, dimZ);
+ newU(V2, V2_old, dimX, dimY, dimZ);
+ } /*end of iterations*/
+ }
+ else if (number_of_dims == 3) {
+ mexErrMsgTxt("The input data should be a 2D array");
+ /*3D case*/
+ }
+ else {mexErrMsgTxt("The input data should be a 2D array");}
+
+}
diff --git a/Core/regularizers_CPU/TGV_PD_core.c b/Core/regularizers_CPU/TGV_PD_core.c
new file mode 100644
index 0000000..4139d10
--- /dev/null
+++ b/Core/regularizers_CPU/TGV_PD_core.c
@@ -0,0 +1,208 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "TGV_PD_core.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+ * Total Generilized Variation (TGV)-L2 model (2D case only)
+ *
+ * Input Parameters:
+ * 1. Noisy image/volume (2D)
+ * 2. lambda - regularization parameter
+ * 3. parameter to control first-order term (alpha1)
+ * 4. parameter to control the second-order term (alpha0)
+ * 5. Number of CP iterations
+ *
+ * Output:
+ * Filtered/regularized image
+ *
+ * Example:
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .03*randn(size(Im)); % adding noise
+ * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
+ *
+ * References:
+ * K. Bredies "Total Generalized Variation"
+ *
+ * 28.11.16/Harwell
+ */
+
+
+
+
+/*Calculating dual variable P (using forward differences)*/
+float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma)
+{
+ int i,j;
+#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
+ else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]);
+ if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
+ else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]);
+ }}
+ return 1;
+}
+/*Projection onto convex set for P*/
+float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1)
+{
+ float grad_magn;
+ int i,j;
+#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2));
+ grad_magn = grad_magn/alpha1;
+ if (grad_magn > 1.0) {
+ P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn;
+ P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn;
+ }
+ }}
+ return 1;
+}
+/*Calculating dual variable Q (using forward differences)*/
+float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma)
+{
+ int i,j;
+ float q1, q2, q11, q22;
+#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == dimX-1)
+ { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]);
+ q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]);
+ }
+ else {
+ q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]);
+ q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]);
+ }
+ if (j == dimY-1) {
+ q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]);
+ q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]);
+ }
+ else {
+ q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]);
+ q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]);
+ }
+ Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1);
+ Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2);
+ Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22));
+ }}
+ return 1;
+}
+
+float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0)
+{
+ float grad_magn;
+ int i,j;
+#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2));
+ grad_magn = grad_magn/alpha0;
+ if (grad_magn > 1.0) {
+ Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn;
+ Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn;
+ Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn;
+ }
+ }}
+ return 1;
+}
+/* Divergence and projection for P*/
+float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau)
+{
+ int i,j;
+ float P_v1, P_v2, div;
+#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ if (i == 0) P_v1 = (P1[i*dimY + (j)]);
+ else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]);
+ if (j == 0) P_v2 = (P2[i*dimY + (j)]);
+ else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]);
+ div = P_v1 + P_v2;
+ U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau);
+ }}
+ return *U;
+}
+/*get updated solution U*/
+float newU(float *U, float *U_old, int dimX, int dimY, int dimZ)
+{
+ int i;
+#pragma omp parallel for shared(U,U_old) private(i)
+ for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i];
+ return *U;
+}
+
+/*get update for V*/
+float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau)
+{
+ int i,j;
+ float q1, q11, q2, q22, div1, div2;
+#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == 0) {
+ q1 = (Q1[i*dimY + (j)]);
+ q11 = (Q3[i*dimY + (j)]);
+ }
+ else {
+ q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]);
+ q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]);
+ }
+ if (j == 0) {
+ q2 = (Q2[i*dimY + (j)]);
+ q22 = (Q3[i*dimY + (j)]);
+ }
+ else {
+ q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]);
+ q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]);
+ }
+ div1 = q1 + q22;
+ div2 = q2 + q11;
+ V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1);
+ V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2);
+ }}
+ return 1;
+}
+/*********************3D *********************/
+
+/*Calculating dual variable P (using forward differences)*/
+float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma)
+{
+ int i,j,k;
+#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k)
+ for(i=0; i<dimX; i++) {
+ for(j=0; j<dimY; j++) {
+ for(k=0; k<dimZ; k++) {
+ /* symmetric boundary conditions (Neuman) */
+ if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
+ else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]);
+ if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
+ else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]);
+ if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
+ else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]);
+ }}}
+ return 1;
+} \ No newline at end of file
diff --git a/Core/regularizers_CPU/TGV_PD_core.h b/Core/regularizers_CPU/TGV_PD_core.h
new file mode 100644
index 0000000..d5378df
--- /dev/null
+++ b/Core/regularizers_CPU/TGV_PD_core.h
@@ -0,0 +1,67 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include "omp.h"
+#include "utils.h"
+
+/* C-OMP implementation of Primal-Dual denoising method for
+* Total Generilized Variation (TGV)-L2 model (2D case only)
+*
+* Input Parameters:
+* 1. Noisy image/volume (2D)
+* 2. lambda - regularization parameter
+* 3. parameter to control first-order term (alpha1)
+* 4. parameter to control the second-order term (alpha0)
+* 5. Number of CP iterations
+*
+* Output:
+* Filtered/regularized image
+*
+* Example:
+* figure;
+* Im = double(imread('lena_gray_256.tif'))/255; % loading image
+* u0 = Im + .03*randn(size(Im)); % adding noise
+* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc;
+*
+* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+* References:
+* K. Bredies "Total Generalized Variation"
+*
+* 28.11.16/Harwell
+*/
+#ifdef __cplusplus
+extern "C" {
+#endif
+/* 2D functions */
+float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma);
+float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1);
+float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma);
+float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0);
+float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau);
+float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau);
+float newU(float *U, float *U_old, int dimX, int dimY, int dimZ);
+//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif
diff --git a/Core/regularizers_CPU/utils.c b/Core/regularizers_CPU/utils.c
new file mode 100644
index 0000000..0e83d2c
--- /dev/null
+++ b/Core/regularizers_CPU/utils.c
@@ -0,0 +1,29 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazanteev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#include "utils.h"
+
+/* Copy Image */
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ)
+{
+ int j;
+#pragma omp parallel for shared(A, U) private(j)
+ for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j];
+ return *U;
+} \ No newline at end of file
diff --git a/Core/regularizers_CPU/utils.h b/Core/regularizers_CPU/utils.h
new file mode 100644
index 0000000..53463a3
--- /dev/null
+++ b/Core/regularizers_CPU/utils.h
@@ -0,0 +1,32 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+//#include <matrix.h>
+//#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+//#include <stdio.h>
+#include "omp.h"
+#ifdef __cplusplus
+extern "C" {
+#endif
+float copyIm(float *A, float *U, int dimX, int dimY, int dimZ);
+#ifdef __cplusplus
+}
+#endif
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
new file mode 100644
index 0000000..e5b1ee0
--- /dev/null
+++ b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp
@@ -0,0 +1,114 @@
+#include "mex.h"
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include <iostream>
+#include "Diff4th_GPU_kernel.h"
+
+/*
+ * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli
+ *
+ * Reference :
+ * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli
+ *
+ * Example
+ * figure;
+ * Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ * u0 = Im + .05*randn(size(Im)); % adding noise
+ * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150);
+ * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image')
+ * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image')
+ *
+ *
+ * Linux/Matlab compilation:
+ * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu
+ * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o
+ */
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+{
+ int numdims, dimZ, size;
+ float *A, *B, *A_L, *B_L;
+ const int *dims;
+
+ numdims = mxGetNumberOfDimensions(prhs[0]);
+ dims = mxGetDimensions(prhs[0]);
+
+ float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */
+ float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */
+ int iter = (int)mxGetScalar(prhs[3]); /* iterations number */
+
+ if (numdims == 2) {
+
+ int N, M, Z, i, j;
+ Z = 0; // for the 2D case
+ float tau = 0.01; // time step is sufficiently small for an explicit methods
+
+ /*Input data*/
+ A = (float*)mxGetData(prhs[0]);
+ N = dims[0] + 2;
+ M = dims[1] + 2;
+ A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+ B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+
+ /*Output data*/
+ B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL));
+
+ // copy A to the bigger A_L with boundaries
+ #pragma omp parallel for shared(A_L, A) private(i,j)
+ for (i=0; i < N; i++) {
+ for (j=0; j < M; j++) {
+ if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)];
+ }}
+
+ // Running CUDA code here
+ Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
+
+ // copy the processed B_L to a smaller B
+ #pragma omp parallel for shared(B_L, B) private(i,j)
+ for (i=0; i < N; i++) {
+ for (j=0; j < M; j++) {
+ if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j];
+ }}
+ }
+ if (numdims == 3) {
+ // 3D image denoising / regularization
+ int N, M, Z, i, j, k;
+ float tau = 0.0007; // Time Step is small for an explicit methods
+ A = (float*)mxGetData(prhs[0]);
+ N = dims[0] + 2;
+ M = dims[1] + 2;
+ Z = dims[2] + 2;
+ int N_dims[] = {N, M, Z};
+ A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+
+ /* output data */
+ B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+
+ // copy A to the bigger A_L with boundaries
+ #pragma omp parallel for shared(A_L, A) private(i,j,k)
+ for (i=0; i < N; i++) {
+ for (j=0; j < M; j++) {
+ for (k=0; k < Z; k++) {
+ if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
+ A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)];
+ }}}}
+
+ // Running CUDA kernel here for diffusivity
+ Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda);
+
+ // copy the processed B_L to a smaller B
+ #pragma omp parallel for shared(B_L, B) private(i,j,k)
+ for (i=0; i < N; i++) {
+ for (j=0; j < M; j++) {
+ for (k=0; k < Z; k++) {
+ if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) {
+ B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)];
+ }}}}
+ }
+} \ No newline at end of file
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
new file mode 100644
index 0000000..90269bf
--- /dev/null
+++ b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu
@@ -0,0 +1,270 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include "Diff4th_GPU_kernel.h"
+
+#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
+
+inline void __checkCudaErrors(cudaError err, const char *file, const int line)
+{
+ if (cudaSuccess != err)
+ {
+ fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
+ file, line, (int)err, cudaGetErrorString(err));
+ exit(EXIT_FAILURE);
+ }
+}
+
+#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) )
+#define sizeT (sizeX*sizeY*sizeZ)
+#define epsilon 0.00000001
+
+/////////////////////////////////////////////////
+// 2D Image denosing - Second Step (The second derrivative)
+__global__ void Diff4th2D_derriv(float* B, float* A, float *A0, int N, int M, float sigma, int iter, float tau, float lambda)
+{
+ float gradXXc = 0, gradYYc = 0;
+ int i = blockIdx.x*blockDim.x + threadIdx.x;
+ int j = blockIdx.y*blockDim.y + threadIdx.y;
+
+ int index = j + i*N;
+
+ if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
+ return; }
+
+ int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
+ int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
+ int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
+ int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
+
+ gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
+ gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
+ A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc));
+}
+
+// 2D Image denosing - The First Step
+__global__ void Diff4th2D(float* A, float* B, int N, int M, float sigma, int iter, float tau)
+{
+ float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, sq_sum, xy_2, V_norm, V_orth, c, c_sq;
+
+ int i = blockIdx.x*blockDim.x + threadIdx.x;
+ int j = blockIdx.y*blockDim.y + threadIdx.y;
+
+ int index = j + i*N;
+
+ V_norm = 0.0f; V_orth = 0.0f;
+
+ if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) {
+ return; }
+
+ int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index;
+ int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index;
+ int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index;
+ int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index;
+ int indexNW = (j-1)+(i-1)*(N); if (A[indexNW] == 0) indexNW = index;
+ int indexNE = (j+1)+(i-1)*(N); if (A[indexNE] == 0) indexNE = index;
+ int indexWS = (j-1)+(i+1)*(N); if (A[indexWS] == 0) indexWS = index;
+ int indexES = (j+1)+(i+1)*(N); if (A[indexES] == 0) indexES = index;
+
+ gradX = 0.5f*(A[indexN]-A[indexS]);
+ gradX_sq = gradX*gradX;
+ gradXX = A[indexN] + A[indexS] - 2*A[index];
+
+ gradY = 0.5f*(A[indexW]-A[indexE]);
+ gradY_sq = gradY*gradY;
+ gradYY = A[indexW] + A[indexE] - 2*A[index];
+
+ gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
+ xy_2 = 2.0f*gradX*gradY*gradXY;
+ sq_sum = gradX_sq + gradY_sq;
+
+ if (sq_sum <= epsilon) {
+ V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/epsilon;
+ V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/epsilon; }
+ else {
+ V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/sq_sum;
+ V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/sq_sum; }
+
+ c = 1.0f/(1.0f + sq_sum/sigma);
+ c_sq = c*c;
+ B[index] = c_sq*V_norm + c*V_orth;
+}
+
+/////////////////////////////////////////////////
+// 3D data parocerssing
+__global__ void Diff4th3D_derriv(float *B, float *A, float *A0, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
+{
+ float gradXXc = 0, gradYYc = 0, gradZZc = 0;
+ int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
+ int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
+ int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
+
+ int index = xIndex + M*yIndex + N*M*zIndex;
+
+ if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
+ return; }
+
+ int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
+ int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
+ int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
+ int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
+ int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
+ int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
+
+ gradXXc = B[indexN] + B[indexS] - 2*B[index] ;
+ gradYYc = B[indexW] + B[indexE] - 2*B[index] ;
+ gradZZc = B[indexU] + B[indexD] - 2*B[index] ;
+
+ A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc + gradZZc));
+}
+
+__global__ void Diff4th3D(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau)
+{
+ float gradX, gradX_sq, gradY, gradY_sq, gradZ, gradZ_sq, gradXX, gradYY, gradZZ, gradXY, gradXZ, gradYZ, sq_sum, xy_2, xyz_1, xyz_2, V_norm, V_orth, c, c_sq;
+
+ int xIndex = blockDim.x * blockIdx.x + threadIdx.x;
+ int yIndex = blockDim.y * blockIdx.y + threadIdx.y;
+ int zIndex = blockDim.z * blockIdx.z + threadIdx.z;
+
+ int index = xIndex + M*yIndex + N*M*zIndex;
+ V_norm = 0.0f; V_orth = 0.0f;
+
+ if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) {
+ return; }
+
+ B[index] = 0;
+
+ int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index;
+ int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index;
+ int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index;
+ int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index;
+ int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index;
+ int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index;
+
+ int indexNW = (xIndex-1) + M*(yIndex-1) + N*M*zIndex; if (A[indexNW] == 0) indexNW = index;
+ int indexNE = (xIndex-1) + M*(yIndex+1) + N*M*zIndex; if (A[indexNE] == 0) indexNE = index;
+ int indexWS = (xIndex+1) + M*(yIndex-1) + N*M*zIndex; if (A[indexWS] == 0) indexWS = index;
+ int indexES = (xIndex+1) + M*(yIndex+1) + N*M*zIndex; if (A[indexES] == 0) indexES = index;
+
+ int indexUW = (xIndex-1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUW] == 0) indexUW = index;
+ int indexUE = (xIndex+1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUE] == 0) indexUE = index;
+ int indexDW = (xIndex-1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDW] == 0) indexDW = index;
+ int indexDE = (xIndex+1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDE] == 0) indexDE = index;
+
+ int indexUN = (xIndex) + M*(yIndex-1) + N*M*(zIndex-1); if (A[indexUN] == 0) indexUN = index;
+ int indexUS = (xIndex) + M*(yIndex+1) + N*M*(zIndex-1); if (A[indexUS] == 0) indexUS = index;
+ int indexDN = (xIndex) + M*(yIndex-1) + N*M*(zIndex+1); if (A[indexDN] == 0) indexDN = index;
+ int indexDS = (xIndex) + M*(yIndex+1) + N*M*(zIndex+1); if (A[indexDS] == 0) indexDS = index;
+
+ gradX = 0.5f*(A[indexN]-A[indexS]);
+ gradX_sq = gradX*gradX;
+ gradXX = A[indexN] + A[indexS] - 2*A[index];
+
+ gradY = 0.5f*(A[indexW]-A[indexE]);
+ gradY_sq = gradY*gradY;
+ gradYY = A[indexW] + A[indexE] - 2*A[index];
+
+ gradZ = 0.5f*(A[indexU]-A[indexD]);
+ gradZ_sq = gradZ*gradZ;
+ gradZZ = A[indexU] + A[indexD] - 2*A[index];
+
+ gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]);
+ gradXZ = 0.25f*(A[indexUW] - A[indexUE] - A[indexDW] + A[indexDE]);
+ gradYZ = 0.25f*(A[indexUN] - A[indexUS] - A[indexDN] + A[indexDS]);
+
+ xy_2 = 2.0f*gradX*gradY*gradXY;
+ xyz_1 = 2.0f*gradX*gradZ*gradXZ;
+ xyz_2 = 2.0f*gradY*gradZ*gradYZ;
+
+ sq_sum = gradX_sq + gradY_sq + gradZ_sq;
+
+ if (sq_sum <= epsilon) {
+ V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/epsilon;
+ V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/epsilon; }
+ else {
+ V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/sq_sum;
+ V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/sq_sum; }
+
+ c = 1;
+ if ((1.0f + sq_sum/sigma) != 0.0f) {c = 1.0f/(1.0f + sq_sum/sigma);}
+
+ c_sq = c*c;
+ B[index] = c_sq*V_norm + c*V_orth;
+}
+
+/******************************************************/
+/********* HOST FUNCTION*************/
+extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda)
+{
+ int deviceCount = -1; // number of devices
+ cudaGetDeviceCount(&deviceCount);
+ if (deviceCount == 0) {
+ fprintf(stderr, "No CUDA devices found\n");
+ return;
+ }
+
+ int BLKXSIZE, BLKYSIZE,BLKZSIZE;
+ float *Ad, *Bd, *Cd;
+ sigma = sigma*sigma;
+
+ if (Z == 0){
+ // 4th order diffusion for 2D case
+ BLKXSIZE = 8;
+ BLKYSIZE = 16;
+
+ dim3 dimBlock(BLKXSIZE,BLKYSIZE);
+ dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE));
+
+ checkCudaErrors(cudaMalloc((void**)&Ad,N*M*sizeof(float)));
+ checkCudaErrors(cudaMalloc((void**)&Bd,N*M*sizeof(float)));
+ checkCudaErrors(cudaMalloc((void**)&Cd,N*M*sizeof(float)));
+
+ checkCudaErrors(cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
+ checkCudaErrors(cudaMemcpy(Bd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
+ checkCudaErrors(cudaMemcpy(Cd,A,N*M*sizeof(float),cudaMemcpyHostToDevice));
+
+ int n = 1;
+ while (n <= iter) {
+ Diff4th2D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, sigma, iter, tau);
+ cudaDeviceSynchronize();
+ checkCudaErrors( cudaPeekAtLastError() );
+ Diff4th2D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, sigma, iter, tau, lambda);
+ cudaDeviceSynchronize();
+ checkCudaErrors( cudaPeekAtLastError() );
+ n++;
+ }
+ checkCudaErrors(cudaMemcpy(B,Bd,N*M*sizeof(float),cudaMemcpyDeviceToHost));
+ cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
+ }
+
+ if (Z != 0){
+ // 4th order diffusion for 3D case
+ BLKXSIZE = 8;
+ BLKYSIZE = 8;
+ BLKZSIZE = 8;
+
+ dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE);
+ dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE));
+
+ checkCudaErrors(cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)));
+ checkCudaErrors(cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)));
+ checkCudaErrors(cudaMalloc((void**)&Cd,N*M*Z*sizeof(float)));
+
+ checkCudaErrors(cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
+ checkCudaErrors(cudaMemcpy(Bd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
+ checkCudaErrors(cudaMemcpy(Cd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice));
+
+ int n = 1;
+ while (n <= iter) {
+ Diff4th3D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, Z, sigma, iter, tau);
+ cudaDeviceSynchronize();
+ checkCudaErrors( cudaPeekAtLastError() );
+ Diff4th3D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, Z, sigma, iter, tau, lambda);
+ cudaDeviceSynchronize();
+ checkCudaErrors( cudaPeekAtLastError() );
+ n++;
+ }
+ checkCudaErrors(cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost));
+ cudaFree(Ad); cudaFree(Bd); cudaFree(Cd);
+ }
+} \ No newline at end of file
diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
new file mode 100644
index 0000000..cfbb45a
--- /dev/null
+++ b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h
@@ -0,0 +1,6 @@
+#ifndef __DIFF_HO_H_
+#define __DIFF_HO_H_
+
+extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda);
+
+#endif
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
new file mode 100644
index 0000000..858b865
--- /dev/null
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp
@@ -0,0 +1,171 @@
+#include "mex.h"
+#include <matrix.h>
+#include <math.h>
+#include <stdlib.h>
+#include <memory.h>
+#include <stdio.h>
+#include <iostream>
+#include "NLM_GPU_kernel.h"
+
+/* CUDA implementation of the patch-based (PB) regularization for 2D and 3D images/volumes
+ * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function
+ *
+ * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems"
+ * 2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization"
+ *
+ * Input Parameters (mandatory):
+ * 1. Image/volume (2D/3D)
+ * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)
+ * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)
+ * 4. h - parameter for the PB penalty function
+ * 5. lambda - regularization parameter
+
+ * Output:
+ * 1. regularized (denoised) Image/volume (N x N x N)
+ *
+ * In matlab check what kind of GPU you have with "gpuDevice" command,
+ * then set your ComputeCapability, here I use -arch compute_35
+ *
+ * Quick 2D denoising example in Matlab:
+ Im = double(imread('lena_gray_256.tif'))/255; % loading image
+ u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+ ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1);
+
+ * Linux/Matlab compilation:
+ * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu
+ * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o
+ *
+ * D. Kazantsev
+ * 2014-17
+ * Harwell/Manchester UK
+ */
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop);
+
+void mexFunction(
+ int nlhs, mxArray *plhs[],
+ int nrhs, const mxArray *prhs[])
+{
+ int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full;
+ const int *dims;
+ float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2;
+
+ numdims = mxGetNumberOfDimensions(prhs[0]);
+ dims = mxGetDimensions(prhs[0]);
+
+ N = dims[0];
+ M = dims[1];
+ Z = dims[2];
+
+ if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");}
+ if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); }
+
+ if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
+
+ /*Handling inputs*/
+ A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */
+ SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */
+ SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */
+ h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
+ lambda = (float) mxGetScalar(prhs[4]);
+
+ if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
+
+ SearchW = SearchW_real + 2*SimilW;
+
+ SearchW_full = 2*SearchW + 1; /* the full searching window size */
+ SimilW_full = 2*SimilW + 1; /* the full similarity window size */
+ h2 = h*h;
+
+ padXY = SearchW + 2*SimilW; /* padding sizes */
+ newsizeX = N + 2*(padXY); /* the X size of the padded array */
+ newsizeY = M + 2*(padXY); /* the Y size of the padded array */
+ newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */
+ int N_dims[] = {newsizeX, newsizeY, newsizeZ};
+
+ /******************************2D case ****************************/
+ if (numdims == 2) {
+ /*Handling output*/
+ B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+ /*allocating memory for the padded arrays */
+ Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+ Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+ Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
+
+ /*Gaussian kernel */
+ count = 0;
+ for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+ for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+ val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW);
+ Eucl_Vec[count] = exp(-val);
+ count = count + 1;
+ }} /*main neighb loop */
+
+ /**************************************************************************/
+ /*Perform padding of image A to the size of [newsizeX * newsizeY] */
+ switchpad_crop = 0; /*padding*/
+ pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+
+ /* Do PB regularization with the padded array */
+ NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
+
+ switchpad_crop = 1; /*cropping*/
+ pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+ }
+ else
+ {
+ /******************************3D case ****************************/
+ /*Handling output*/
+ B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+ /*allocating memory for the padded arrays */
+ Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL));
+
+ /*Gaussian kernel */
+ count = 0;
+ for(i_n=-SimilW; i_n<=SimilW; i_n++) {
+ for(j_n=-SimilW; j_n<=SimilW; j_n++) {
+ for(k_n=-SimilW; k_n<=SimilW; k_n++) {
+ val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW);
+ Eucl_Vec[count] = exp(-val);
+ count = count + 1;
+ }}} /*main neighb loop */
+ /**************************************************************************/
+ /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
+ switchpad_crop = 0; /*padding*/
+ pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+
+ /* Do PB regularization with the padded array */
+ NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda);
+
+ switchpad_crop = 1; /*cropping*/
+ pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+ } /*end else ndims*/
+}
+
+float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop)
+{
+ /* padding-cropping function */
+ int i,j,k;
+ if (NewSizeZ > 1) {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ for (k=0; k < NewSizeZ; k++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) {
+ if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j];
+ }
+ }}}
+ }
+ else {
+ for (i=0; i < NewSizeX; i++) {
+ for (j=0; j < NewSizeY; j++) {
+ if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) {
+ if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)];
+ else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j];
+ }
+ }}
+ }
+ return *Ap;
+} \ No newline at end of file
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
new file mode 100644
index 0000000..1089539
--- /dev/null
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu
@@ -0,0 +1,239 @@
+#include <stdio.h>
+#include <stdlib.h>
+#include <memory.h>
+#include "NLM_GPU_kernel.h"
+
+#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
+
+inline void __checkCudaErrors(cudaError err, const char *file, const int line)
+{
+ if (cudaSuccess != err)
+ {
+ fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",
+ file, line, (int)err, cudaGetErrorString(err));
+ exit(EXIT_FAILURE);
+ }
+}
+
+extern __shared__ float sharedmem[];
+
+// run PB den kernel here
+__global__ void NLM_kernel(float *Ad, float* Bd, float *Eucl_Vec_d, int N, int M, int Z, int SearchW, int SimilW, int SearchW_real, int SearchW_full, int SimilW_full, int padXY, float h2, float lambda, dim3 imagedim, dim3 griddim, dim3 kerneldim, dim3 sharedmemdim, int nUpdatePerThread, float neighborsize)
+{
+
+ int i1, j1, k1, i2, j2, k2, i3, j3, k3, i_l, j_l, k_l, count;
+ float value, Weight_norm, normsum, Weight;
+
+ int bidx = blockIdx.x;
+ int bidy = blockIdx.y%griddim.y;
+ int bidz = (int)((blockIdx.y)/griddim.y);
+
+ // global index for block endpoint
+ int beidx = __mul24(bidx,blockDim.x);
+ int beidy = __mul24(bidy,blockDim.y);
+ int beidz = __mul24(bidz,blockDim.z);
+
+ int tid = __mul24(threadIdx.z,__mul24(blockDim.x,blockDim.y)) +
+ __mul24(threadIdx.y,blockDim.x) + threadIdx.x;
+
+ #ifdef __DEVICE_EMULATION__
+ printf("tid : %d", tid);
+ #endif
+
+ // update shared memory
+ int nthreads = blockDim.x*blockDim.y*blockDim.z;
+ int sharedMemSize = sharedmemdim.x * sharedmemdim.y * sharedmemdim.z;
+ for(int i=0; i<nUpdatePerThread; i++)
+ {
+ int sid = tid + i*nthreads; // index in shared memory
+ if (sid < sharedMemSize)
+ {
+ // global x/y/z index in volume
+ int gidx, gidy, gidz;
+ int sidx, sidy, sidz, tid;
+
+ sidz = sid / (sharedmemdim.x*sharedmemdim.y);
+ tid = sid - sidz*(sharedmemdim.x*sharedmemdim.y);
+ sidy = tid / (sharedmemdim.x);
+ sidx = tid - sidy*(sharedmemdim.x);
+
+ gidx = (int)sidx - (int)kerneldim.x + (int)beidx;
+ gidy = (int)sidy - (int)kerneldim.y + (int)beidy;
+ gidz = (int)sidz - (int)kerneldim.z + (int)beidz;
+
+ // Neumann boundary condition
+ int cx = (int) min(max(0,gidx),imagedim.x-1);
+ int cy = (int) min(max(0,gidy),imagedim.y-1);
+ int cz = (int) min(max(0,gidz),imagedim.z-1);
+
+ int gid = cz*imagedim.x*imagedim.y + cy*imagedim.x + cx;
+
+ sharedmem[sid] = Ad[gid];
+ }
+ }
+ __syncthreads();
+
+ // global index of the current voxel in the input volume
+ int idx = beidx + threadIdx.x;
+ int idy = beidy + threadIdx.y;
+ int idz = beidz + threadIdx.z;
+
+ if (Z == 1) {
+ /* 2D case */
+ /*checking boundaries to be within the image and avoid padded spaces */
+ if( idx >= padXY && idx < (imagedim.x - padXY) &&
+ idy >= padXY && idy < (imagedim.y - padXY))
+ {
+ int i_centr = threadIdx.x + (SearchW); /*indices of the centrilized (main) pixel */
+ int j_centr = threadIdx.y + (SearchW); /*indices of the centrilized (main) pixel */
+
+ if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M)) {
+
+ Weight_norm = 0; value = 0.0;
+ /* Massive Search window loop */
+ for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
+ for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
+ /* if inside the searching window */
+ count = 0; normsum = 0.0;
+ for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+ for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+ i2 = i1+i_l; j2 = j1+j_l;
+ i3 = i_centr+i_l; j3 = j_centr+j_l; /*coordinates of the inner patch loop */
+ if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M)) {
+ if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M)) {
+ normsum += Eucl_Vec_d[count]*pow((sharedmem[(j3)*sharedmemdim.x+(i3)] - sharedmem[j2*sharedmemdim.x+i2]), 2);
+ }}
+ count++;
+ }}
+ if (normsum != 0) Weight = (expf(-normsum/h2));
+ else Weight = 0.0;
+ Weight_norm += Weight;
+ value += sharedmem[j1*sharedmemdim.x+i1]*Weight;
+ }}
+
+ if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
+ else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
+ }
+ } /*boundary conditions end*/
+ }
+ else {
+ /*3D case*/
+ /*checking boundaries to be within the image and avoid padded spaces */
+ if( idx >= padXY && idx < (imagedim.x - padXY) &&
+ idy >= padXY && idy < (imagedim.y - padXY) &&
+ idz >= padXY && idz < (imagedim.z - padXY) )
+ {
+ int i_centr = threadIdx.x + SearchW; /*indices of the centrilized (main) pixel */
+ int j_centr = threadIdx.y + SearchW; /*indices of the centrilized (main) pixel */
+ int k_centr = threadIdx.z + SearchW; /*indices of the centrilized (main) pixel */
+
+ if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M) && (k_centr > 0) && (k_centr < Z)) {
+
+ Weight_norm = 0; value = 0.0;
+ /* Massive Search window loop */
+ for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) {
+ for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) {
+ for(k1 = k_centr - SearchW_real ; k1<= k_centr + SearchW_real ; k1++) {
+ /* if inside the searching window */
+ count = 0; normsum = 0.0;
+ for(i_l=-SimilW; i_l<=SimilW; i_l++) {
+ for(j_l=-SimilW; j_l<=SimilW; j_l++) {
+ for(k_l=-SimilW; k_l<=SimilW; k_l++) {
+ i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l;
+ i3 = i_centr+i_l; j3 = j_centr+j_l; k3 = k_centr+k_l; /*coordinates of the inner patch loop */
+ if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M) && (k2 > 0) && (k2 < Z)) {
+ if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M) && (k3 > 0) && (k3 < Z)) {
+ normsum += Eucl_Vec_d[count]*pow((sharedmem[(k3)*sharedmemdim.x*sharedmemdim.y + (j3)*sharedmemdim.x+(i3)] - sharedmem[(k2)*sharedmemdim.x*sharedmemdim.y + j2*sharedmemdim.x+i2]), 2);
+ }}
+ count++;
+ }}}
+ if (normsum != 0) Weight = (expf(-normsum/h2));
+ else Weight = 0.0;
+ Weight_norm += Weight;
+ value += sharedmem[k1*sharedmemdim.x*sharedmemdim.y + j1*sharedmemdim.x+i1]*Weight;
+ }}} /* BIG search window loop end*/
+
+
+ if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm;
+ else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx];
+ }
+ } /* boundary conditions end */
+ }
+}
+
+/////////////////////////////////////////////////
+// HOST FUNCTION
+extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float h2, float lambda)
+{
+ int deviceCount = -1; // number of devices
+ cudaGetDeviceCount(&deviceCount);
+ if (deviceCount == 0) {
+ fprintf(stderr, "No CUDA devices found\n");
+ return;
+ }
+
+// cudaDeviceReset();
+
+ int padXY, SearchW_full, SimilW_full, blockWidth, blockHeight, blockDepth, nBlockX, nBlockY, nBlockZ, kernel_depth;
+ float *Ad, *Bd, *Eucl_Vec_d;
+
+ if (dimension == 2) {
+ blockWidth = 16;
+ blockHeight = 16;
+ blockDepth = 1;
+ Z = 1;
+ kernel_depth = 0;
+ }
+ else {
+ blockWidth = 8;
+ blockHeight = 8;
+ blockDepth = 8;
+ kernel_depth = SearchW;
+ }
+
+ // compute how many blocks are needed
+ nBlockX = ceil((float)N / (float)blockWidth);
+ nBlockY = ceil((float)M / (float)blockHeight);
+ nBlockZ = ceil((float)Z / (float)blockDepth);
+
+ dim3 dimGrid(nBlockX,nBlockY*nBlockZ);
+ dim3 dimBlock(blockWidth, blockHeight, blockDepth);
+ dim3 imagedim(N,M,Z);
+ dim3 griddim(nBlockX,nBlockY,nBlockZ);
+
+ dim3 kerneldim(SearchW,SearchW,kernel_depth);
+ dim3 sharedmemdim((SearchW*2)+blockWidth,(SearchW*2)+blockHeight,(kernel_depth*2)+blockDepth);
+ int sharedmemsize = sizeof(float)*sharedmemdim.x*sharedmemdim.y*sharedmemdim.z;
+ int updateperthread = ceil((float)(sharedmemdim.x*sharedmemdim.y*sharedmemdim.z)/(float)(blockWidth*blockHeight*blockDepth));
+ float neighborsize = (2*SearchW+1)*(2*SearchW+1)*(2*kernel_depth+1);
+
+ padXY = SearchW + 2*SimilW; /* padding sizes */
+
+ SearchW_full = 2*SearchW + 1; /* the full searching window size */
+ SimilW_full = 2*SimilW + 1; /* the full similarity window size */
+
+ /*allocate space for images on device*/
+ checkCudaErrors( cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)) );
+ checkCudaErrors( cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)) );
+ /*allocate space for vectors on device*/
+ if (dimension == 2) {
+ checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*sizeof(float)) );
+ checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
+ }
+ else {
+ checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*SimilW_full*sizeof(float)) );
+ checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) );
+ }
+
+ /* copy data from the host to device */
+ checkCudaErrors( cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice) );
+
+ // Run CUDA kernel here
+ NLM_kernel<<<dimGrid,dimBlock,sharedmemsize>>>(Ad, Bd, Eucl_Vec_d, M, N, Z, SearchW, SimilW, SearchW_real, SearchW_full, SimilW_full, padXY, h2, lambda, imagedim, griddim, kerneldim, sharedmemdim, updateperthread, neighborsize);
+
+ checkCudaErrors( cudaPeekAtLastError() );
+// gpuErrchk( cudaDeviceSynchronize() );
+
+ checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) );
+ cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d);
+}
diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
new file mode 100644
index 0000000..bc9d4a3
--- /dev/null
+++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h
@@ -0,0 +1,6 @@
+#ifndef __NLMREG_KERNELS_H_
+#define __NLMREG_KERNELS_H_
+
+extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda);
+
+#endif
diff --git a/Core/test/test_regularizer.cpp b/Core/test/test_regularizer.cpp
new file mode 100644
index 0000000..6a9225c
--- /dev/null
+++ b/Core/test/test_regularizer.cpp
@@ -0,0 +1,3 @@
+unsigned char *rawData = (unsigned char *)malloc(sizeof(unsigned char) * sampleSize * nVertices);
+
+long nSamplesRead = fread(rawData, sizeof(unsigned char), nVertices, inFile); // read in the block of data \ No newline at end of file
diff --git a/Core/test/test_regularizer.h b/Core/test/test_regularizer.h
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/Core/test/test_regularizer.h
diff --git a/Wrappers/CMakeLists.txt b/Wrappers/CMakeLists.txt
new file mode 100644
index 0000000..cbe2fec
--- /dev/null
+++ b/Wrappers/CMakeLists.txt
@@ -0,0 +1,14 @@
+# Copyright 2017 Edoardo Pasca
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+add_subdirectory(Python) \ No newline at end of file
diff --git a/Wrappers/Matlab/FISTA_REC.m b/Wrappers/Matlab/FISTA_REC.m
new file mode 100644
index 0000000..d717a03
--- /dev/null
+++ b/Wrappers/Matlab/FISTA_REC.m
@@ -0,0 +1,704 @@
+function [X, output] = FISTA_REC(params)
+
+% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>>
+% This code solves regularised PWLS problem using FISTA approach.
+% The code contains multiple regularisation penalties as well as it can be
+% accelerated by using ordered-subset version. Various projection
+% geometries supported.
+
+% DISCLAIMER
+% It is recommended to use ASTRA version 1.8 or later in order to avoid
+% crashing due to GPU memory overflow for big datasets
+
+% ___Input___:
+% params.[] file:
+%----------------General Parameters------------------------
+% - .proj_geom (geometry of the projector) [required]
+% - .vol_geom (geometry of the reconstructed object) [required]
+% - .sino (2D or 3D sinogram) [required]
+% - .iterFISTA (iterations for the main loop, default 40)
+% - .L_const (Lipschitz constant, default Power method) )
+% - .X_ideal (ideal image, if given)
+% - .weights (statisitcal weights for the PWLS model, size of the sinogram)
+% - .fidelity (use 'studentt' fidelity)
+% - .ROI (Region-of-interest, only if X_ideal is given)
+% - .initialize (a 'warm start' using SIRT method from ASTRA)
+%----------------Regularization choices------------------------
+% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter)
+% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term)
+% 4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter)
+% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
+% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
+% 4.3 .Regul_PB_h (PB penalty function threshold)
+% 5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter)
+% 5.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window))
+% 5.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window))
+% 5.3 .Regul_PB_h (PB penalty function threshold)
+% 6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter)
+% 6.1 .Regul_DiffHO_EdgePar (edge-preserving noise related parameter)
+% 7 .Regul_LambdaTGV (Total Generalized variation regularization parameter)
+% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+% - .Regul_Iterations (iterations for the selected penalty, default 25)
+% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default)
+%----------------Ring removal------------------------
+% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
+% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
+%----------------Visualization parameters------------------------
+% - .show (visualize reconstruction 1/0, (0 default))
+% - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
+% - .slice (for 3D volumes - slice number to imshow)
+% ___Output___:
+% 1. X - reconstructed image/volume
+% 2. output - a structure with
+% - .Resid_error - residual error (if X_ideal is given)
+% - .objective: value of the objective function
+% - .L_const: Lipshitz constant to avoid recalculations
+
+% References:
+% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
+% Problems" by A. Beck and M Teboulle
+% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
+% 3. "A novel tomographic reconstruction method based on the robust
+% Student's t function for suppressing data outliers" D. Kazantsev et.al.
+% D. Kazantsev, 2016-17
+
+% Dealing with input parameters
+if (isfield(params,'proj_geom') == 0)
+ error('%s \n', 'Please provide ASTRA projection geometry - proj_geom');
+else
+ proj_geom = params.proj_geom;
+end
+if (isfield(params,'vol_geom') == 0)
+ error('%s \n', 'Please provide ASTRA object geometry - vol_geom');
+else
+ vol_geom = params.vol_geom;
+end
+N = params.vol_geom.GridColCount;
+if (isfield(params,'sino'))
+ sino = params.sino;
+ [Detectors, anglesNumb, SlicesZ] = size(sino);
+ fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.');
+else
+ error('%s \n', 'Please provide a sinogram');
+end
+if (isfield(params,'iterFISTA'))
+ iterFISTA = params.iterFISTA;
+else
+ iterFISTA = 40;
+end
+if (isfield(params,'weights'))
+ weights = params.weights;
+else
+ weights = ones(size(sino));
+end
+if (isfield(params,'fidelity'))
+ studentt = 0;
+ if (strcmp(params.fidelity,'studentt') == 1)
+ studentt = 1;
+ end
+else
+ studentt = 0;
+end
+if (isfield(params,'L_const'))
+ L_const = params.L_const;
+else
+ % using Power method (PM) to establish L constant
+ fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...');
+ if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+ % for 2D geometry we can do just one selected slice
+ niter = 15; % number of iteration for the PM
+ x1 = rand(N,N,1);
+ sqweight = sqrt(weights(:,:,1));
+ [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
+ y = sqweight.*y';
+ astra_mex_data2d('delete', sino_id);
+ for i = 1:niter
+ [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom);
+ s = norm(x1(:));
+ x1 = x1./s;
+ [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom);
+ y = sqweight.*y';
+ astra_mex_data2d('delete', sino_id);
+ end
+ elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec'))
+ % 3D geometry
+ niter = 8; % number of iteration for PM
+ x1 = rand(N,N,SlicesZ);
+ sqweight = sqrt(weights);
+ [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
+ y = sqweight.*y;
+ astra_mex_data3d('delete', sino_id);
+
+ for i = 1:niter
+ [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+ s = norm(x1(:));
+ x1 = x1/s;
+ [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom);
+ y = sqweight.*y;
+ astra_mex_data3d('delete', sino_id);
+ astra_mex_data3d('delete', id);
+ end
+ clear x1
+ else
+ error('%s \n', 'No suitable geometry has been found!');
+ end
+ L_const = s;
+end
+if (isfield(params,'X_ideal'))
+ X_ideal = params.X_ideal;
+else
+ X_ideal = 'none';
+end
+if (isfield(params,'ROI'))
+ ROI = params.ROI;
+else
+ ROI = find(X_ideal>=0.0);
+end
+if (isfield(params,'Regul_Lambda_FGPTV'))
+ lambdaFGP_TV = params.Regul_Lambda_FGPTV;
+else
+ lambdaFGP_TV = 0;
+end
+if (isfield(params,'Regul_Lambda_SBTV'))
+ lambdaSB_TV = params.Regul_Lambda_SBTV;
+else
+ lambdaSB_TV = 0;
+end
+if (isfield(params,'Regul_tol'))
+ tol = params.Regul_tol;
+else
+ tol = 1.0e-05;
+end
+if (isfield(params,'Regul_Iterations'))
+ IterationsRegul = params.Regul_Iterations;
+else
+ IterationsRegul = 45;
+end
+if (isfield(params,'Regul_LambdaLLT'))
+ lambdaHO = params.Regul_LambdaLLT;
+else
+ lambdaHO = 0;
+end
+if (isfield(params,'Regul_iterHO'))
+ iterHO = params.Regul_iterHO;
+else
+ iterHO = 50;
+end
+if (isfield(params,'Regul_tauLLT'))
+ tauHO = params.Regul_tauLLT;
+else
+ tauHO = 0.0001;
+end
+if (isfield(params,'Regul_LambdaPatchBased_CPU'))
+ lambdaPB = params.Regul_LambdaPatchBased_CPU;
+else
+ lambdaPB = 0;
+end
+if (isfield(params,'Regul_LambdaPatchBased_GPU'))
+ lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU;
+else
+ lambdaPB_GPU = 0;
+end
+if (isfield(params,'Regul_PB_SearchW'))
+ SearchW = params.Regul_PB_SearchW;
+else
+ SearchW = 3; % default
+end
+if (isfield(params,'Regul_PB_SimilW'))
+ SimilW = params.Regul_PB_SimilW;
+else
+ SimilW = 1; % default
+end
+if (isfield(params,'Regul_PB_h'))
+ h_PB = params.Regul_PB_h;
+else
+ h_PB = 0.1; % default
+end
+if (isfield(params,'Regul_LambdaDiffHO'))
+ LambdaDiff_HO = params.Regul_LambdaDiffHO;
+else
+ LambdaDiff_HO = 0;
+end
+if (isfield(params,'Regul_DiffHO_EdgePar'))
+ LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar;
+else
+ LambdaDiff_HO_EdgePar = 0.01;
+end
+if (isfield(params,'Regul_LambdaTGV'))
+ LambdaTGV = params.Regul_LambdaTGV;
+else
+ LambdaTGV = 0;
+end
+if (isfield(params,'Ring_LambdaR_L1'))
+ lambdaR_L1 = params.Ring_LambdaR_L1;
+else
+ lambdaR_L1 = 0;
+end
+if (isfield(params,'Ring_Alpha'))
+ alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure
+else
+ alpha_ring = 1;
+end
+if (isfield(params,'Regul_Dimension'))
+ Dimension = params.Regul_Dimension;
+ if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1))
+ Dimension = '3D';
+ end
+else
+ Dimension = '3D';
+end
+if (isfield(params,'show'))
+ show = params.show;
+else
+ show = 0;
+end
+if (isfield(params,'maxvalplot'))
+ maxvalplot = params.maxvalplot;
+else
+ maxvalplot = 1;
+end
+if (isfield(params,'slice'))
+ slice = params.slice;
+else
+ slice = 1;
+end
+if (isfield(params,'initialize'))
+ X = params.initialize;
+ if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ))
+ error('%s \n', 'The initialized volume has different dimensions!');
+ end
+else
+ X = zeros(N,N,SlicesZ, 'single'); % storage for the solution
+end
+if (isfield(params,'subsets'))
+ % Ordered Subsets reorganisation of data and angles
+ subsets = params.subsets; % subsets number
+ angles = proj_geom.ProjectionAngles;
+ binEdges = linspace(min(angles),max(angles),subsets+1);
+
+ % assign values to bins
+ [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]);
+
+ % get rearranged subset indices
+ IndicesReorg = zeros(length(angles),1);
+ counterM = 0;
+ for ii = 1:max(binsDiscr(:))
+ counter = 0;
+ for jj = 1:subsets
+ curr_index = ii+jj-1 + counter;
+ if (binsDiscr(jj) >= ii)
+ counterM = counterM + 1;
+ IndicesReorg(counterM) = curr_index;
+ end
+ counter = (counter + binsDiscr(jj)) - 1;
+ end
+ end
+else
+ subsets = 0; % Classical FISTA
+end
+
+%----------------Reconstruction part------------------------
+Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given)
+objective = zeros(iterFISTA,1); % objective function values vector
+
+
+if (subsets == 0)
+ % Classical FISTA
+ t = 1;
+ X_t = X;
+
+ r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
+ r_x = r; % another ring variable
+ residual = zeros(size(sino),'single');
+
+ % Outer FISTA iterations loop
+ for i = 1:iterFISTA
+
+ X_old = X;
+ t_old = t;
+ r_old = r;
+
+
+ if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+ % if geometry is 2D use slice-by-slice projection-backprojection routine
+ sino_updt = zeros(size(sino),'single');
+ for kkk = 1:SlicesZ
+ [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom);
+ sino_updt(:,:,kkk) = sinoT';
+ astra_mex_data2d('delete', sino_id);
+ end
+ else
+ % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
+ [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+ astra_mex_data3d('delete', sino_id);
+ end
+
+ if (lambdaR_L1 > 0)
+ % the ring removal part (Group-Huber fidelity)
+ for kkk = 1:anglesNumb
+ residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+ end
+ vec = sum(residual,2);
+ if (SlicesZ > 1)
+ vec = squeeze(vec(:,1,:));
+ end
+ r = r_x - (1./L_const).*vec;
+ objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
+ elseif (studentt > 0)
+ % artifacts removal with Students t penalty
+ residual = weights.*(sino_updt - sino);
+ for kkk = 1:SlicesZ
+ res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram
+ %s = 100;
+ %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
+ [ff, gr] = studentst(res_vec, 1);
+ residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb);
+ end
+ objective(i) = ff; % for the objective function output
+ else
+ % no ring removal (LS model)
+ residual = weights.*(sino_updt - sino);
+ objective(i) = 0.5*norm(residual(:)); % for the objective function output
+ end
+
+ % if the geometry is 2D use slice-by-slice projection-backprojection routine
+ if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+ x_temp = zeros(size(X),'single');
+ for kkk = 1:SlicesZ
+ [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom);
+ end
+ else
+ [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
+ astra_mex_data3d('delete', id);
+ end
+ X = X_t - (1/L_const).*x_temp;
+
+ % ----------------Regularization part------------------------%
+ if (lambdaFGP_TV > 0)
+ % FGP-TV regularization
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
+ end
+ else
+ % 3D regularization
+ [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso');
+ end
+ objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ);
+ end
+ if (lambdaSB_TV > 0)
+ % Split Bregman regularization
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
+ end
+ else
+ % 3D regularization
+ X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent)
+ end
+ end
+ if (lambdaHO > 0)
+ % Higher Order (LLT) regularization
+ X2 = zeros(N,N,SlicesZ,'single');
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
+ end
+ else
+ % 3D regularization
+ X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0);
+ end
+ X = 0.5.*(X + X2); % averaged combination of two solutions
+
+ end
+ if (lambdaPB > 0)
+ % Patch-Based regularization (can be very slow on CPU)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const);
+ end
+ else
+ X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const);
+ end
+ end
+ if (lambdaPB_GPU > 0)
+ % Patch-Based regularization (GPU CUDA implementation)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
+ end
+ else
+ X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const);
+ end
+ end
+ if (LambdaDiff_HO > 0)
+ % Higher-order diffusion penalty (GPU CUDA implementation)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
+ end
+ else
+ X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul);
+ end
+ end
+ if (LambdaTGV > 0)
+ % Total Generalized variation (currently only 2D)
+ lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
+ lamTGV2 = 0.8; % second-order term
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul);
+ end
+ end
+
+ if (lambdaR_L1 > 0)
+ r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+ end
+
+ t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+ X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+
+ if (lambdaR_L1 > 0)
+ r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+ end
+
+ if (show == 1)
+ figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+ if (lambdaR_L1 > 0)
+ figure(11); plot(r); title('Rings offset vector')
+ end
+ pause(0.01);
+ end
+ if (strcmp(X_ideal, 'none' ) == 0)
+ Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+ fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+ else
+ fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+ end
+ end
+else
+ % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version)
+ t = 1;
+ X_t = X;
+ proj_geomSUB = proj_geom;
+
+ r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
+ r_x = r; % another ring variable
+ residual2 = zeros(size(sino),'single');
+ sino_updt_FULL = zeros(size(sino),'single');
+
+
+ % Outer FISTA iterations loop
+ for i = 1:iterFISTA
+
+ if ((i > 1) && (lambdaR_L1 > 0))
+ % in order to make Group-Huber fidelity work with ordered subsets
+ % we still need to work with full sinogram
+
+ % the offset variable must be calculated for the whole
+ % updated sinogram - sino_updt_FULL
+ for kkk = 1:anglesNumb
+ residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+ end
+
+ r_old = r;
+ vec = sum(residual2,2);
+ if (SlicesZ > 1)
+ vec = squeeze(vec(:,1,:));
+ end
+ r = r_x - (1./L_const).*vec; % update ring variable
+ end
+
+ % subsets loop
+ counterInd = 1;
+ for ss = 1:subsets
+ X_old = X;
+ t_old = t;
+
+ numProjSub = binsDiscr(ss); % the number of projections per subset
+ sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single');
+ CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset
+ proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces);
+
+ if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+ % if geometry is 2D use slice-by-slice projection-backprojection routine
+ for kkk = 1:SlicesZ
+ [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom);
+ sino_updt_Sub(:,:,kkk) = sinoT';
+ astra_mex_data2d('delete', sino_id);
+ end
+ else
+ % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8)
+ [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom);
+ astra_mex_data3d('delete', sino_id);
+ end
+
+ if (lambdaR_L1 > 0)
+ % Group-Huber fidelity (ring removal)
+ residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset
+ for kkk = 1:numProjSub
+ indC = CurrSubIndeces(kkk);
+ residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+ sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
+ end
+
+ elseif (studentt > 0)
+ % student t data fidelity
+
+ % artifacts removal with Students t penalty
+ residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
+
+ for kkk = 1:SlicesZ
+ res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram
+ %s = 100;
+ %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
+ [ff, gr] = studentst(res_vec, 1);
+ residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub);
+ end
+ objective(i) = ff; % for the objective function output
+ else
+ % PWLS model
+ residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:)));
+ objective(i) = 0.5*norm(residualSub(:)); % for the objective function output
+ end
+
+ % perform backprojection of a subset
+ if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec'))
+ % if geometry is 2D use slice-by-slice projection-backprojection routine
+ x_temp = zeros(size(X),'single');
+ for kkk = 1:SlicesZ
+ [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom);
+ end
+ else
+ [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom);
+ astra_mex_data3d('delete', id);
+ end
+
+ X = X_t - (1/L_const).*x_temp;
+
+ % ----------------Regularization part------------------------%
+ if (lambdaFGP_TV > 0)
+ % FGP-TV regularization
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
+ end
+ else
+ % 3D regularization
+ [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso');
+ end
+ objective(i) = objective(i) + f_val;
+ end
+ if (lambdaSB_TV > 0)
+ % Split Bregman regularization
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
+ end
+ else
+ % 3D regularization
+ X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent)
+ end
+ end
+ if (lambdaHO > 0)
+ % Higher Order (LLT) regularization
+ X2 = zeros(N,N,SlicesZ,'single');
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
+ end
+ else
+ % 3D regularization
+ X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0);
+ end
+ X = 0.5.*(X + X2); % the averaged combination of two solutions
+ end
+ if (lambdaPB > 0)
+ % Patch-Based regularization (can be slow on CPU)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
+ end
+ else
+ X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const));
+ end
+ end
+ if (lambdaPB_GPU > 0)
+ % Patch-Based regularization (GPU CUDA implementation)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
+ end
+ else
+ X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const));
+ end
+ end
+ if (LambdaDiff_HO > 0)
+ % Higher-order diffusion penalty (GPU CUDA implementation)
+ if ((strcmp('2D', Dimension) == 1))
+ % 2D regularization
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
+ end
+ else
+ X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets));
+ end
+ end
+ if (LambdaTGV > 0)
+ % Total Generalized variation (currently only 2D)
+ lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper
+ lamTGV2 = 0.5; % second-order term
+ for kkk = 1:SlicesZ
+ X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul);
+ end
+ end
+
+ t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+ X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+ counterInd = counterInd + numProjSub;
+ end
+
+ if (i == 1)
+ r_old = r;
+ end
+
+ % working with a 'ring vector'
+ if (lambdaR_L1 > 0)
+ r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+ r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+ end
+
+ if (show == 1)
+ figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+ if (lambdaR_L1 > 0)
+ figure(11); plot(r); title('Rings offset vector')
+ end
+ pause(0.01);
+ end
+
+ if (strcmp(X_ideal, 'none' ) == 0)
+ Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+ fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+ else
+ fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+ end
+ end
+end
+
+output.Resid_error = Resid_error;
+output.objective = objective;
+output.L_const = L_const;
+
+end
diff --git a/Wrappers/Matlab/compile_mex.m b/Wrappers/Matlab/compile_mex.m
new file mode 100644
index 0000000..66c05da
--- /dev/null
+++ b/Wrappers/Matlab/compile_mex.m
@@ -0,0 +1,11 @@
+% compile mex's in Matlab once
+cd regularizers_CPU/
+
+mex LLT_model.c LLT_model_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex FGP_TV.c FGP_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex SplitBregman_TV.c SplitBregman_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+mex PatchBased_Regul.c PatchBased_Regul_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp"
+
+cd ../../
+cd demos
diff --git a/Wrappers/Matlab/studentst.m b/Wrappers/Matlab/studentst.m
new file mode 100644
index 0000000..99fed1e
--- /dev/null
+++ b/Wrappers/Matlab/studentst.m
@@ -0,0 +1,47 @@
+function [f,g,h,s,k] = studentst(r,k,s)
+% Students T penalty with 'auto-tuning'
+%
+% use:
+% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k
+% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s
+% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k
+%
+% input:
+% r - residual as column vector
+% s - scale (optional)
+% k - degrees of freedom (optional)
+%
+% output:
+% f - misfit (scalar)
+% g - gradient (column vector)
+% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix)
+% s,k - scale and degrees of freedom
+%
+% Tristan van Leeuwen, 2012.
+% tleeuwen@eos.ubc.ca
+
+% fit both s and k
+if nargin == 1
+ opts = optimset('maxFunEvals',1e2);
+ tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts);
+ s = tmp(1);
+ k = tmp(2);
+end
+
+
+if nargin == 2
+ opts = optimset('maxFunEvals',1e2);
+ tmp = fminsearch(@(x)st(r,x,k),[1],opts);
+ s = tmp(1);
+end
+
+% evaulate penalty
+[f,g,h] = st(r,s,k);
+
+
+function [f,g,h] = st(r,s,k)
+n = length(r);
+c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k));
+f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k)));
+g = (k+1)*r./(s*k + conj(r).*r);
+h = (k+1)./(s*k + conj(r).*r);
diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt
new file mode 100644
index 0000000..506159a
--- /dev/null
+++ b/Wrappers/Python/CMakeLists.txt
@@ -0,0 +1,183 @@
+# Copyright 2017 Edoardo Pasca
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# variables that must be set for conda compilation
+
+#PREFIX=C:\Apps\Miniconda2\envs\cil\Library
+#LIBRARY_INC=C:\\Apps\\Miniconda2\\envs\\cil\\Library\\include
+set (NUMPY_VERSION 1.12)
+
+## Tries to parse the output of conda env list to determine the current
+## active conda environment
+message ("Trying to determine your active conda environment...")
+execute_process(COMMAND "conda" "env" "list"
+ OUTPUT_VARIABLE _CONDA_ENVS
+ RESULT_VARIABLE _CONDA_RESULT
+ ERROR_VARIABLE _CONDA_ERR)
+ if(NOT _CONDA_RESULT)
+ string(REPLACE "\n" ";" ENV_LIST ${_CONDA_ENVS})
+ foreach(line ${ENV_LIST})
+ string(REGEX MATCHALL "(.+)[*](.+)" match ${line})
+ if (NOT ${match} EQUAL "")
+ #message("MATCHED " ${CMAKE_MATCH_0})
+ #message("MATCHED " ${CMAKE_MATCH_1})
+ #message("MATCHED " ${CMAKE_MATCH_2})
+ string(STRIP ${CMAKE_MATCH_1} CONDA_ENVIRONMENT)
+ string(STRIP ${CMAKE_MATCH_2} CONDA_ENVIRONMENT_PATH)
+ endif()
+ endforeach()
+ else()
+ message(FATAL_ERROR "ERROR with conda command " ${_CONDA_ERR})
+ endif()
+
+if (${CONDA_ENVIRONMENT} AND ${CONDA_ENVIRONMENT_PATH})
+ message (FATAL_ERROR "CONDA NOT FOUND")
+else()
+ message("**********************************************************")
+ message("Using current conda environmnet " ${CONDA_ENVIRONMENT})
+ message("Using current conda environmnet path " ${CONDA_ENVIRONMENT_PATH})
+endif()
+
+message("CIL VERSION " ${CIL_VERSION})
+
+# set the Python variables for the Conda environment
+include(FindAnacondaEnvironment.cmake)
+findPythonForAnacondaEnvironment(${CONDA_ENVIRONMENT_PATH})
+
+message("Python found " ${PYTHON_VERSION_STRING})
+message("Python found Major " ${PYTHON_VERSION_MAJOR})
+message("Python found Minor " ${PYTHON_VERSION_MINOR})
+
+findPythonPackagesPath()
+message("PYTHON_PACKAGES_FOUND " ${PYTHON_PACKAGES_PATH})
+
+## CACHE SOME VARIABLES ##
+set (CONDA_ENVIRONMENT ${CONDA_ENVIRONMENT} CACHE INTERNAL "active conda environment" FORCE)
+set (CONDA_ENVIRONMENT_PATH ${CONDA_ENVIRONMENT_PATH} CACHE INTERNAL "active conda environment" FORCE)
+
+set (PYTHON_VERSION_STRING ${PYTHON_VERSION_STRING} CACHE INTERNAL "conda environment Python version string" FORCE)
+set (PYTHON_VERSION_MAJOR ${PYTHON_VERSION_MAJOR} CACHE INTERNAL "conda environment Python version major" FORCE)
+set (PYTHON_VERSION_MINOR ${PYTHON_VERSION_MINOR} CACHE INTERNAL "conda environment Python version minor" FORCE)
+set (PYTHON_VERSION_PATCH ${PYTHON_VERSION_PATCH} CACHE INTERNAL "conda environment Python version patch" FORCE)
+set (PYTHON_PACKAGES_PATH ${PYTHON_PACKAGES_PATH} CACHE INTERNAL "conda environment Python packages path" FORCE)
+
+if (WIN32)
+ #set (CONDA_ENVIRONMENT_PATH "C:\\Apps\\Miniconda2\\envs\\${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory")
+ set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}\\Library" CACHE PATH "env dir")
+ set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}\\include" CACHE PATH "env dir")
+elseif (UNIX)
+ #set (CONDA_ENVIRONMENT_PATH "/apps/anaconda/2.4/envs/${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory")
+ set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}/lib/python${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}" CACHE PATH "env dir")
+ set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}/include" CACHE PATH "env dir")
+endif()
+
+######### CONFIGURE REGULARIZER PACKAGE #############
+
+# copy the Pyhon files of the package regularizer
+file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging/)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi)
+# regularizers
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/Regularizer.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging)
+
+# Copy and configure the relative conda build and recipes
+configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup.py)
+file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe)
+
+if (WIN32)
+
+ file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/)
+ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile.bat)
+
+elseif(UNIX)
+
+ message ("We are on UNIX")
+ file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/)
+ # assumes we will use bash
+ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile.sh)
+
+endif()
+
+########## CONFIGURE FISTA RECONSTRUCTOR PACKAGE
+# fista reconstructor
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/FISTAReconstructor.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/DeviceModel.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/AstraDevice.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction)
+
+configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup-fista.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup-fista.py)
+file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe)
+file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe)
+
+if (WIN32)
+
+ file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/)
+ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.bat)
+
+elseif(UNIX)
+ message ("We are on UNIX")
+ file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/)
+ # assumes we will use bash
+ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.sh)
+endif()
+
+############################# TARGETS
+
+########################## REGULARIZER PACKAGE ###############################
+
+# runs cmake on the build tree to update the code from source
+add_custom_target(update_code
+ COMMAND ${CMAKE_COMMAND}
+ ARGS ${CMAKE_SOURCE_DIR}
+ WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
+ )
+
+
+add_custom_target(fista
+ COMMAND bash
+ compile-fista.sh
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+ DEPENDS ${update_code}
+ )
+
+add_custom_target(regularizers
+ COMMAND bash
+ compile.sh
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+ DEPENDS update_code
+ )
+
+add_custom_target(install-fista
+ COMMAND ${CONDA_EXECUTABLE}
+ install --force --use-local ccpi-fista=${CIL_VERSION} -c ccpi -c conda-forge
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+ )
+
+add_custom_target(install-regularizers
+ COMMAND ${CONDA_EXECUTABLE}
+ install --force --use-local ccpi-regularizers=${CIL_VERSION} -c ccpi -c conda-forge
+ WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
+ )
+### add tests
+
+#add_executable(RegularizersTest )
+#find_package(tiff)
+#if (TIFF_FOUND)
+# message("LibTIFF Found")
+# message("TIFF_INCLUDE_DIR " ${TIFF_INCLUDE_DIR})
+# message("TIFF_LIBRARIES" ${TIFF_LIBRARIES})
+#else()
+# message("LibTIFF not found")
+#endif()
diff --git a/Wrappers/Python/FindAnacondaEnvironment.cmake b/Wrappers/Python/FindAnacondaEnvironment.cmake
new file mode 100644
index 0000000..6475128
--- /dev/null
+++ b/Wrappers/Python/FindAnacondaEnvironment.cmake
@@ -0,0 +1,154 @@
+# Copyright 2017 Edoardo Pasca
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# #.rst:
+# FindAnacondaEnvironment
+# --------------
+#
+# Find Python executable and library for a specific Anaconda environment
+#
+# This module finds the Python interpreter for a specific Anaconda enviroment,
+# if installed and determines where the include files and libraries are.
+# This code sets the following variables:
+#
+# ::
+# PYTHONINTERP_FOUND - if the Python interpret has been found
+# PYTHON_EXECUTABLE - the Python interpret found
+# PYTHON_LIBRARY - path to the python library
+# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated)
+# PYTHON_INCLUDE_DIRS - path to where Python.h is found
+# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8)
+# PYTHON_VERSION_MAJOR - major Python version
+# PYTHON_VERSION_MINOR - minor Python version
+# PYTHON_VERSION_PATCH - patch Python version
+
+
+
+function (findPythonForAnacondaEnvironment env)
+ if (WIN32)
+ file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE)
+ elseif (UNIX)
+ file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE)
+ endif()
+
+
+ message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE})
+ ####### FROM FindPythonInterpr ########
+ # determine python version string
+ if(PYTHON_EXECUTABLE)
+ execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c
+ "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))"
+ OUTPUT_VARIABLE _VERSION
+ RESULT_VARIABLE _PYTHON_VERSION_RESULT
+ ERROR_QUIET)
+ if(NOT _PYTHON_VERSION_RESULT)
+ string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}")
+ list(GET _VERSION 0 _PYTHON_VERSION_MAJOR)
+ list(GET _VERSION 1 _PYTHON_VERSION_MINOR)
+ list(GET _VERSION 2 _PYTHON_VERSION_PATCH)
+ if(PYTHON_VERSION_PATCH EQUAL 0)
+ # it's called "Python 2.7", not "2.7.0"
+ string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}")
+ endif()
+ else()
+ # sys.version predates sys.version_info, so use that
+ execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)"
+ OUTPUT_VARIABLE _VERSION
+ RESULT_VARIABLE _PYTHON_VERSION_RESULT
+ ERROR_QUIET)
+ if(NOT _PYTHON_VERSION_RESULT)
+ string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}")
+ string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}")
+ string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}")
+ if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)")
+ set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}")
+ else()
+ set(PYTHON_VERSION_PATCH "0")
+ endif()
+ else()
+ # sys.version was first documented for Python 1.5, so assume
+ # this is older.
+ set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE)
+ set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE)
+ set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE)
+ set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE)
+ endif()
+ endif()
+ unset(_PYTHON_VERSION_RESULT)
+ unset(_VERSION)
+ endif()
+ ###############################################
+
+ set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE)
+ set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE)
+ set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE)
+ set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE)
+ set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE)
+ set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE)
+ message("My version found " ${PYTHON_VERSION_STRING})
+ ## find conda executable
+ if (WIN32)
+ set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE)
+ elseif(UNIX)
+ set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE)
+ endif()
+endfunction()
+
+
+
+set(Python_ADDITIONAL_VERSIONS 3.5)
+
+find_package(PythonInterp)
+if (PYTHONINTERP_FOUND)
+
+ message("Found interpret " ${PYTHON_EXECUTABLE})
+ message("Python Library " ${PYTHON_LIBRARY})
+ message("Python Include Dir " ${PYTHON_INCLUDE_DIR})
+ message("Python Include Path " ${PYTHON_INCLUDE_PATH})
+
+ foreach(pv ${PYTHON_VERSION_STRING})
+ message("Found interpret " ${pv})
+ endforeach()
+endif()
+
+
+
+find_package(PythonLibs)
+if (PYTHONLIB_FOUND)
+ message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES})
+ message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH})
+ message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS})
+ message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} )
+else()
+ message("No PythonLibs Found")
+endif()
+
+
+
+
+function(findPythonPackagesPath)
+ execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())"
+ RESULT_VARIABLE PYTHON_CVPY_PROCESS
+ OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH
+ OUTPUT_STRIP_TRAILING_WHITESPACE)
+ #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH})
+ if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages")
+ set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages")
+ endif()
+
+ SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE)
+
+endfunction()
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/AstraDevice.py b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py
new file mode 100644
index 0000000..57435f8
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py
@@ -0,0 +1,95 @@
+import astra
+from ccpi.reconstruction.DeviceModel import DeviceModel
+import numpy
+
+class AstraDevice(DeviceModel):
+ '''Concrete class for Astra Device'''
+
+ def __init__(self,
+ device_type,
+ data_aquisition_geometry,
+ reconstructed_volume_geometry):
+
+ super(AstraDevice, self).__init__(device_type,
+ data_aquisition_geometry,
+ reconstructed_volume_geometry)
+
+ self.type = device_type
+ self.proj_geom = astra.creators.create_proj_geom(
+ device_type,
+ self.acquisition_data_geometry['detectorSpacingX'],
+ self.acquisition_data_geometry['detectorSpacingY'],
+ self.acquisition_data_geometry['cameraX'],
+ self.acquisition_data_geometry['cameraY'],
+ self.acquisition_data_geometry['angles'],
+ )
+
+ self.vol_geom = astra.creators.create_vol_geom(
+ self.reconstructed_volume_geometry['X'],
+ self.reconstructed_volume_geometry['Y'],
+ self.reconstructed_volume_geometry['Z']
+ )
+
+ def doForwardProject(self, volume):
+ '''Forward projects the volume according to the device geometry
+
+Uses Astra-toolbox
+'''
+
+ try:
+ sino_id, y = astra.creators.create_sino3d_gpu(
+ volume, self.proj_geom, self.vol_geom)
+ astra.matlab.data3d('delete', sino_id)
+ return y
+ except Exception as e:
+ print(e)
+ print("Value Error: ", self.proj_geom, self.vol_geom)
+
+ def doBackwardProject(self, projections):
+ '''Backward projects the projections according to the device geometry
+
+Uses Astra-toolbox
+'''
+ idx, volume = \
+ astra.creators.create_backprojection3d_gpu(
+ projections,
+ self.proj_geom,
+ self.vol_geom)
+
+ astra.matlab.data3d('delete', idx)
+ return volume
+
+ def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}):
+ '''Create a new device based on the current device by changing some parameter
+
+VERY RISKY'''
+ acquisition_data_geometry = self.acquisition_data_geometry.copy()
+ for k,v in proj_par.items():
+ if k in acquisition_data_geometry.keys():
+ acquisition_data_geometry[k] = v
+ proj_geom = [
+ acquisition_data_geometry['cameraX'],
+ acquisition_data_geometry['cameraY'],
+ acquisition_data_geometry['detectorSpacingX'],
+ acquisition_data_geometry['detectorSpacingY'],
+ acquisition_data_geometry['angles']
+ ]
+
+ reconstructed_volume_geometry = self.reconstructed_volume_geometry.copy()
+ for k,v in vol_par.items():
+ if k in reconstructed_volume_geometry.keys():
+ reconstructed_volume_geometry[k] = v
+
+ vol_geom = [
+ reconstructed_volume_geometry['X'],
+ reconstructed_volume_geometry['Y'],
+ reconstructed_volume_geometry['Z']
+ ]
+ return AstraDevice(self.type, proj_geom, vol_geom)
+
+
+
+if __name__=="main":
+ a = AstraDevice()
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/DeviceModel.py b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py
new file mode 100644
index 0000000..eeb9a34
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py
@@ -0,0 +1,63 @@
+from abc import ABCMeta, abstractmethod
+from enum import Enum
+
+class DeviceModel(metaclass=ABCMeta):
+ '''Abstract class that defines the device for projection and backprojection
+
+This class defines the methods that must be implemented by concrete classes.
+
+ '''
+
+ class DeviceType(Enum):
+ '''Type of device
+PARALLEL BEAM
+PARALLEL BEAM 3D
+CONE BEAM
+HELICAL'''
+
+ PARALLEL = 'parallel'
+ PARALLEL3D = 'parallel3d'
+ CONE_BEAM = 'cone-beam'
+ HELICAL = 'helical'
+
+ def __init__(self,
+ device_type,
+ data_aquisition_geometry,
+ reconstructed_volume_geometry):
+ '''Initializes the class
+
+Mandatory parameters are:
+device_type from DeviceType Enum
+data_acquisition_geometry: tuple (camera_X, camera_Y, detectorSpacingX,
+ detectorSpacingY, angles)
+reconstructed_volume_geometry: tuple (dimX,dimY,dimZ)
+'''
+ self.device_geometry = device_type
+ self.acquisition_data_geometry = {
+ 'cameraX': data_aquisition_geometry[0],
+ 'cameraY': data_aquisition_geometry[1],
+ 'detectorSpacingX' : data_aquisition_geometry[2],
+ 'detectorSpacingY' : data_aquisition_geometry[3],
+ 'angles' : data_aquisition_geometry[4],}
+ self.reconstructed_volume_geometry = {
+ 'X': reconstructed_volume_geometry[0] ,
+ 'Y': reconstructed_volume_geometry[1] ,
+ 'Z': reconstructed_volume_geometry[2] }
+
+ @abstractmethod
+ def doForwardProject(self, volume):
+ '''Forward projects the volume according to the device geometry'''
+ return NotImplemented
+
+
+ @abstractmethod
+ def doBackwardProject(self, projections):
+ '''Backward projects the projections according to the device geometry'''
+ return NotImplemented
+
+ @abstractmethod
+ def createReducedDevice(self):
+ '''Create a Device to do forward/backward projections on 2D slices'''
+ return NotImplemented
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
new file mode 100644
index 0000000..e40ad24
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py
@@ -0,0 +1,882 @@
+# -*- coding: utf-8 -*-
+###############################################################################
+#This work is part of the Core Imaging Library developed by
+#Visual Analytics and Imaging System Group of the Science Technology
+#Facilities Council, STFC
+#
+#Copyright 2017 Edoardo Pasca, Srikanth Nagella
+#Copyright 2017 Daniil Kazantsev
+#
+#Licensed under the Apache License, Version 2.0 (the "License");
+#you may not use this file except in compliance with the License.
+#You may obtain a copy of the License at
+#http://www.apache.org/licenses/LICENSE-2.0
+#Unless required by applicable law or agreed to in writing, software
+#distributed under the License is distributed on an "AS IS" BASIS,
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#See the License for the specific language governing permissions and
+#limitations under the License.
+###############################################################################
+
+
+
+import numpy
+#from ccpi.reconstruction.parallelbeam import alg
+
+#from ccpi.imaging.Regularizer import Regularizer
+from enum import Enum
+
+import astra
+from ccpi.reconstruction.AstraDevice import AstraDevice
+
+
+
+class FISTAReconstructor():
+ '''FISTA-based reconstruction algorithm using ASTRA-toolbox
+
+ '''
+ # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
+ # ___Input___:
+ # params.[] file:
+ # - .proj_geom (geometry of the projector) [required]
+ # - .vol_geom (geometry of the reconstructed object) [required]
+ # - .sino (vectorized in 2D or 3D sinogram) [required]
+ # - .iterFISTA (iterations for the main loop, default 40)
+ # - .L_const (Lipschitz constant, default Power method) )
+ # - .X_ideal (ideal image, if given)
+ # - .weights (statisitcal weights, size of the sinogram)
+ # - .ROI (Region-of-interest, only if X_ideal is given)
+ # - .initialize (a 'warm start' using SIRT method from ASTRA)
+ #----------------Regularization choices------------------------
+ # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+ # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+ # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
+ # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+ # - .Regul_Iterations (iterations for the selected penalty, default 25)
+ # - .Regul_tauLLT (time step parameter for LLT term)
+ # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
+ # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
+ #----------------Visualization parameters------------------------
+ # - .show (visualize reconstruction 1/0, (0 default))
+ # - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
+ # - .slice (for 3D volumes - slice number to imshow)
+ # ___Output___:
+ # 1. X - reconstructed image/volume
+ # 2. output - a structure with
+ # - .Resid_error - residual error (if X_ideal is given)
+ # - .objective: value of the objective function
+ # - .L_const: Lipshitz constant to avoid recalculations
+
+ # References:
+ # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
+ # Problems" by A. Beck and M Teboulle
+ # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
+ # 3. "A novel tomographic reconstruction method based on the robust
+ # Student's t function for suppressing data outliers" D. Kazantsev et.al.
+ # D. Kazantsev, 2016-17
+ def __init__(self, projector_geometry,
+ output_geometry,
+ input_sinogram,
+ device,
+ **kwargs):
+ # handle parmeters:
+ # obligatory parameters
+ self.pars = dict()
+ self.pars['projector_geometry'] = projector_geometry # proj_geom
+ self.pars['output_geometry'] = output_geometry # vol_geom
+ self.pars['input_sinogram'] = input_sinogram # sino
+ sliceZ, nangles, detectors = numpy.shape(input_sinogram)
+ self.pars['detectors'] = detectors
+ self.pars['number_of_angles'] = nangles
+ self.pars['SlicesZ'] = sliceZ
+ self.pars['output_volume'] = None
+ self.pars['device_model'] = device
+
+ self.use_device = True
+
+ print (self.pars)
+ # handle optional input parameters (at instantiation)
+
+ # Accepted input keywords
+ kw = (
+ # mandatory fields
+ 'projector_geometry',
+ 'output_geometry',
+ 'input_sinogram',
+ 'detectors',
+ 'number_of_angles',
+ 'SlicesZ',
+ # optional fields
+ 'number_of_iterations',
+ 'Lipschitz_constant' ,
+ 'ideal_image' ,
+ 'weights' ,
+ 'region_of_interest' ,
+ 'initialize' ,
+ 'regularizer' ,
+ 'ring_lambda_R_L1',
+ 'ring_alpha',
+ 'subsets',
+ 'output_volume',
+ 'os_subsets',
+ 'os_indices',
+ 'os_bins',
+ 'device_model',
+ 'reduced_device_model')
+ self.acceptedInputKeywords = list(kw)
+
+ # handle keyworded parameters
+ if kwargs is not None:
+ for key, value in kwargs.items():
+ if key in kw:
+ #print("{0} = {1}".format(key, value))
+ self.pars[key] = value
+
+ # set the default values for the parameters if not set
+ if 'number_of_iterations' in kwargs.keys():
+ self.pars['number_of_iterations'] = kwargs['number_of_iterations']
+ else:
+ self.pars['number_of_iterations'] = 40
+ if 'weights' in kwargs.keys():
+ self.pars['weights'] = kwargs['weights']
+ else:
+ self.pars['weights'] = \
+ numpy.ones(numpy.shape(
+ self.pars['input_sinogram']))
+ if 'Lipschitz_constant' in kwargs.keys():
+ self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant']
+ else:
+ self.pars['Lipschitz_constant'] = None
+
+ if not 'ideal_image' in kwargs.keys():
+ self.pars['ideal_image'] = None
+
+ if not 'region_of_interest'in kwargs.keys() :
+ if self.pars['ideal_image'] == None:
+ self.pars['region_of_interest'] = None
+ else:
+ ## nonzero if the image is larger than m
+ fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1)
+
+ self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0)
+
+ # the regularizer must be a correctly instantiated object
+ if not 'regularizer' in kwargs.keys() :
+ self.pars['regularizer'] = None
+
+ #RING REMOVAL
+ if not 'ring_lambda_R_L1' in kwargs.keys():
+ self.pars['ring_lambda_R_L1'] = 0
+ if not 'ring_alpha' in kwargs.keys():
+ self.pars['ring_alpha'] = 1
+
+ # ORDERED SUBSET
+ if not 'subsets' in kwargs.keys():
+ self.pars['subsets'] = 0
+ else:
+ self.createOrderedSubsets()
+
+ if not 'initialize' in kwargs.keys():
+ self.pars['initialize'] = False
+
+ reduced_device = device.createReducedDevice()
+ self.setParameter(reduced_device_model=reduced_device)
+
+
+
+ def setParameter(self, **kwargs):
+ '''set named parameter for the reconstructor engine
+
+ raises Exception if the named parameter is not recognized
+
+ '''
+ for key , value in kwargs.items():
+ if key in self.acceptedInputKeywords:
+ self.pars[key] = value
+ else:
+ raise Exception('Wrong parameter {0} for '.format(key) +
+ 'reconstructor')
+ # setParameter
+
+ def getParameter(self, key):
+ if type(key) is str:
+ if key in self.acceptedInputKeywords:
+ return self.pars[key]
+ else:
+ raise Exception('Unrecongnised parameter: {0} '.format(key) )
+ elif type(key) is list:
+ outpars = []
+ for k in key:
+ outpars.append(self.getParameter(k))
+ return outpars
+ else:
+ raise Exception('Unhandled input {0}' .format(str(type(key))))
+
+
+ def calculateLipschitzConstantWithPowerMethod(self):
+ ''' using Power method (PM) to establish L constant'''
+
+ N = self.pars['output_geometry']['GridColCount']
+ proj_geom = self.pars['projector_geometry']
+ vol_geom = self.pars['output_geometry']
+ weights = self.pars['weights']
+ SlicesZ = self.pars['SlicesZ']
+
+
+
+ if (proj_geom['type'] == 'parallel') or \
+ (proj_geom['type'] == 'parallel3d'):
+ #% for parallel geometry we can do just one slice
+ #print('Calculating Lipshitz constant for parallel beam geometry...')
+ niter = 5;# % number of iteration for the PM
+ #N = params.vol_geom.GridColCount;
+ #x1 = rand(N,N,1);
+ x1 = numpy.random.rand(1,N,N)
+ #sqweight = sqrt(weights(:,:,1));
+ sqweight = numpy.sqrt(weights[0:1,:,:])
+ proj_geomT = proj_geom.copy();
+ proj_geomT['DetectorRowCount'] = 1;
+ vol_geomT = vol_geom.copy();
+ vol_geomT['GridSliceCount'] = 1;
+
+ #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+
+
+ for i in range(niter):
+ # [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT);
+ # s = norm(x1(:));
+ # x1 = x1/s;
+ # [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+ # y = sqweight.*y;
+ # astra_mex_data3d('delete', sino_id);
+ # astra_mex_data3d('delete', id);
+ #print ("iteration {0}".format(i))
+
+ sino_id, y = astra.creators.create_sino3d_gpu(x1,
+ proj_geomT,
+ vol_geomT)
+
+ y = (sqweight * y).copy() # element wise multiplication
+
+ #b=fig.add_subplot(2,1,2)
+ #imgplot = plt.imshow(x1[0])
+ #plt.show()
+
+ #astra_mex_data3d('delete', sino_id);
+ astra.matlab.data3d('delete', sino_id)
+ del x1
+
+ idx,x1 = astra.creators.create_backprojection3d_gpu((sqweight*y).copy(),
+ proj_geomT,
+ vol_geomT)
+ del y
+
+
+ s = numpy.linalg.norm(x1)
+ ### this line?
+ x1 = (x1/s).copy();
+
+ # ### this line?
+ # sino_id, y = astra.creators.create_sino3d_gpu(x1,
+ # proj_geomT,
+ # vol_geomT);
+ # y = sqweight * y;
+ astra.matlab.data3d('delete', sino_id);
+ astra.matlab.data3d('delete', idx)
+ print ("iteration {0} s= {1}".format(i,s))
+
+ #end
+ del proj_geomT
+ del vol_geomT
+ #plt.show()
+ else:
+ #% divergen beam geometry
+ print('Calculating Lipshitz constant for divergen beam geometry...')
+ niter = 8; #% number of iteration for PM
+ x1 = numpy.random.rand(SlicesZ , N , N);
+ #sqweight = sqrt(weights);
+ sqweight = numpy.sqrt(weights[0])
+
+ sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom);
+ y = sqweight*y;
+ #astra_mex_data3d('delete', sino_id);
+ astra.matlab.data3d('delete', sino_id);
+
+ for i in range(niter):
+ #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+ idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y,
+ proj_geom,
+ vol_geom)
+ s = numpy.linalg.norm(x1)
+ ### this line?
+ x1 = x1/s;
+ ### this line?
+ #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom);
+ sino_id, y = astra.creators.create_sino3d_gpu(x1,
+ proj_geom,
+ vol_geom);
+
+ y = sqweight*y;
+ #astra_mex_data3d('delete', sino_id);
+ #astra_mex_data3d('delete', id);
+ astra.matlab.data3d('delete', sino_id);
+ astra.matlab.data3d('delete', idx);
+ #end
+ #clear x1
+ del x1
+
+
+ return s
+
+
+ def setRegularizer(self, regularizer):
+ if regularizer is not None:
+ self.pars['regularizer'] = regularizer
+
+
+ def initialize(self):
+ # convenience variable storage
+ proj_geom = self.pars['projector_geometry']
+ vol_geom = self.pars['output_geometry']
+ sino = self.pars['input_sinogram']
+
+ # a 'warm start' with SIRT method
+ # Create a data object for the reconstruction
+ rec_id = astra.matlab.data3d('create', '-vol',
+ vol_geom);
+
+ #sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino);
+ sinogram_id = astra.matlab.data3d('create', '-proj3d',
+ proj_geom,
+ sino)
+
+ sirt_config = astra.astra_dict('SIRT3D_CUDA')
+ sirt_config['ReconstructionDataId' ] = rec_id
+ sirt_config['ProjectionDataId'] = sinogram_id
+
+ sirt = astra.algorithm.create(sirt_config)
+ astra.algorithm.run(sirt, iterations=35)
+ X = astra.matlab.data3d('get', rec_id)
+
+ # clean up memory
+ astra.matlab.data3d('delete', rec_id)
+ astra.matlab.data3d('delete', sinogram_id)
+ astra.algorithm.delete(sirt)
+
+
+
+ return X
+
+ def createOrderedSubsets(self, subsets=None):
+ if subsets is None:
+ try:
+ subsets = self.getParameter('subsets')
+ except Exception():
+ subsets = 0
+ #return subsets
+ else:
+ self.setParameter(subsets=subsets)
+
+
+ angles = self.getParameter('projector_geometry')['ProjectionAngles']
+
+ #binEdges = numpy.linspace(angles.min(),
+ # angles.max(),
+ # subsets + 1)
+ binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+ # get rearranged subset indices
+ IndicesReorg = numpy.zeros((numpy.shape(angles)), dtype=numpy.int32)
+ counterM = 0
+ for ii in range(binsDiscr.max()):
+ counter = 0
+ for jj in range(subsets):
+ curr_index = ii + jj + counter
+ #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+ if binsDiscr[jj] > ii:
+ if (counterM < numpy.size(IndicesReorg)):
+ IndicesReorg[counterM] = curr_index
+ counterM = counterM + 1
+
+ counter = counter + binsDiscr[jj] - 1
+
+ # store the OS in parameters
+ self.setParameter(os_subsets=subsets,
+ os_bins=binsDiscr,
+ os_indices=IndicesReorg)
+
+
+ def prepareForIteration(self):
+ print ("FISTA Reconstructor: prepare for iteration")
+
+ self.residual_error = numpy.zeros((self.pars['number_of_iterations']))
+ self.objective = numpy.zeros((self.pars['number_of_iterations']))
+
+ #2D array (for 3D data) of sparse "ring"
+ detectors, nangles, sliceZ = numpy.shape(self.pars['input_sinogram'])
+ self.r = numpy.zeros((detectors, sliceZ), dtype=numpy.float)
+ # another ring variable
+ self.r_x = self.r.copy()
+
+ self.residual = numpy.zeros(numpy.shape(self.pars['input_sinogram']))
+
+ if self.getParameter('Lipschitz_constant') is None:
+ self.pars['Lipschitz_constant'] = \
+ self.calculateLipschitzConstantWithPowerMethod()
+ # errors vector (if the ground truth is given)
+ self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations')));
+ # objective function values vector
+ self.objective = numpy.zeros((self.getParameter('number_of_iterations')));
+
+
+ # prepareForIteration
+
+ def iterate (self, Xin=None):
+ if self.getParameter('subsets') == 0:
+ return self.iterateStandard(Xin)
+ else:
+ return self.iterateOrderedSubsets(Xin)
+
+ def iterateStandard(self, Xin=None):
+ print ("FISTA Reconstructor: iterate")
+
+ if Xin is None:
+ if self.getParameter('initialize'):
+ X = self.initialize()
+ else:
+ N = vol_geom['GridColCount']
+ X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+ else:
+ # copy by reference
+ X = Xin
+ # store the output volume in the parameters
+ self.setParameter(output_volume=X)
+ X_t = X.copy()
+ # convenience variable storage
+ proj_geom , vol_geom, sino , \
+ SlicesZ , ring_lambda_R_L1 , weights = \
+ self.getParameter([ 'projector_geometry' ,
+ 'output_geometry',
+ 'input_sinogram',
+ 'SlicesZ' ,
+ 'ring_lambda_R_L1',
+ 'weights'])
+
+ t = 1
+
+ device = self.getParameter('device_model')
+ reduced_device = self.getParameter('reduced_device_model')
+
+ for i in range(self.getParameter('number_of_iterations')):
+ print("iteration", i)
+ X_old = X.copy()
+ t_old = t
+ r_old = self.r.copy()
+ pg = self.getParameter('projector_geometry')['type']
+ if pg == 'parallel' or \
+ pg == 'fanflat' or \
+ pg == 'fanflat_vec':
+ # if the geometry is parallel use slice-by-slice
+ # projection-backprojection routine
+ #sino_updt = zeros(size(sino),'single');
+
+ if self.use_device :
+ self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+
+ for kkk in range(SlicesZ):
+ self.sino_updt[kkk] = \
+ reduced_device.doForwardProject( X_t[kkk:kkk+1] )
+ else:
+ proj_geomT = proj_geom.copy()
+ proj_geomT['DetectorRowCount'] = 1
+ vol_geomT = vol_geom.copy()
+ vol_geomT['GridSliceCount'] = 1;
+ self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+ for kkk in range(SlicesZ):
+ sino_id, self.sino_updt[kkk] = \
+ astra.creators.create_sino3d_gpu(
+ X_t[kkk:kkk+1], proj_geomT, vol_geomT)
+ astra.matlab.data3d('delete', sino_id)
+ else:
+ # for divergent 3D geometry (watch the GPU memory overflow in
+ # ASTRA versions < 1.8)
+ #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+
+ if self.use_device:
+ self.sino_updt = device.doForwardProject(X_t)
+ else:
+ sino_id, self.sino_updt = astra.creators.create_sino3d_gpu(
+ X_t, proj_geom, vol_geom)
+ astra.matlab.data3d('delete', sino_id)
+
+
+ ## RING REMOVAL
+ if ring_lambda_R_L1 != 0:
+ self.ringRemoval(i)
+ else:
+ self.residual = weights * (self.sino_updt - sino)
+ self.objective[i] = 0.5 * numpy.linalg.norm(self.residual)
+ #objective(i) = 0.5*norm(residual(:)); % for the objective function output
+ ## Projection/Backprojection Routine
+ X, X_t = self.projectionBackprojection(X, X_t)
+
+ ## REGULARIZATION
+ Y = self.regularize(X)
+ X = Y.copy()
+ ## Update Loop
+ X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old)
+
+ print ("t" , t)
+ print ("X min {0} max {1}".format(X_t.min(),X_t.max()))
+ self.setParameter(output_volume=X)
+ return X
+ ## iterate
+
+ def ringRemoval(self, i):
+ print ("FISTA Reconstructor: ring removal")
+ residual = self.residual
+ lambdaR_L1 , alpha_ring , weights , L_const , sino= \
+ self.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant',
+ 'input_sinogram'])
+ r_x = self.r_x
+ sino_updt = self.sino_updt
+
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(self.getParameter('input_sinogram'))
+ if lambdaR_L1 > 0 :
+ for kkk in range(anglesNumb):
+
+ residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ vec = residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:].squeeze()
+ self.r = (r_x - (1./L_const) * vec).copy()
+ self.objective[i] = (0.5 * (residual ** 2).sum())
+
+ def projectionBackprojection(self, X, X_t):
+ print ("FISTA Reconstructor: projection-backprojection routine")
+
+ # a few useful variables
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(self.getParameter('input_sinogram'))
+ residual = self.residual
+ proj_geom , vol_geom , L_const = \
+ self.getParameter(['projector_geometry' ,
+ 'output_geometry',
+ 'Lipschitz_constant'])
+
+ device, reduced_device = self.getParameter(['device_model',
+ 'reduced_device_model'])
+
+ if self.getParameter('projector_geometry')['type'] == 'parallel' or \
+ self.getParameter('projector_geometry')['type'] == 'fanflat' or \
+ self.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+ # if the geometry is parallel use slice-by-slice
+ # projection-backprojection routine
+ #sino_updt = zeros(size(sino),'single');
+ x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+
+ if self.use_device:
+ proj_geomT = proj_geom.copy()
+ proj_geomT['DetectorRowCount'] = 1
+ vol_geomT = vol_geom.copy()
+ vol_geomT['GridSliceCount'] = 1;
+
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residual[kkk:kkk+1],
+ proj_geomT, vol_geomT)
+ astra.matlab.data3d('delete', x_id)
+ else:
+ for kkk in range(SliceZ):
+ x_temp[kkk] = \
+ reduced_device.doBackwardProject(residual[kkk:kkk+1])
+ else:
+ if self.use_device:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residual, proj_geom, vol_geom)
+ astra.matlab.data3d('delete', x_id)
+ else:
+ x_temp = \
+ device.doBackwardProject(residual)
+
+
+ X = X_t - (1/L_const) * x_temp
+ #astra.matlab.data3d('delete', sino_id)
+ return (X , X_t)
+
+
+ def regularize(self, X , output_all=False):
+ #print ("FISTA Reconstructor: regularize")
+
+ regularizer = self.getParameter('regularizer')
+ if regularizer is not None:
+ return regularizer(input=X,
+ output_all=output_all)
+ else:
+ return X
+
+ def updateLoop(self, i, X, X_old, r_old, t, t_old):
+ print ("FISTA Reconstructor: update loop")
+ lambdaR_L1 = self.getParameter('ring_lambda_R_L1')
+
+ t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+ X_t = X + (((t_old -1)/t) * (X - X_old))
+
+ if lambdaR_L1 > 0:
+ self.r = numpy.max(
+ numpy.abs(self.r) - lambdaR_L1 , 0) * \
+ numpy.sign(self.r)
+ self.r_x = self.r + \
+ (((t_old-1)/t) * (self.r - r_old))
+
+ if self.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, self.objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], self.objective[i]))
+ return (X , X_t, t)
+
+ def iterateOrderedSubsets(self, Xin=None):
+ print ("FISTA Reconstructor: Ordered Subsets iterate")
+
+ if Xin is None:
+ if self.getParameter('initialize'):
+ X = self.initialize()
+ else:
+ N = vol_geom['GridColCount']
+ X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+ else:
+ # copy by reference
+ X = Xin
+ # store the output volume in the parameters
+ self.setParameter(output_volume=X)
+ X_t = X.copy()
+
+ # some useful constants
+ proj_geom , vol_geom, sino , \
+ SlicesZ, weights , alpha_ring ,\
+ lambdaR_L1 , L_const , iterFISTA = self.getParameter(
+ ['projector_geometry' , 'output_geometry', 'input_sinogram',
+ 'SlicesZ' , 'weights', 'ring_alpha' ,
+ 'ring_lambda_R_L1', 'Lipschitz_constant',
+ 'number_of_iterations'])
+
+
+ # errors vector (if the ground truth is given)
+ Resid_error = numpy.zeros((iterFISTA));
+ # objective function values vector
+ #objective = numpy.zeros((iterFISTA));
+ objective = self.objective
+
+
+ t = 1
+
+ ## additional for
+ proj_geomSUB = proj_geom.copy()
+ self.residual2 = numpy.zeros(numpy.shape(sino))
+ residual2 = self.residual2
+ sino_updt_FULL = self.residual.copy()
+ r_x = self.r.copy()
+
+ print ("starting iterations")
+ ## % Outer FISTA iterations loop
+ for i in range(self.getParameter('number_of_iterations')):
+ # With OS approach it becomes trickier to correlate independent
+ # subsets, hence additional work is required one solution is to
+ # work with a full sinogram at times
+
+ r_old = self.r.copy()
+ t_old = t
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(self.getParameter('input_sinogram')) ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+ if (i > 1 and lambdaR_L1 > 0) :
+ for kkk in range(anglesNumb):
+
+ residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+
+ vec = self.residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:] # 1 or 0?
+ r_x = self.r_x
+ # update ring variable
+ self.r = (r_x - (1./L_const) * vec).copy()
+
+ # subset loop
+ counterInd = 1
+ geometry_type = self.getParameter('projector_geometry')['type']
+ angles = self.getParameter('projector_geometry')['ProjectionAngles']
+
+ for ss in range(self.getParameter('subsets')):
+ #print ("Subset {0}".format(ss))
+ X_old = X.copy()
+ t_old = t
+
+ # the number of projections per subset
+ numProjSub = self.getParameter('os_bins')[ss]
+ CurrSubIndices = self.getParameter('os_indices')\
+ [counterInd:counterInd+numProjSub]
+ #print ("Len CurrSubIndices {0}".format(numProjSub))
+ mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+ #cc = 0
+ for j in range(len(CurrSubIndices)):
+ mask[int(CurrSubIndices[j])] = True
+ proj_geomSUB['ProjectionAngles'] = angles[mask]
+
+ if self.use_device:
+ device = self.getParameter('device_model')\
+ .createReducedDevice(
+ proj_par={'angles':angles[mask]},
+ vol_par={})
+
+ shape = list(numpy.shape(self.getParameter('input_sinogram')))
+ shape[1] = numProjSub
+ sino_updt_Sub = numpy.zeros(shape)
+ if geometry_type == 'parallel' or \
+ geometry_type == 'fanflat' or \
+ geometry_type == 'fanflat_vec' :
+
+ for kkk in range(SlicesZ):
+ if self.use_device:
+ sinoT = device.doForwardProject(X_t[kkk:kkk+1])
+ else:
+ sino_id, sinoT = astra.creators.create_sino3d_gpu (
+ X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+ astra.matlab.data3d('delete', sino_id)
+ sino_updt_Sub[kkk] = sinoT.T.copy()
+
+ else:
+ # for 3D geometry (watch the GPU memory overflow in
+ # ASTRA < 1.8)
+ if self.use_device:
+ sino_updt_Sub = device.doForwardProject(X_t)
+
+ else:
+ sino_id, sino_updt_Sub = \
+ astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom)
+
+ astra.matlab.data3d('delete', sino_id)
+
+ #print ("shape(sino_updt_Sub)",numpy.shape(sino_updt_Sub))
+ if lambdaR_L1 > 0 :
+ ## RING REMOVAL
+ #print ("ring removal")
+ residualSub , sino_updt_Sub, sino_updt_FULL = \
+ self.ringRemovalOrderedSubsets(ss,
+ counterInd,
+ sino_updt_Sub,
+ sino_updt_FULL)
+ else:
+ #PWLS model
+ #print ("PWLS model")
+ residualSub = weights[:,CurrSubIndices,:] * \
+ ( sino_updt_Sub - \
+ sino[:,CurrSubIndices,:].squeeze() )
+ objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+ # projection/backprojection routine
+ if geometry_type == 'parallel' or \
+ geometry_type == 'fanflat' or \
+ geometry_type == 'fanflat_vec' :
+ # if geometry is 2D use slice-by-slice projection-backprojection
+ # routine
+ x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+ for kkk in range(SlicesZ):
+ if self.use_device:
+ x_temp[kkk] = device.doBackwardProject(
+ residualSub[kkk:kkk+1])
+ else:
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residualSub[kkk:kkk+1],
+ proj_geomSUB, vol_geom)
+ astra.matlab.data3d('delete', x_id)
+
+ else:
+ if self.use_device:
+ x_temp = device.doBackwardProject(
+ residualSub)
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residualSub, proj_geomSUB, vol_geom)
+
+ astra.matlab.data3d('delete', x_id)
+
+ X = X_t - (1/L_const) * x_temp
+
+ ## REGULARIZATION
+ X = self.regularize(X)
+
+ ## Update subset Loop
+ t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+ X_t = X + (((t_old -1)/t) * (X - X_old))
+ # FINAL
+ ## update iteration loop
+ if lambdaR_L1 > 0:
+ self.r = numpy.max(
+ numpy.abs(self.r) - lambdaR_L1 , 0) * \
+ numpy.sign(self.r)
+ self.r_x = self.r + \
+ (((t_old-1)/t) * (self.r - r_old))
+
+ if self.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, self.objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], self.objective[i]))
+ print("X min {0} max {1}".format(X.min(),X.max()))
+ self.setParameter(output_volume=X)
+ counterInd = counterInd + numProjSub
+
+ return X
+
+ def ringRemovalOrderedSubsets(self, ss,counterInd,
+ sino_updt_Sub, sino_updt_FULL):
+ residual = self.residual
+ r_x = self.r_x
+ weights , alpha_ring , sino = \
+ self.getParameter( ['weights', 'ring_alpha', 'input_sinogram'])
+ numProjSub = self.getParameter('os_bins')[ss]
+ CurrSubIndices = self.getParameter('os_indices')\
+ [counterInd:counterInd+numProjSub]
+
+ shape = list(numpy.shape(self.getParameter('input_sinogram')))
+ shape[1] = numProjSub
+
+ residualSub = numpy.zeros(shape)
+
+ for kkk in range(numProjSub):
+ #print ("ring removal indC ... {0}".format(kkk))
+ indC = int(CurrSubIndices[kkk])
+ residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+ (sino_updt_Sub[:,kkk,:].squeeze() - \
+ sino[:,indC,:].squeeze() - alpha_ring * r_x)
+ # filling the full sinogram
+ sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+ return (residualSub , sino_updt_Sub, sino_updt_FULL)
+
+
diff --git a/Wrappers/Python/ccpi/reconstruction/Reconstructor.py b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py
new file mode 100644
index 0000000..ba67327
--- /dev/null
+++ b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py
@@ -0,0 +1,598 @@
+# -*- coding: utf-8 -*-
+###############################################################################
+#This work is part of the Core Imaging Library developed by
+#Visual Analytics and Imaging System Group of the Science Technology
+#Facilities Council, STFC
+#
+#Copyright 2017 Edoardo Pasca, Srikanth Nagella
+#Copyright 2017 Daniil Kazantsev
+#
+#Licensed under the Apache License, Version 2.0 (the "License");
+#you may not use this file except in compliance with the License.
+#You may obtain a copy of the License at
+#http://www.apache.org/licenses/LICENSE-2.0
+#Unless required by applicable law or agreed to in writing, software
+#distributed under the License is distributed on an "AS IS" BASIS,
+#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#See the License for the specific language governing permissions and
+#limitations under the License.
+###############################################################################
+
+
+
+import numpy
+import h5py
+from ccpi.reconstruction.parallelbeam import alg
+
+from Regularizer import Regularizer
+from enum import Enum
+
+import astra
+
+
+class Reconstructor:
+
+ class Algorithm(Enum):
+ CGLS = alg.cgls
+ CGLS_CONV = alg.cgls_conv
+ SIRT = alg.sirt
+ MLEM = alg.mlem
+ CGLS_TICHONOV = alg.cgls_tikhonov
+ CGLS_TVREG = alg.cgls_TVreg
+ FISTA = 'fista'
+
+ def __init__(self, algorithm = None, projection_data = None,
+ angles = None, center_of_rotation = None ,
+ flat_field = None, dark_field = None,
+ iterations = None, resolution = None, isLogScale = False, threads = None,
+ normalized_projection = None):
+
+ self.pars = dict()
+ self.pars['algorithm'] = algorithm
+ self.pars['projection_data'] = projection_data
+ self.pars['normalized_projection'] = normalized_projection
+ self.pars['angles'] = angles
+ self.pars['center_of_rotation'] = numpy.double(center_of_rotation)
+ self.pars['flat_field'] = flat_field
+ self.pars['iterations'] = iterations
+ self.pars['dark_field'] = dark_field
+ self.pars['resolution'] = resolution
+ self.pars['isLogScale'] = isLogScale
+ self.pars['threads'] = threads
+ if (iterations != None):
+ self.pars['iterationValues'] = numpy.zeros((iterations))
+
+ if projection_data != None and dark_field != None and flat_field != None:
+ norm = self.normalize(projection_data, dark_field, flat_field, 0.1)
+ self.pars['normalized_projection'] = norm
+
+
+ def setPars(self, parameters):
+ keys = ['algorithm','projection_data' ,'normalized_projection', \
+ 'angles' , 'center_of_rotation' , 'flat_field', \
+ 'iterations','dark_field' , 'resolution', 'isLogScale' , \
+ 'threads' , 'iterationValues', 'regularize']
+
+ for k in keys:
+ if k not in parameters.keys():
+ self.pars[k] = None
+ else:
+ self.pars[k] = parameters[k]
+
+
+ def sanityCheck(self):
+ projection_data = self.pars['projection_data']
+ dark_field = self.pars['dark_field']
+ flat_field = self.pars['flat_field']
+ angles = self.pars['angles']
+
+ if projection_data != None and dark_field != None and \
+ angles != None and flat_field != None:
+ data_shape = numpy.shape(projection_data)
+ angle_shape = numpy.shape(angles)
+
+ if angle_shape[0] != data_shape[0]:
+ #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \
+ # (angle_shape[0] , data_shape[0]) )
+ return (False , 'Projections and angles dimensions do not match: %d vs %d' % \
+ (angle_shape[0] , data_shape[0]) )
+
+ if data_shape[1:] != numpy.shape(flat_field):
+ #raise Exception('Projection and flat field dimensions do not match')
+ return (False , 'Projection and flat field dimensions do not match')
+ if data_shape[1:] != numpy.shape(dark_field):
+ #raise Exception('Projection and dark field dimensions do not match')
+ return (False , 'Projection and dark field dimensions do not match')
+
+ return (True , '' )
+ elif self.pars['normalized_projection'] != None:
+ data_shape = numpy.shape(self.pars['normalized_projection'])
+ angle_shape = numpy.shape(angles)
+
+ if angle_shape[0] != data_shape[0]:
+ #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \
+ # (angle_shape[0] , data_shape[0]) )
+ return (False , 'Projections and angles dimensions do not match: %d vs %d' % \
+ (angle_shape[0] , data_shape[0]) )
+ else:
+ return (True , '' )
+ else:
+ return (False , 'Not enough data')
+
+ def reconstruct(self, parameters = None):
+ if parameters != None:
+ self.setPars(parameters)
+
+ go , reason = self.sanityCheck()
+ if go:
+ return self._reconstruct()
+ else:
+ raise Exception(reason)
+
+
+ def _reconstruct(self, parameters=None):
+ if parameters!=None:
+ self.setPars(parameters)
+ parameters = self.pars
+
+ if parameters['algorithm'] != None and \
+ parameters['normalized_projection'] != None and \
+ parameters['angles'] != None and \
+ parameters['center_of_rotation'] != None and \
+ parameters['iterations'] != None and \
+ parameters['resolution'] != None and\
+ parameters['threads'] != None and\
+ parameters['isLogScale'] != None:
+
+
+ if parameters['algorithm'] in (Reconstructor.Algorithm.CGLS,
+ Reconstructor.Algorithm.MLEM, Reconstructor.Algorithm.SIRT):
+ #store parameters
+ self.pars = parameters
+ result = parameters['algorithm'](
+ parameters['normalized_projection'] ,
+ parameters['angles'],
+ parameters['center_of_rotation'],
+ parameters['resolution'],
+ parameters['iterations'],
+ parameters['threads'] ,
+ parameters['isLogScale']
+ )
+ return result
+ elif parameters['algorithm'] in (Reconstructor.Algorithm.CGLS_CONV,
+ Reconstructor.Algorithm.CGLS_TICHONOV,
+ Reconstructor.Algorithm.CGLS_TVREG) :
+ self.pars = parameters
+ result = parameters['algorithm'](
+ parameters['normalized_projection'] ,
+ parameters['angles'],
+ parameters['center_of_rotation'],
+ parameters['resolution'],
+ parameters['iterations'],
+ parameters['threads'] ,
+ parameters['regularize'],
+ numpy.zeros((parameters['iterations'])),
+ parameters['isLogScale']
+ )
+
+ elif parameters['algorithm'] == Reconstructor.Algorithm.FISTA:
+ pass
+
+ else:
+ if parameters['projection_data'] != None and \
+ parameters['dark_field'] != None and \
+ parameters['flat_field'] != None:
+ norm = self.normalize(parameters['projection_data'],
+ parameters['dark_field'],
+ parameters['flat_field'], 0.1)
+ self.pars['normalized_projection'] = norm
+ return self._reconstruct(parameters)
+
+
+
+ def _normalize(self, projection, dark, flat, def_val=0):
+ a = (projection - dark)
+ b = (flat-dark)
+ with numpy.errstate(divide='ignore', invalid='ignore'):
+ c = numpy.true_divide( a, b )
+ c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0
+ return c
+
+ def normalize(self, projections, dark, flat, def_val=0):
+ norm = [self._normalize(projection, dark, flat, def_val) for projection in projections]
+ return numpy.asarray (norm, dtype=numpy.float32)
+
+
+
+class FISTA():
+ '''FISTA-based reconstruction algorithm using ASTRA-toolbox
+
+ '''
+ # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>>
+ # ___Input___:
+ # params.[] file:
+ # - .proj_geom (geometry of the projector) [required]
+ # - .vol_geom (geometry of the reconstructed object) [required]
+ # - .sino (vectorized in 2D or 3D sinogram) [required]
+ # - .iterFISTA (iterations for the main loop, default 40)
+ # - .L_const (Lipschitz constant, default Power method) )
+ # - .X_ideal (ideal image, if given)
+ # - .weights (statisitcal weights, size of the sinogram)
+ # - .ROI (Region-of-interest, only if X_ideal is given)
+ # - .initialize (a 'warm start' using SIRT method from ASTRA)
+ #----------------Regularization choices------------------------
+ # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+ # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+ # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
+ # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+ # - .Regul_Iterations (iterations for the selected penalty, default 25)
+ # - .Regul_tauLLT (time step parameter for LLT term)
+ # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
+ # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
+ #----------------Visualization parameters------------------------
+ # - .show (visualize reconstruction 1/0, (0 default))
+ # - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
+ # - .slice (for 3D volumes - slice number to imshow)
+ # ___Output___:
+ # 1. X - reconstructed image/volume
+ # 2. output - a structure with
+ # - .Resid_error - residual error (if X_ideal is given)
+ # - .objective: value of the objective function
+ # - .L_const: Lipshitz constant to avoid recalculations
+
+ # References:
+ # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
+ # Problems" by A. Beck and M Teboulle
+ # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo
+ # 3. "A novel tomographic reconstruction method based on the robust
+ # Student's t function for suppressing data outliers" D. Kazantsev et.al.
+ # D. Kazantsev, 2016-17
+ def __init__(self, projector_geometry, output_geometry, input_sinogram, **kwargs):
+ self.params = dict()
+ self.params['projector_geometry'] = projector_geometry
+ self.params['output_geometry'] = output_geometry
+ self.params['input_sinogram'] = input_sinogram
+ detectors, nangles, sliceZ = numpy.shape(input_sinogram)
+ self.params['detectors'] = detectors
+ self.params['number_og_angles'] = nangles
+ self.params['SlicesZ'] = sliceZ
+
+ # Accepted input keywords
+ kw = ('number_of_iterations', 'Lipschitz_constant' , 'ideal_image' ,
+ 'weights' , 'region_of_interest' , 'initialize' ,
+ 'regularizer' ,
+ 'ring_lambda_R_L1',
+ 'ring_alpha')
+
+ # handle keyworded parameters
+ if kwargs is not None:
+ for key, value in kwargs.items():
+ if key in kw:
+ #print("{0} = {1}".format(key, value))
+ self.pars[key] = value
+
+ # set the default values for the parameters if not set
+ if 'number_of_iterations' in kwargs.keys():
+ self.pars['number_of_iterations'] = kwargs['number_of_iterations']
+ else:
+ self.pars['number_of_iterations'] = 40
+ if 'weights' in kwargs.keys():
+ self.pars['weights'] = kwargs['weights']
+ else:
+ self.pars['weights'] = numpy.ones(numpy.shape(self.params['input_sinogram']))
+ if 'Lipschitz_constant' in kwargs.keys():
+ self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant']
+ else:
+ self.pars['Lipschitz_constant'] = self.calculateLipschitzConstantWithPowerMethod()
+
+ if not self.pars['ideal_image'] in kwargs.keys():
+ self.pars['ideal_image'] = None
+
+ if not self.pars['region_of_interest'] :
+ if self.pars['ideal_image'] == None:
+ pass
+ else:
+ self.pars['region_of_interest'] = numpy.nonzero(self.pars['ideal_image']>0.0)
+
+ if not self.pars['regularizer'] :
+ self.pars['regularizer'] = None
+ else:
+ # the regularizer must be a correctly instantiated object
+ if not self.pars['ring_lambda_R_L1']:
+ self.pars['ring_lambda_R_L1'] = 0
+ if not self.pars['ring_alpha']:
+ self.pars['ring_alpha'] = 1
+
+
+
+
+ def calculateLipschitzConstantWithPowerMethod(self):
+ ''' using Power method (PM) to establish L constant'''
+
+ #N = params.vol_geom.GridColCount
+ N = self.pars['output_geometry'].GridColCount
+ proj_geom = self.params['projector_geometry']
+ vol_geom = self.params['output_geometry']
+ weights = self.pars['weights']
+ SlicesZ = self.pars['SlicesZ']
+
+ if (proj_geom['type'] == 'parallel') or (proj_geom['type'] == 'parallel3d'):
+ #% for parallel geometry we can do just one slice
+ #fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...');
+ niter = 15;# % number of iteration for the PM
+ #N = params.vol_geom.GridColCount;
+ #x1 = rand(N,N,1);
+ x1 = numpy.random.rand(1,N,N)
+ #sqweight = sqrt(weights(:,:,1));
+ sqweight = numpy.sqrt(weights.T[0])
+ proj_geomT = proj_geom.copy();
+ proj_geomT.DetectorRowCount = 1;
+ vol_geomT = vol_geom.copy();
+ vol_geomT['GridSliceCount'] = 1;
+
+
+ for i in range(niter):
+ if i == 0:
+ #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+ sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
+ y = sqweight * y # element wise multiplication
+ #astra_mex_data3d('delete', sino_id);
+ astra.matlab.data3d('delete', sino_id)
+
+ idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, proj_geomT, vol_geomT);
+ s = numpy.linalg.norm(x1)
+ ### this line?
+ x1 = x1/s;
+ ### this line?
+ sino_id, y = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+ y = sqweight*y;
+ astra.matlab.data3d('delete', sino_id);
+ astra.matlab.data3d('delete', idx);
+ #end
+ del proj_geomT
+ del vol_geomT
+ else
+ #% divergen beam geometry
+ #fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...');
+ niter = 8; #% number of iteration for PM
+ x1 = numpy.random.rand(SlicesZ , N , N);
+ #sqweight = sqrt(weights);
+ sqweight = numpy.sqrt(weights.T[0])
+
+ sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom);
+ y = sqweight*y;
+ #astra_mex_data3d('delete', sino_id);
+ astra.matlab.data3d('delete', sino_id);
+
+ for i in range(niter):
+ #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom);
+ idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y,
+ proj_geom,
+ vol_geom)
+ s = numpy.linalg.norm(x1)
+ ### this line?
+ x1 = x1/s;
+ ### this line?
+ #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom);
+ sino_id, y = astra.creators.create_sino3d_gpu(x1,
+ proj_geom,
+ vol_geom);
+
+ y = sqweight*y;
+ #astra_mex_data3d('delete', sino_id);
+ #astra_mex_data3d('delete', id);
+ astra.matlab.data3d('delete', sino_id);
+ astra.matlab.data3d('delete', idx);
+ #end
+ #clear x1
+ del x1
+
+ return s
+
+
+ def setRegularizer(self, regularizer):
+ if regularizer
+ self.pars['regularizer'] = regularizer
+
+
+
+
+
+def getEntry(location):
+ for item in nx[location].keys():
+ print (item)
+
+
+print ("Loading Data")
+
+##fname = "D:\\Documents\\Dataset\\IMAT\\20170419_crabtomo\\crabtomo\\Sample\\IMAT00005153_crabstomo_Sample_000.tif"
+####ind = [i * 1049 for i in range(360)]
+#### use only 360 images
+##images = 200
+##ind = [int(i * 1049 / images) for i in range(images)]
+##stack_image = dxchange.reader.read_tiff_stack(fname, ind, digit=None, slc=None)
+
+#fname = "D:\\Documents\\Dataset\\CGLS\\24737_fd.nxs"
+fname = "C:\\Users\\ofn77899\\Documents\\CCPi\\CGLS\\24737_fd_2.nxs"
+nx = h5py.File(fname, "r")
+
+# the data are stored in a particular location in the hdf5
+for item in nx['entry1/tomo_entry/data'].keys():
+ print (item)
+
+data = nx.get('entry1/tomo_entry/data/rotation_angle')
+angles = numpy.zeros(data.shape)
+data.read_direct(angles)
+print (angles)
+# angles should be in degrees
+
+data = nx.get('entry1/tomo_entry/data/data')
+stack = numpy.zeros(data.shape)
+data.read_direct(stack)
+print (data.shape)
+
+print ("Data Loaded")
+
+
+# Normalize
+data = nx.get('entry1/tomo_entry/instrument/detector/image_key')
+itype = numpy.zeros(data.shape)
+data.read_direct(itype)
+# 2 is dark field
+darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ]
+dark = darks[0]
+for i in range(1, len(darks)):
+ dark += darks[i]
+dark = dark / len(darks)
+#dark[0][0] = dark[0][1]
+
+# 1 is flat field
+flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ]
+flat = flats[0]
+for i in range(1, len(flats)):
+ flat += flats[i]
+flat = flat / len(flats)
+#flat[0][0] = dark[0][1]
+
+
+# 0 is projection data
+proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ]
+angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ]
+angle_proj = numpy.asarray (angle_proj)
+angle_proj = angle_proj.astype(numpy.float32)
+
+# normalized data are
+# norm = (projection - dark)/(flat-dark)
+
+def normalize(projection, dark, flat, def_val=0.1):
+ a = (projection - dark)
+ b = (flat-dark)
+ with numpy.errstate(divide='ignore', invalid='ignore'):
+ c = numpy.true_divide( a, b )
+ c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0
+ return c
+
+
+norm = [normalize(projection, dark, flat) for projection in proj]
+norm = numpy.asarray (norm)
+norm = norm.astype(numpy.float32)
+
+#recon = Reconstructor(algorithm = Algorithm.CGLS, normalized_projection = norm,
+# angles = angle_proj, center_of_rotation = 86.2 ,
+# flat_field = flat, dark_field = dark,
+# iterations = 15, resolution = 1, isLogScale = False, threads = 3)
+
+#recon = Reconstructor(algorithm = Reconstructor.Algorithm.CGLS, projection_data = proj,
+# angles = angle_proj, center_of_rotation = 86.2 ,
+# flat_field = flat, dark_field = dark,
+# iterations = 15, resolution = 1, isLogScale = False, threads = 3)
+#img_cgls = recon.reconstruct()
+#
+#pars = dict()
+#pars['algorithm'] = Reconstructor.Algorithm.SIRT
+#pars['projection_data'] = proj
+#pars['angles'] = angle_proj
+#pars['center_of_rotation'] = numpy.double(86.2)
+#pars['flat_field'] = flat
+#pars['iterations'] = 15
+#pars['dark_field'] = dark
+#pars['resolution'] = 1
+#pars['isLogScale'] = False
+#pars['threads'] = 3
+#
+#img_sirt = recon.reconstruct(pars)
+#
+#recon.pars['algorithm'] = Reconstructor.Algorithm.MLEM
+#img_mlem = recon.reconstruct()
+
+############################################################
+############################################################
+#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV
+#recon.pars['regularize'] = numpy.double(0.1)
+#img_cgls_conv = recon.reconstruct()
+
+niterations = 15
+threads = 3
+
+img_cgls = alg.cgls(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
+img_mlem = alg.mlem(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
+img_sirt = alg.sirt(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False)
+
+iteration_values = numpy.zeros((niterations,))
+img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
+ iteration_values, False)
+print ("iteration values %s" % str(iteration_values))
+
+iteration_values = numpy.zeros((niterations,))
+img_cgls_tikhonov = alg.cgls_tikhonov(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
+ numpy.double(1e-5), iteration_values , False)
+print ("iteration values %s" % str(iteration_values))
+iteration_values = numpy.zeros((niterations,))
+img_cgls_TVreg = alg.cgls_TVreg(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads,
+ numpy.double(1e-5), iteration_values , False)
+print ("iteration values %s" % str(iteration_values))
+
+
+##numpy.save("cgls_recon.npy", img_data)
+import matplotlib.pyplot as plt
+fig, ax = plt.subplots(1,6,sharey=True)
+ax[0].imshow(img_cgls[80])
+ax[0].axis('off') # clear x- and y-axes
+ax[1].imshow(img_sirt[80])
+ax[1].axis('off') # clear x- and y-axes
+ax[2].imshow(img_mlem[80])
+ax[2].axis('off') # clear x- and y-axesplt.show()
+ax[3].imshow(img_cgls_conv[80])
+ax[3].axis('off') # clear x- and y-axesplt.show()
+ax[4].imshow(img_cgls_tikhonov[80])
+ax[4].axis('off') # clear x- and y-axesplt.show()
+ax[5].imshow(img_cgls_TVreg[80])
+ax[5].axis('off') # clear x- and y-axesplt.show()
+
+
+plt.show()
+
+#viewer = edo.CILViewer()
+#viewer.setInputAsNumpy(img_cgls2)
+#viewer.displaySliceActor(0)
+#viewer.startRenderLoop()
+
+import vtk
+
+def NumpyToVTKImageData(numpyarray):
+ if (len(numpy.shape(numpyarray)) == 3):
+ doubleImg = vtk.vtkImageData()
+ shape = numpy.shape(numpyarray)
+ doubleImg.SetDimensions(shape[0], shape[1], shape[2])
+ doubleImg.SetOrigin(0,0,0)
+ doubleImg.SetSpacing(1,1,1)
+ doubleImg.SetExtent(0, shape[0]-1, 0, shape[1]-1, 0, shape[2]-1)
+ #self.img3D.SetScalarType(vtk.VTK_UNSIGNED_SHORT, vtk.vtkInformation())
+ doubleImg.AllocateScalars(vtk.VTK_DOUBLE,1)
+
+ for i in range(shape[0]):
+ for j in range(shape[1]):
+ for k in range(shape[2]):
+ doubleImg.SetScalarComponentFromDouble(
+ i,j,k,0, numpyarray[i][j][k])
+ #self.setInput3DData( numpy_support.numpy_to_vtk(numpyarray) )
+ # rescale to appropriate VTK_UNSIGNED_SHORT
+ stats = vtk.vtkImageAccumulate()
+ stats.SetInputData(doubleImg)
+ stats.Update()
+ iMin = stats.GetMin()[0]
+ iMax = stats.GetMax()[0]
+ scale = vtk.VTK_UNSIGNED_SHORT_MAX / (iMax - iMin)
+
+ shiftScaler = vtk.vtkImageShiftScale ()
+ shiftScaler.SetInputData(doubleImg)
+ shiftScaler.SetScale(scale)
+ shiftScaler.SetShift(iMin)
+ shiftScaler.SetOutputScalarType(vtk.VTK_UNSIGNED_SHORT)
+ shiftScaler.Update()
+ return shiftScaler.GetOutput()
+
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetFileName(alg + "_recon.mha")
+#writer.SetInputData(NumpyToVTKImageData(img_cgls2))
+#writer.Write()
diff --git a/Wrappers/Python/compile-fista.bat.in b/Wrappers/Python/compile-fista.bat.in
new file mode 100644
index 0000000..b1db686
--- /dev/null
+++ b/Wrappers/Python/compile-fista.bat.in
@@ -0,0 +1,7 @@
+set CIL_VERSION=@CIL_VERSION@
+
+set PREFIX=@CONDA_ENVIRONMENT_PREFIX@
+set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+REM activate @CONDA_ENVIRONMENT@
+conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge
diff --git a/Wrappers/Python/compile-fista.sh.in b/Wrappers/Python/compile-fista.sh.in
new file mode 100644
index 0000000..267f014
--- /dev/null
+++ b/Wrappers/Python/compile-fista.sh.in
@@ -0,0 +1,9 @@
+#!/bin/sh
+# compile within the right conda environment
+#module load python/anaconda
+#source activate @CONDA_ENVIRONMENT@
+
+export CIL_VERSION=@CIL_VERSION@
+export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi
diff --git a/Wrappers/Python/compile.bat.in b/Wrappers/Python/compile.bat.in
new file mode 100644
index 0000000..e5342ed
--- /dev/null
+++ b/Wrappers/Python/compile.bat.in
@@ -0,0 +1,7 @@
+set CIL_VERSION=@CIL_VERSION@
+
+set PREFIX=@CONDA_ENVIRONMENT_PREFIX@
+set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+REM activate @CONDA_ENVIRONMENT@
+conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge \ No newline at end of file
diff --git a/Wrappers/Python/compile.sh.in b/Wrappers/Python/compile.sh.in
new file mode 100644
index 0000000..93fdba2
--- /dev/null
+++ b/Wrappers/Python/compile.sh.in
@@ -0,0 +1,9 @@
+#!/bin/sh
+# compile within the right conda environment
+#module load python/anaconda
+#source activate @CONDA_ENVIRONMENT@
+
+export CIL_VERSION=@CIL_VERSION@
+export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@
+
+conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi
diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat
new file mode 100644
index 0000000..69491de
--- /dev/null
+++ b/Wrappers/Python/conda-recipe/bld.bat
@@ -0,0 +1,14 @@
+IF NOT DEFINED CIL_VERSION (
+ECHO CIL_VERSION Not Defined.
+exit 1
+)
+
+mkdir "%SRC_DIR%\ccpi"
+xcopy /e "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi"
+
+cd %SRC_DIR%\ccpi\Python
+
+%PYTHON% setup.py build_ext
+if errorlevel 1 exit 1
+%PYTHON% setup.py install
+if errorlevel 1 exit 1
diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh
new file mode 100644
index 0000000..855047f
--- /dev/null
+++ b/Wrappers/Python/conda-recipe/build.sh
@@ -0,0 +1,14 @@
+
+if [ -z "$CIL_VERSION" ]; then
+ echo "Need to set CIL_VERSION"
+ exit 1
+fi
+mkdir "$SRC_DIR/ccpi"
+cp -r "$RECIPE_DIR/../.." "$SRC_DIR/ccpi"
+
+cd $SRC_DIR/ccpi/Python
+
+$PYTHON setup.py build_ext
+$PYTHON setup.py install
+
+
diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml
new file mode 100644
index 0000000..7068e9d
--- /dev/null
+++ b/Wrappers/Python/conda-recipe/meta.yaml
@@ -0,0 +1,30 @@
+package:
+ name: ccpi-regularizers
+ version: {{ environ['CIL_VERSION'] }}
+
+
+build:
+ preserve_egg_dir: False
+ script_env:
+ - CIL_VERSION
+# number: 0
+
+requirements:
+ build:
+ - python
+ - numpy
+ - setuptools
+ - boost ==1.64
+ - boost-cpp ==1.64
+ - cython
+
+ run:
+ - python
+ - numpy
+ - boost ==1.64
+
+
+about:
+ home: http://www.ccpi.ac.uk
+ license: BSD license
+ summary: 'CCPi Core Imaging Library Quantification Toolbox'
diff --git a/Wrappers/Python/fista-recipe/bld.bat b/Wrappers/Python/fista-recipe/bld.bat
new file mode 100644
index 0000000..69c2afe
--- /dev/null
+++ b/Wrappers/Python/fista-recipe/bld.bat
@@ -0,0 +1,11 @@
+IF NOT DEFINED CIL_VERSION (
+ECHO CIL_VERSION Not Defined.
+exit 1
+)
+
+xcopy /e "%RECIPE_DIR%\.." "%SRC_DIR%"
+
+%PYTHON% setup.py -q bdist_egg
+:: %PYTHON% setup.py install --single-version-externally-managed --record=record.txt
+%PYTHON% setup.py install
+if errorlevel 1 exit 1
diff --git a/Wrappers/Python/fista-recipe/build.sh b/Wrappers/Python/fista-recipe/build.sh
new file mode 100644
index 0000000..e3f3552
--- /dev/null
+++ b/Wrappers/Python/fista-recipe/build.sh
@@ -0,0 +1,10 @@
+if [ -z "$CIL_VERSION" ]; then
+ echo "Need to set CIL_VERSION"
+ exit 1
+fi
+mkdir "$SRC_DIR/ccpifista"
+cp -r "$RECIPE_DIR/.." "$SRC_DIR/ccpifista"
+
+cd $SRC_DIR/ccpifista
+
+$PYTHON setup-fista.py install
diff --git a/Wrappers/Python/fista-recipe/meta.yaml b/Wrappers/Python/fista-recipe/meta.yaml
new file mode 100644
index 0000000..265541f
--- /dev/null
+++ b/Wrappers/Python/fista-recipe/meta.yaml
@@ -0,0 +1,29 @@
+package:
+ name: ccpi-fista
+ version: {{ environ['CIL_VERSION'] }}
+
+
+build:
+ preserve_egg_dir: False
+ script_env:
+ - CIL_VERSION
+# number: 0
+
+requirements:
+ build:
+ - python
+ - numpy
+ - setuptools
+
+ run:
+ - python
+ - numpy
+ #- astra-toolbox
+ - ccpi-regularizers
+
+
+
+about:
+ home: http://www.ccpi.ac.uk
+ license: Apache v.2.0 license
+ summary: 'CCPi Core Imaging Library (Viewer)'
diff --git a/Wrappers/Python/fista_module.cpp b/Wrappers/Python/fista_module.cpp
new file mode 100644
index 0000000..f3add76
--- /dev/null
+++ b/Wrappers/Python/fista_module.cpp
@@ -0,0 +1,1047 @@
+/*
+This work is part of the Core Imaging Library developed by
+Visual Analytics and Imaging System Group of the Science Technology
+Facilities Council, STFC
+
+Copyright 2017 Daniil Kazantsev
+Copyright 2017 Srikanth Nagella, Edoardo Pasca
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+*/
+
+#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
+
+#include <iostream>
+#include <cmath>
+
+#include <boost/python.hpp>
+#include <boost/python/numpy.hpp>
+#include "boost/tuple/tuple.hpp"
+
+#include "SplitBregman_TV_core.h"
+#include "FGP_TV_core.h"
+#include "LLT_model_core.h"
+#include "PatchBased_Regul_core.h"
+#include "TGV_PD_core.h"
+#include "utils.h"
+
+
+
+#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64)
+#include <windows.h>
+// this trick only if compiler is MSVC
+__if_not_exists(uint8_t) { typedef __int8 uint8_t; }
+__if_not_exists(uint16_t) { typedef __int8 uint16_t; }
+#endif
+
+namespace bp = boost::python;
+namespace np = boost::python::numpy;
+
+/*! in the Matlab implementation this is called as
+void mexFunction(
+int nlhs, mxArray *plhs[],
+int nrhs, const mxArray *prhs[])
+where:
+prhs Array of pointers to the INPUT mxArrays
+nrhs int number of INPUT mxArrays
+
+nlhs Array of pointers to the OUTPUT mxArrays
+plhs int number of OUTPUT mxArrays
+
+***********************************************************
+
+***********************************************************
+double mxGetScalar(const mxArray *pm);
+args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray.
+Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double.
+***********************************************************
+char *mxArrayToString(const mxArray *array_ptr);
+args: array_ptr Pointer to mxCHAR array.
+Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array.
+Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string.
+***********************************************************
+mxClassID mxGetClassID(const mxArray *pm);
+args: pm Pointer to an mxArray
+Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types,
+mxGetClassId returns a unique value identifying the class of the array contents.
+Use mxIsClass to determine whether an array is of a specific user-defined type.
+
+mxClassID Value MATLAB Type MEX Type C Primitive Type
+mxINT8_CLASS int8 int8_T char, byte
+mxUINT8_CLASS uint8 uint8_T unsigned char, byte
+mxINT16_CLASS int16 int16_T short
+mxUINT16_CLASS uint16 uint16_T unsigned short
+mxINT32_CLASS int32 int32_T int
+mxUINT32_CLASS uint32 uint32_T unsigned int
+mxINT64_CLASS int64 int64_T long long
+mxUINT64_CLASS uint64 uint64_T unsigned long long
+mxSINGLE_CLASS single float float
+mxDOUBLE_CLASS double double double
+
+****************************************************************
+double *mxGetPr(const mxArray *pm);
+args: pm Pointer to an mxArray of type double
+Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data.
+****************************************************************
+mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims,
+mxClassID classid, mxComplexity ComplexFlag);
+args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2.
+dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension.
+For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array.
+classid Identifier for the class of the array, which determines the way the numerical data is represented in memory.
+For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer.
+ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran).
+Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran).
+If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not
+enough free heap space to create the mxArray.
+*/
+
+
+
+bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
+
+ // the result is in the following list
+ bp::list result;
+
+ int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+ //const int *dim_array;
+ float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old;
+
+ //number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ //dim_array = mxGetDimensions(prhs[0]);
+
+ number_of_dims = input.get_nd();
+ int dim_array[3];
+
+ dim_array[0] = input.shape(0);
+ dim_array[1] = input.shape(1);
+ if (number_of_dims == 2) {
+ dim_array[2] = -1;
+ }
+ else {
+ dim_array[2] = input.shape(2);
+ }
+
+ // Parameter handling is be done in Python
+ ///*Handling Matlab input data*/
+ //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+ ///*Handling Matlab input data*/
+ //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ A = reinterpret_cast<float *>(input.get_data());
+
+ //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */
+ mu = (float)d_mu;
+
+ //iter = 35; /* default iterations number */
+
+ //epsil = 0.0001; /* default tolerance constant */
+ epsil = (float)d_epsil;
+ //methTV = 0; /* default isotropic TV penalty */
+ //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */
+ //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */
+ //if (nrhs == 5) {
+ // char *penalty_type;
+ // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ // mxFree(penalty_type);
+ //}
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
+
+ lambda = 2.0f*mu;
+ count = 1;
+ re_old = 0.0f;
+ /*Handling Matlab output data*/
+ dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2];
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ //U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ //Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ //Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ //Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ //By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+ np::ndarray npDx = np::zeros(shape, dtype);
+ np::ndarray npDy = np::zeros(shape, dtype);
+ np::ndarray npBx = np::zeros(shape, dtype);
+ np::ndarray npBy = np::zeros(shape, dtype);
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ Dx = reinterpret_cast<float *>(npDx.get_data());
+ Dy = reinterpret_cast<float *>(npDy.get_data());
+ Bx = reinterpret_cast<float *>(npBx.get_data());
+ By = reinterpret_cast<float *>(npBy.get_data());
+
+
+
+ copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+
+ /* begin outer SB iterations */
+ for (ll = 0; ll < iter; ll++) {
+
+ /*storing old values*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*GS iteration */
+ gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu);
+
+ if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+ else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda);
+
+ updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j < dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j], 2);
+ re1 += pow(U_old[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*copyIm(U_old, U, dimX, dimY, dimZ); */
+
+ }
+ //printf("SB iterations stopped at iteration: %i\n", ll);
+ result.append<np::ndarray>(npU);
+ result.append<int>(ll);
+ }
+ if (number_of_dims == 3) {
+ /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+ np::ndarray npDx = np::zeros(shape, dtype);
+ np::ndarray npDy = np::zeros(shape, dtype);
+ np::ndarray npDz = np::zeros(shape, dtype);
+ np::ndarray npBx = np::zeros(shape, dtype);
+ np::ndarray npBy = np::zeros(shape, dtype);
+ np::ndarray npBz = np::zeros(shape, dtype);
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ Dx = reinterpret_cast<float *>(npDx.get_data());
+ Dy = reinterpret_cast<float *>(npDy.get_data());
+ Dz = reinterpret_cast<float *>(npDz.get_data());
+ Bx = reinterpret_cast<float *>(npBx.get_data());
+ By = reinterpret_cast<float *>(npBy.get_data());
+ Bz = reinterpret_cast<float *>(npBz.get_data());
+
+ copyIm(A, U, dimX, dimY, dimZ); /*initialize */
+
+ /* begin outer SB iterations */
+ for (ll = 0; ll<iter; ll++) {
+
+ /*storing old values*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*GS iteration */
+ gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu);
+
+ if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+ else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda);
+
+ updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U[j] - U_old[j], 2);
+ re1 += pow(U[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ /*printf("%f %i %i \n", re, ll, count); */
+ re_old = re;
+ }
+ //printf("SB iterations stopped at iteration: %i\n", ll);
+ result.append<np::ndarray>(npU);
+ result.append<int>(ll);
+ }
+ return result;
+
+ }
+
+
+
+bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) {
+
+ // the result is in the following list
+ bp::list result;
+
+ int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+ float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL;
+ float lambda, tk, tkp1, re, re1, re_old, epsil, funcval;
+
+ //number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ //dim_array = mxGetDimensions(prhs[0]);
+
+ number_of_dims = input.get_nd();
+ int dim_array[3];
+
+ dim_array[0] = input.shape(0);
+ dim_array[1] = input.shape(1);
+ if (number_of_dims == 2) {
+ dim_array[2] = -1;
+ }
+ else {
+ dim_array[2] = input.shape(2);
+ }
+ // Parameter handling is be done in Python
+ ///*Handling Matlab input data*/
+ //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')");
+
+ ///*Handling Matlab input data*/
+ //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */
+ A = reinterpret_cast<float *>(input.get_data());
+
+ //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */
+ lambda = (float)d_mu;
+
+ //iter = 35; /* default iterations number */
+
+ //epsil = 0.0001; /* default tolerance constant */
+ epsil = (float)d_epsil;
+ //methTV = 0; /* default isotropic TV penalty */
+ //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */
+ //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */
+ //if (nrhs == 5) {
+ // char *penalty_type;
+ // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */
+ // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',");
+ // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */
+ // mxFree(penalty_type);
+ //}
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
+
+ //plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL);
+ bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+ np::ndarray out1 = np::zeros(shape1, dtype);
+
+ //float *funcvalA = (float *)mxGetData(plhs[1]);
+ float * funcvalA = reinterpret_cast<float *>(out1.get_data());
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); }
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2];
+
+ tk = 1.0f;
+ tkp1 = 1.0f;
+ count = 1;
+ re_old = 0.0f;
+
+ if (number_of_dims == 2) {
+ dimZ = 1; /*2D case*/
+ /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+ np::ndarray npD = np::zeros(shape, dtype);
+ np::ndarray npD_old = np::zeros(shape, dtype);
+ np::ndarray npP1 = np::zeros(shape, dtype);
+ np::ndarray npP2 = np::zeros(shape, dtype);
+ np::ndarray npP1_old = np::zeros(shape, dtype);
+ np::ndarray npP2_old = np::zeros(shape, dtype);
+ np::ndarray npR1 = np::zeros(shape, dtype);
+ np::ndarray npR2 = np::zeros(shape, dtype);
+
+ D = reinterpret_cast<float *>(npD.get_data());
+ D_old = reinterpret_cast<float *>(npD_old.get_data());
+ P1 = reinterpret_cast<float *>(npP1.get_data());
+ P2 = reinterpret_cast<float *>(npP2.get_data());
+ P1_old = reinterpret_cast<float *>(npP1_old.get_data());
+ P2_old = reinterpret_cast<float *>(npP2_old.get_data());
+ R1 = reinterpret_cast<float *>(npR1.get_data());
+ R2 = reinterpret_cast<float *>(npR2.get_data());
+
+ /* begin iterations */
+ for (ll = 0; ll<iter; ll++) {
+ /* computing the gradient of the objective function */
+ Obj_func2D(A, D, R1, R2, lambda, dimX, dimY);
+
+ /*Taking a step towards minus of the gradient*/
+ Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY);
+
+
+
+
+ /*updating R and t*/
+ tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+ Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY);
+
+ /* calculate norm */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(D[j] - D_old[j], 2);
+ re1 += pow(D[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 3) {
+ Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+ funcval = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+ //funcvalA[0] = sqrt(funcval);
+ float fv = sqrt(funcval);
+ std::memcpy(funcvalA, &fv, sizeof(float));
+ break;
+ }
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) {
+ Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+ funcval = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+ //funcvalA[0] = sqrt(funcval);
+ float fv = sqrt(funcval);
+ std::memcpy(funcvalA, &fv, sizeof(float));
+ break;
+ }
+ }
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*storing old values*/
+ copyIm(D, D_old, dimX, dimY, dimZ);
+ copyIm(P1, P1_old, dimX, dimY, dimZ);
+ copyIm(P2, P2_old, dimX, dimY, dimZ);
+ tk = tkp1;
+
+ /* calculating the objective function value */
+ if (ll == (iter - 1)) {
+ Obj_func2D(A, D, P1, P2, lambda, dimX, dimY);
+ funcval = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+ //funcvalA[0] = sqrt(funcval);
+ float fv = sqrt(funcval);
+ std::memcpy(funcvalA, &fv, sizeof(float));
+ }
+ }
+ //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+ result.append<np::ndarray>(npD);
+ result.append<np::ndarray>(out1);
+ result.append<int>(ll);
+ }
+ if (number_of_dims == 3) {
+ /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+ np::ndarray npD = np::zeros(shape, dtype);
+ np::ndarray npD_old = np::zeros(shape, dtype);
+ np::ndarray npP1 = np::zeros(shape, dtype);
+ np::ndarray npP2 = np::zeros(shape, dtype);
+ np::ndarray npP3 = np::zeros(shape, dtype);
+ np::ndarray npP1_old = np::zeros(shape, dtype);
+ np::ndarray npP2_old = np::zeros(shape, dtype);
+ np::ndarray npP3_old = np::zeros(shape, dtype);
+ np::ndarray npR1 = np::zeros(shape, dtype);
+ np::ndarray npR2 = np::zeros(shape, dtype);
+ np::ndarray npR3 = np::zeros(shape, dtype);
+
+ D = reinterpret_cast<float *>(npD.get_data());
+ D_old = reinterpret_cast<float *>(npD_old.get_data());
+ P1 = reinterpret_cast<float *>(npP1.get_data());
+ P2 = reinterpret_cast<float *>(npP2.get_data());
+ P3 = reinterpret_cast<float *>(npP3.get_data());
+ P1_old = reinterpret_cast<float *>(npP1_old.get_data());
+ P2_old = reinterpret_cast<float *>(npP2_old.get_data());
+ P3_old = reinterpret_cast<float *>(npP3_old.get_data());
+ R1 = reinterpret_cast<float *>(npR1.get_data());
+ R2 = reinterpret_cast<float *>(npR2.get_data());
+ R3 = reinterpret_cast<float *>(npR3.get_data());
+ /* begin iterations */
+ for (ll = 0; ll<iter; ll++) {
+ /* computing the gradient of the objective function */
+ Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+ /*Taking a step towards minus of the gradient*/
+ Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ);
+
+ /* projection step */
+ Proj_func3D(P1, P2, P3, dimX, dimY, dimZ);
+
+ /*updating R and t*/
+ tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f;
+ Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ);
+
+ /* calculate norm - stopping rules*/
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(D[j] - D_old[j], 2);
+ re1 += pow(D[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ /* stop if the norm residual is less than the tolerance EPS */
+ if (re < epsil) count++;
+ if (count > 3) {
+ Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
+ funcval = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+ //funcvalA[0] = sqrt(funcval);
+ float fv = sqrt(funcval);
+ std::memcpy(funcvalA, &fv, sizeof(float));
+ break;
+ }
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) {
+ Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
+ funcval = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+ //funcvalA[0] = sqrt(funcval);
+ float fv = sqrt(funcval);
+ std::memcpy(funcvalA, &fv, sizeof(float));
+ break;
+ }
+ }
+
+ re_old = re;
+ /*printf("%f %i %i \n", re, ll, count); */
+
+ /*storing old values*/
+ copyIm(D, D_old, dimX, dimY, dimZ);
+ copyIm(P1, P1_old, dimX, dimY, dimZ);
+ copyIm(P2, P2_old, dimX, dimY, dimZ);
+ copyIm(P3, P3_old, dimX, dimY, dimZ);
+ tk = tkp1;
+
+ if (ll == (iter - 1)) {
+ Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ);
+ funcval = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2);
+ //funcvalA[0] = sqrt(funcval);
+ float fv = sqrt(funcval);
+ std::memcpy(funcvalA, &fv, sizeof(float));
+ }
+
+ }
+ //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]);
+ result.append<np::ndarray>(npD);
+ result.append<np::ndarray>(out1);
+ result.append<int>(ll);
+ }
+
+ return result;
+}
+
+bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) {
+ // the result is in the following list
+ bp::list result;
+
+ int number_of_dims, dimX, dimY, dimZ, ll, j, count;
+ //const int *dim_array;
+ float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old;
+ unsigned short *Map = NULL;
+
+ number_of_dims = input.get_nd();
+ int dim_array[3];
+
+ dim_array[0] = input.shape(0);
+ dim_array[1] = input.shape(1);
+ if (number_of_dims == 2) {
+ dim_array[2] = -1;
+ }
+ else {
+ dim_array[2] = input.shape(2);
+ }
+
+ ///*Handling Matlab input data*/
+ //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+ //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
+ //tau = (float)mxGetScalar(prhs[2]); /* time-step */
+ //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/
+ //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */
+ //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/
+
+ U0 = reinterpret_cast<float *>(input.get_data());
+ lambda = (float)d_lambda;
+ tau = (float)d_tau;
+ // iter is passed as parameter
+ epsil = (float)d_epsil;
+ // switcher is passed as parameter
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1;
+
+ if (number_of_dims == 2) {
+ /*2D case*/
+ /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+ np::ndarray npD1 = np::zeros(shape, dtype);
+ np::ndarray npD2 = np::zeros(shape, dtype);
+
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ D1 = reinterpret_cast<float *>(npD1.get_data());
+ D2 = reinterpret_cast<float *>(npD2.get_data());
+
+ /*Copy U0 to U*/
+ copyIm(U0, U, dimX, dimY, dimZ);
+
+ count = 1;
+ re_old = 0.0f;
+
+ for (ll = 0; ll < iter; ll++) {
+
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*estimate inner derrivatives */
+ der2D(U, D1, D2, dimX, dimY, dimZ);
+ /* calculate div^2 and update */
+ div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j], 2);
+ re1 += pow(U_old[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+
+ } /*end of iterations*/
+ //printf("HO iterations stopped at iteration: %i\n", ll);
+
+ result.append<np::ndarray>(npU);
+ }
+ else if (number_of_dims == 3) {
+ /*3D case*/
+ dimZ = dim_array[2];
+ /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));
+ if (switcher != 0) {
+ Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+ }*/
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+ np::ndarray npD1 = np::zeros(shape, dtype);
+ np::ndarray npD2 = np::zeros(shape, dtype);
+ np::ndarray npD3 = np::zeros(shape, dtype);
+ np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>());
+ Map = reinterpret_cast<unsigned short *>(npMap.get_data());
+ if (switcher != 0) {
+ //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL));
+
+ Map = reinterpret_cast<unsigned short *>(npMap.get_data());
+ }
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ D1 = reinterpret_cast<float *>(npD1.get_data());
+ D2 = reinterpret_cast<float *>(npD2.get_data());
+ D3 = reinterpret_cast<float *>(npD2.get_data());
+
+ /*Copy U0 to U*/
+ copyIm(U0, U, dimX, dimY, dimZ);
+
+ count = 1;
+ re_old = 0.0f;
+
+
+ if (switcher == 1) {
+ /* apply restrictive smoothing */
+ calcMap(U, Map, dimX, dimY, dimZ);
+ /*clear outliers */
+ cleanMap(Map, dimX, dimY, dimZ);
+ }
+ for (ll = 0; ll < iter; ll++) {
+
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*estimate inner derrivatives */
+ der3D(U, D1, D2, D3, dimX, dimY, dimZ);
+ /* calculate div^2 and update */
+ div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau);
+
+ /* calculate norm to terminate earlier */
+ re = 0.0f; re1 = 0.0f;
+ for (j = 0; j<dimX*dimY*dimZ; j++)
+ {
+ re += pow(U_old[j] - U[j], 2);
+ re1 += pow(U_old[j], 2);
+ }
+ re = sqrt(re) / sqrt(re1);
+ if (re < epsil) count++;
+ if (count > 4) break;
+
+ /* check that the residual norm is decreasing */
+ if (ll > 2) {
+ if (re > re_old) break;
+ }
+ re_old = re;
+
+ } /*end of iterations*/
+ //printf("HO iterations stopped at iteration: %i\n", ll);
+ result.append<np::ndarray>(npU);
+ if (switcher != 0) result.append<np::ndarray>(npMap);
+
+ }
+ return result;
+}
+
+
+bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW, double d_h) {
+ // the result is in the following list
+ bp::list result;
+
+ int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop;
+ //const int *dims;
+ float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda;
+
+ numdims = input.get_nd();
+ int dims[3];
+
+ dims[0] = input.shape(0);
+ dims[1] = input.shape(1);
+ if (numdims == 2) {
+ dims[2] = -1;
+ }
+ else {
+ dims[2] = input.shape(2);
+ }
+ /*numdims = mxGetNumberOfDimensions(prhs[0]);
+ dims = mxGetDimensions(prhs[0]);*/
+
+ N = dims[0];
+ M = dims[1];
+ Z = dims[2];
+
+ //if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); }
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+
+ //if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter");
+
+ ///*Handling inputs*/
+ //A = (float *)mxGetData(prhs[0]); /* the image to regularize/filter */
+ A = reinterpret_cast<float *>(input.get_data());
+ //SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */
+ //SimilW = (int)mxGetScalar(prhs[2]); /* the similarity window ratio */
+ //h = (float)mxGetScalar(prhs[3]); /* parameter for the PB filtering function */
+ //lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */
+
+ //if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0");
+ //if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0");
+
+ lambda = (float)d_lambda;
+ h = (float)d_h;
+ SearchW = SearchW_real + 2 * SimilW;
+
+ /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */
+ /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */
+
+
+ padXY = SearchW + 2 * SimilW; /* padding sizes */
+ newsizeX = N + 2 * (padXY); /* the X size of the padded array */
+ newsizeY = M + 2 * (padXY); /* the Y size of the padded array */
+ newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */
+ int N_dims[] = { newsizeX, newsizeY, newsizeZ };
+ /******************************2D case ****************************/
+ if (numdims == 2) {
+ ///*Handling output*/
+ //B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL));
+ ///*allocating memory for the padded arrays */
+ //Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+ //Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL));
+ ///**************************************************************************/
+
+ bp::tuple shape = bp::make_tuple(N, M);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+ np::ndarray npB = np::zeros(shape, dtype);
+
+ shape = bp::make_tuple(newsizeX, newsizeY);
+ np::ndarray npAp = np::zeros(shape, dtype);
+ np::ndarray npBp = np::zeros(shape, dtype);
+ B = reinterpret_cast<float *>(npB.get_data());
+ Ap = reinterpret_cast<float *>(npAp.get_data());
+ Bp = reinterpret_cast<float *>(npBp.get_data());
+
+ /*Perform padding of image A to the size of [newsizeX * newsizeY] */
+ switchpad_crop = 0; /*padding*/
+ pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+
+ /* Do PB regularization with the padded array */
+ PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda);
+
+ switchpad_crop = 1; /*cropping*/
+ pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop);
+
+ result.append<np::ndarray>(npB);
+ }
+ else
+ {
+ /******************************3D case ****************************/
+ ///*Handling output*/
+ //B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL));
+ ///*allocating memory for the padded arrays */
+ //Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ //Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL));
+ /**************************************************************************/
+ bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]);
+ bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+ np::ndarray npB = np::zeros(shape, dtype);
+ np::ndarray npAp = np::zeros(shape_AB, dtype);
+ np::ndarray npBp = np::zeros(shape_AB, dtype);
+ B = reinterpret_cast<float *>(npB.get_data());
+ Ap = reinterpret_cast<float *>(npAp.get_data());
+ Bp = reinterpret_cast<float *>(npBp.get_data());
+ /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */
+ switchpad_crop = 0; /*padding*/
+ pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+
+ /* Do PB regularization with the padded array */
+ PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda);
+
+ switchpad_crop = 1; /*cropping*/
+ pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop);
+
+ result.append<np::ndarray>(npB);
+ } /*end else ndims*/
+
+ return result;
+}
+
+bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) {
+ // the result is in the following list
+ bp::list result;
+ int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll;
+ //const int *dim_array;
+ float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0;
+
+ //number_of_dims = mxGetNumberOfDimensions(prhs[0]);
+ //dim_array = mxGetDimensions(prhs[0]);
+ number_of_dims = input.get_nd();
+ int dim_array[3];
+
+ dim_array[0] = input.shape(0);
+ dim_array[1] = input.shape(1);
+ if (number_of_dims == 2) {
+ dim_array[2] = -1;
+ }
+ else {
+ dim_array[2] = input.shape(2);
+ }
+ /*Handling Matlab input data*/
+ //A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/
+ //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); }
+
+ A = reinterpret_cast<float *>(input.get_data());
+
+ //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/
+ //alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/
+ //alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/
+ //iter = (int)mxGetScalar(prhs[4]); /*iterations number*/
+ //if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations");
+ lambda = (float)d_lambda;
+ alpha1 = (float)d_alpha1;
+ alpha0 = (float)d_alpha0;
+
+ /*Handling Matlab output data*/
+ dimX = dim_array[0]; dimY = dim_array[1];
+
+ if (number_of_dims == 2) {
+ /*2D case*/
+ dimZ = 1;
+ bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]);
+ np::dtype dtype = np::dtype::get_builtin<float>();
+
+ np::ndarray npU = np::zeros(shape, dtype);
+ np::ndarray npP1 = np::zeros(shape, dtype);
+ np::ndarray npP2 = np::zeros(shape, dtype);
+ np::ndarray npQ1 = np::zeros(shape, dtype);
+ np::ndarray npQ2 = np::zeros(shape, dtype);
+ np::ndarray npQ3 = np::zeros(shape, dtype);
+ np::ndarray npV1 = np::zeros(shape, dtype);
+ np::ndarray npV1_old = np::zeros(shape, dtype);
+ np::ndarray npV2 = np::zeros(shape, dtype);
+ np::ndarray npV2_old = np::zeros(shape, dtype);
+ np::ndarray npU_old = np::zeros(shape, dtype);
+
+ U = reinterpret_cast<float *>(npU.get_data());
+ U_old = reinterpret_cast<float *>(npU_old.get_data());
+ P1 = reinterpret_cast<float *>(npP1.get_data());
+ P2 = reinterpret_cast<float *>(npP2.get_data());
+ Q1 = reinterpret_cast<float *>(npQ1.get_data());
+ Q2 = reinterpret_cast<float *>(npQ2.get_data());
+ Q3 = reinterpret_cast<float *>(npQ3.get_data());
+ V1 = reinterpret_cast<float *>(npV1.get_data());
+ V1_old = reinterpret_cast<float *>(npV1_old.get_data());
+ V2 = reinterpret_cast<float *>(npV2.get_data());
+ V2_old = reinterpret_cast<float *>(npV2_old.get_data());
+ //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ /*dual variables*/
+ /*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+
+ V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));
+ V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/
+ /*printf("%i \n", i);*/
+ L2 = 12.0; /*Lipshitz constant*/
+ tau = 1.0 / pow(L2, 0.5);
+ sigma = 1.0 / pow(L2, 0.5);
+
+ /*Copy A to U*/
+ copyIm(A, U, dimX, dimY, dimZ);
+ /* Here primal-dual iterations begin for 2D */
+ for (ll = 0; ll < iter; ll++) {
+
+ /* Calculate Dual Variable P */
+ DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma);
+
+ /*Projection onto convex set for P*/
+ ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1);
+
+ /* Calculate Dual Variable Q */
+ DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma);
+
+ /*Projection onto convex set for Q*/
+ ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0);
+
+ /*saving U into U_old*/
+ copyIm(U, U_old, dimX, dimY, dimZ);
+
+ /*adjoint operation -> divergence and projection of P*/
+ DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau);
+
+ /*get updated solution U*/
+ newU(U, U_old, dimX, dimY, dimZ);
+
+ /*saving V into V_old*/
+ copyIm(V1, V1_old, dimX, dimY, dimZ);
+ copyIm(V2, V2_old, dimX, dimY, dimZ);
+
+ /* upd V*/
+ UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau);
+
+ /*get new V*/
+ newU(V1, V1_old, dimX, dimY, dimZ);
+ newU(V2, V2_old, dimX, dimY, dimZ);
+ } /*end of iterations*/
+
+ result.append<np::ndarray>(npU);
+ }
+
+
+
+
+ return result;
+}
+
+BOOST_PYTHON_MODULE(cpu_regularizers)
+{
+ np::initialize();
+
+ //To specify that this module is a package
+ bp::object package = bp::scope();
+ package.attr("__path__") = "cpu_regularizers";
+
+ np::dtype dt1 = np::dtype::get_builtin<uint8_t>();
+ np::dtype dt2 = np::dtype::get_builtin<uint16_t>();
+
+ def("SplitBregman_TV", SplitBregman_TV);
+ def("FGP_TV", FGP_TV);
+ def("LLT_model", LLT_model);
+ def("PatchBased_Regul", PatchBased_Regul);
+ def("TGV_PD", TGV_PD);
+}
diff --git a/Wrappers/Python/setup-fista.py.in b/Wrappers/Python/setup-fista.py.in
new file mode 100644
index 0000000..c5c9f4d
--- /dev/null
+++ b/Wrappers/Python/setup-fista.py.in
@@ -0,0 +1,27 @@
+from distutils.core import setup
+#from setuptools import setup, find_packages
+import os
+
+cil_version=os.environ['CIL_VERSION']
+if cil_version == '':
+ print("Please set the environmental variable CIL_VERSION")
+ sys.exit(1)
+
+setup(
+ name="ccpi-fista",
+ version=cil_version,
+ packages=['ccpi','ccpi.reconstruction'],
+ install_requires=['numpy'],
+
+ zip_safe = False,
+
+ # metadata for upload to PyPI
+ author="Edoardo Pasca",
+ author_email="edo.paskino@gmail.com",
+ description='CCPi Core Imaging Library - FISTA Reconstructor module',
+ license="Apache v2.0",
+ keywords="tomography interative reconstruction",
+ url="http://www.ccpi.ac.uk", # project home page, if any
+
+ # could also include long_description, download_url, classifiers, etc.
+)
diff --git a/Wrappers/Python/setup.py.in b/Wrappers/Python/setup.py.in
new file mode 100644
index 0000000..12e8af1
--- /dev/null
+++ b/Wrappers/Python/setup.py.in
@@ -0,0 +1,69 @@
+#!/usr/bin/env python
+
+import setuptools
+from distutils.core import setup
+from distutils.extension import Extension
+from Cython.Distutils import build_ext
+
+import os
+import sys
+import numpy
+import platform
+
+cil_version=@CIL_VERSION@
+
+library_include_path = ""
+library_lib_path = ""
+try:
+ library_include_path = os.environ['LIBRARY_INC']
+ library_lib_path = os.environ['LIBRARY_LIB']
+except:
+ library_include_path = os.environ['PREFIX']+'/include'
+ pass
+
+extra_include_dirs = [numpy.get_include(), library_include_path]
+extra_library_dirs = [os.path.join(library_include_path, "..", "lib")]
+extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x']
+extra_libraries = []
+extra_include_dirs += [os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU"),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_GPU") ,
+ "@CMAKE_CURRENT_SOURCE_DIR@"]
+
+if platform.system() == 'Windows':
+ extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ]
+
+ if sys.version_info.major == 3 :
+ extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64']
+ else:
+ extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64']
+else:
+ if sys.version_info.major == 3:
+ extra_libraries += ['boost_python3', 'boost_numpy3','gomp']
+ else:
+ extra_libraries += ['boost_python', 'boost_numpy','gomp']
+
+setup(
+ name='ccpi',
+ description='CCPi Core Imaging Library - Image Regularizers',
+ version=cil_version,
+ cmdclass = {'build_ext': build_ext},
+ ext_modules = [Extension("ccpi.imaging.cpu_regularizers",
+ sources=[os.path.join("@CMAKE_CURRENT_SOURCE_DIR@" , "fista_module.cpp" ),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "FGP_TV_core.c"),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "SplitBregman_TV_core.c"),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "LLT_model_core.c"),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "PatchBased_Regul_core.c"),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "TGV_PD_core.c"),
+ os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "utils.c")
+ ],
+ include_dirs=extra_include_dirs,
+ library_dirs=extra_library_dirs,
+ extra_compile_args=extra_compile_args,
+ libraries=extra_libraries ),
+
+ ],
+ zip_safe = False,
+ packages = {'ccpi','ccpi.imaging'},
+)
+
+
diff --git a/Wrappers/Python/test/astra_test.py b/Wrappers/Python/test/astra_test.py
new file mode 100644
index 0000000..42c375a
--- /dev/null
+++ b/Wrappers/Python/test/astra_test.py
@@ -0,0 +1,85 @@
+import astra
+import numpy
+import filefun
+
+
+# read in the same data as the DemoRD2
+angles = filefun.dlmread("DemoRD2/angles.csv")
+darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",")
+flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",")
+
+if True:
+ Sino3D = numpy.load("DemoRD2/Sino3D.npy")
+else:
+ sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",")
+ a = map (lambda x:x, numpy.shape(sino))
+ a.append(20)
+
+ Sino3D = numpy.zeros(tuple(a), dtype="float")
+
+ for i in range(1,numpy.shape(Sino3D)[2]+1):
+ print("Read file DemoRD2/sino_%02d.csv" % i)
+ sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",")
+ Sino3D.T[i-1] = sino.T
+
+Weights3D = numpy.asarray(Sino3D, dtype="float")
+
+##angles_rad = angles*(pi/180); % conversion to radians
+##size_det = size(data_raw3D,1); % detectors dim
+##angSize = size(data_raw3D, 2); % angles dim
+##slices_tot = size(data_raw3D, 3); % no of slices
+##recon_size = 950; % reconstruction size
+
+
+angles_rad = angles * numpy.pi /180.
+size_det, angSize, slices_tot = numpy.shape(Sino3D)
+size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)]
+recon_size = 950
+Z_slices = 3;
+det_row_count = Z_slices;
+
+#proj_geom = astra_create_proj_geom('parallel3d', 1, 1,
+# det_row_count, size_det, angles_rad);
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+proj_geom = astra.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ size_det,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices);
+
+sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float")
+
+#weights = ones(size(sino));
+weights = numpy.ones(numpy.shape(sino))
+
+#####################################################################
+## PowerMethod for Lipschitz constant
+
+N = vol_geom['GridColCount']
+x1 = numpy.random.rand(1,N,N)
+#sqweight = sqrt(weights(:,:,1));
+sqweight = numpy.sqrt(weights.T[0]).T
+##proj_geomT = proj_geom;
+proj_geomT = proj_geom.copy()
+##proj_geomT.DetectorRowCount = 1;
+proj_geomT['DetectorRowCount'] = 1
+##vol_geomT = vol_geom;
+vol_geomT = vol_geom.copy()
+##vol_geomT.GridSliceCount = 1;
+vol_geomT['GridSliceCount'] = 1
+
+##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
+
+#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
+sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT);
+
+##y = sqweight.*y;
+##astra_mex_data3d('delete', sino_id);
+
+
diff --git a/Wrappers/Python/test/create_phantom_projections.py b/Wrappers/Python/test/create_phantom_projections.py
new file mode 100644
index 0000000..20a9278
--- /dev/null
+++ b/Wrappers/Python/test/create_phantom_projections.py
@@ -0,0 +1,49 @@
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+import h5py
+import numpy
+import matplotlib.pyplot as plt
+
+nx = h5py.File('phant3D_256.h5', "r")
+phantom = numpy.asarray(nx.get('/dataset1'))
+pX,pY,pZ = numpy.shape(phantom)
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nxa = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nxa['/'].keys()]
+print (entries)
+
+angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32")
+
+
+device = AstraDevice(
+ DeviceModel.DeviceType.PARALLEL3D.value,
+ [ pX , pY , 1., 1., angles_rad],
+ [ pX, pY, pZ ] )
+
+
+proj = device.doForwardProject(phantom)
+stack = [proj[:,i,:] for i in range(len(angles_rad))]
+stack = numpy.asarray(stack)
+
+
+fig = plt.figure()
+a=fig.add_subplot(1,2,1)
+a.set_title('proj')
+imgplot = plt.imshow(proj[:,100,:])
+a=fig.add_subplot(1,2,2)
+a.set_title('stack')
+imgplot = plt.imshow(stack[100])
+plt.show()
+
+pf = h5py.File("phantom3D256_projections.h5" , "w")
+pf.create_dataset("/projections", data=stack)
+pf.create_dataset("/sinogram", data=proj)
+pf.create_dataset("/angles", data=angles_rad)
+pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ]))
+pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ]))
+pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.]))
+pf.flush()
+pf.close()
diff --git a/Wrappers/Python/test/readhd5.py b/Wrappers/Python/test/readhd5.py
new file mode 100644
index 0000000..eff6c43
--- /dev/null
+++ b/Wrappers/Python/test/readhd5.py
@@ -0,0 +1,42 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+"""
+
+import h5py
+import numpy
+
+def getEntry(nx, location):
+ for item in nx[location].keys():
+ print (item)
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'))
+Weights3D = numpy.asarray(nx.get('/Weights3D'))
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'))
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+#from ccpi.viewer.CILViewer2D import CILViewer2D
+#v = CILViewer2D()
+#v.setInputAsNumpy(Weights3D)
+#v.startRenderLoop()
+
+import matplotlib.pyplot as plt
+fig = plt.figure()
+
+a=fig.add_subplot(1,1,1)
+a.set_title('noise')
+imgplot = plt.imshow(Weights3D[0].T)
+plt.show()
diff --git a/Wrappers/Python/test/simple_astra_test.py b/Wrappers/Python/test/simple_astra_test.py
new file mode 100644
index 0000000..905eeea
--- /dev/null
+++ b/Wrappers/Python/test/simple_astra_test.py
@@ -0,0 +1,25 @@
+import astra
+import numpy
+
+detectorSpacingX = 1.0
+detectorSpacingY = 1.0
+det_row_count = 128
+det_col_count = 128
+
+angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+image_size_x = 64
+image_size_y = 64
+image_size_z = 32
+
+vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z)
+
+x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x)
+sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom)
diff --git a/Wrappers/Python/test/test_reconstructor-os_phantom.py b/Wrappers/Python/test/test_reconstructor-os_phantom.py
new file mode 100644
index 0000000..01f1354
--- /dev/null
+++ b/Wrappers/Python/test/test_reconstructor-os_phantom.py
@@ -0,0 +1,480 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+#from ccpi.viewer.CILViewer2D import *
+
+
+def RMSE(signal1, signal2):
+ '''RMSE Root Mean Squared Error'''
+ if numpy.shape(signal1) == numpy.shape(signal2):
+ err = (signal1 - signal2)
+ err = numpy.sum( err * err )/numpy.size(signal1); # MSE
+ err = sqrt(err); # RMSE
+ return err
+ else:
+ raise Exception('Input signals must have the same shape')
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+projections = numpy.asarray(nx.get('/projections'), dtype="float32")
+#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32")
+angSize = numpy.size(angles_rad)
+image_size_x, image_size_y, image_size_z = \
+ numpy.asarray(nx.get('/reconstruction_volume'), dtype=int)
+det_col_count, det_row_count = \
+ numpy.asarray(nx.get('/camera/size'))
+#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int)
+
+Z_slices = 20
+#det_row_count = image_size_y
+# next definition is just for consistency of naming
+#det_col_count = image_size_x
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+##image_size_x = recon_size
+##image_size_y = recon_size
+##image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+ image_size_y,
+ image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [proj_geom['DetectorRowCount'] ,
+ proj_geom['DetectorColCount'] ,
+ proj_geom['DetectorSpacingX'] ,
+ proj_geom['DetectorSpacingY'] ,
+ proj_geom['ProjectionAngles']
+ ],
+ [
+ vol_geom['GridColCount'],
+ vol_geom['GridRowCount'],
+ vol_geom['GridSliceCount'] ] )
+## create the sinogram
+Sino3D = numpy.transpose(projections, axes=[1,0,2])
+
+fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ #weights=Weights3D,
+ device=astradevice)
+
+print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+fistaRecon.setParameter(number_of_iterations = 4)
+#fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+fistaRecon.setParameter(ring_alpha = 21)
+fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+#fistaRecon.setParameter(ring_lambda_R_L1 = 0)
+subsets = 8
+fistaRecon.setParameter(subsets=subsets)
+
+
+#reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+#reg.setParameter(regularization_parameter=0.005,
+# number_of_iterations=50)
+reg = Regularizer(Regularizer.Algorithm.FGP_TV)
+reg.setParameter(regularization_parameter=5e6,
+ tolerance_constant=0.0001,
+ number_of_iterations=50)
+
+#fistaRecon.setParameter(regularizer=reg)
+#lc = fistaRecon.getParameter('Lipschitz_constant')
+#reg.setParameter(regularization_parameter=5e6/lc)
+
+## Ordered subset
+if True:
+ #subsets = 8
+ fistaRecon.setParameter(subsets=subsets)
+ fistaRecon.createOrderedSubsets()
+else:
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+ #binEdges = numpy.linspace(angles.min(),
+ # angles.max(),
+ # subsets + 1)
+ binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+ # get rearranged subset indices
+ IndicesReorg = numpy.zeros((numpy.shape(angles)))
+ counterM = 0
+ for ii in range(binsDiscr.max()):
+ counter = 0
+ for jj in range(subsets):
+ curr_index = ii + jj + counter
+ #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+ if binsDiscr[jj] > ii:
+ if (counterM < numpy.size(IndicesReorg)):
+ IndicesReorg[counterM] = curr_index
+ counterM = counterM + 1
+
+ counter = counter + binsDiscr[jj] - 1
+
+
+if True:
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ print ("prepare for iteration")
+ fistaRecon.prepareForIteration()
+
+
+
+ print("initializing ...")
+ if True:
+ # if X doesn't exist
+ #N = params.vol_geom.GridColCount
+ N = vol_geom['GridColCount']
+ print ("N " + str(N))
+ X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)),
+ dtype=numpy.float) * 0.001
+ X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)),
+ dtype=numpy.float)
+ else:
+ #X = fistaRecon.initialize()
+ X = numpy.load("X.npy")
+
+ print (numpy.shape(X))
+ X_t = X.copy()
+ print ("initialized")
+ proj_geom , vol_geom, sino , \
+ SlicesZ, weights , alpha_ring = fistaRecon.getParameter(
+ ['projector_geometry' , 'output_geometry',
+ 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha'])
+ lambdaR_L1 , alpha_ring , weights , L_const= \
+ fistaRecon.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant'])
+
+ #fistaRecon.setParameter(number_of_iterations = 3)
+ iterFISTA = fistaRecon.getParameter('number_of_iterations')
+ # errors vector (if the ground truth is given)
+ Resid_error = numpy.zeros((iterFISTA));
+ # objective function values vector
+ objective = numpy.zeros((iterFISTA));
+
+
+ t = 1
+
+
+ ## additional for
+ proj_geomSUB = proj_geom.copy()
+ fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram']))
+ residual2 = fistaRecon.residual2
+ sino_updt_FULL = fistaRecon.residual.copy()
+ r_x = fistaRecon.r.copy()
+
+ results = []
+ print ("starting iterations")
+## % Outer FISTA iterations loop
+ for i in range(fistaRecon.getParameter('number_of_iterations')):
+## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
+## % one solution is to work with a full sinogram at times
+## if ((i >= 3) && (lambdaR_L1 > 0))
+## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
+## astra_mex_data3d('delete', sino_id2);
+## end
+ # With OS approach it becomes trickier to correlate independent subsets,
+ # hence additional work is required one solution is to work with a full
+ # sinogram at times
+
+
+ #t_old = t
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(fistaRecon.getParameter('input_sinogram'))
+ ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
+ r_old = fistaRecon.r.copy()
+
+ if (i > 1 and lambdaR_L1 > 0) :
+ for kkk in range(anglesNumb):
+
+ residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt_FULL[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ #r_old = fistaRecon.r.copy()
+ vec = fistaRecon.residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:] # 1 or 0?
+ r_x = fistaRecon.r_x
+ # update ring variable
+ fistaRecon.r = (r_x - (1./L_const) * vec)
+
+ # subset loop
+ counterInd = 1
+ geometry_type = fistaRecon.getParameter('projector_geometry')['type']
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+
+## if geometry_type == 'parallel' or \
+## geometry_type == 'fanflat' or \
+## geometry_type == 'fanflat_vec' :
+##
+## for kkk in range(SlicesZ):
+## sino_id, sinoT[kkk] = \
+## astra.creators.create_sino3d_gpu(
+## X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
+## sino_updt_Sub[kkk] = sinoT.T.copy()
+##
+## else:
+## sino_id, sino_updt_Sub = \
+## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
+##
+## astra.matlab.data3d('delete', sino_id)
+
+ for ss in range(fistaRecon.getParameter('subsets')):
+ print ("Subset {0}".format(ss))
+ X_old = X.copy()
+ t_old = t
+ print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t))
+
+ # the number of projections per subset
+ numProjSub = fistaRecon.getParameter('os_bins')[ss]
+ CurrSubIndices = fistaRecon.getParameter('os_indices')\
+ [counterInd:counterInd+numProjSub]
+ shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
+ shape[1] = numProjSub
+ sino_updt_Sub = numpy.zeros(shape)
+
+ #print ("Len CurrSubIndices {0}".format(numProjSub))
+ mask = numpy.zeros(numpy.shape(angles), dtype=bool)
+ cc = 0
+ for j in range(len(CurrSubIndices)):
+ mask[int(CurrSubIndices[j])] = True
+
+ ## this is a reduced device
+ rdev = fistaRecon.getParameter('device_model')\
+ .createReducedDevice(proj_par={'angles' : angles[mask]},
+ vol_par={})
+ proj_geomSUB['ProjectionAngles'] = angles[mask]
+
+
+
+ if geometry_type == 'parallel' or \
+ geometry_type == 'fanflat' or \
+ geometry_type == 'fanflat_vec' :
+
+ for kkk in range(SlicesZ):
+ sino_id, sinoT = astra.creators.create_sino3d_gpu (
+ X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
+ sino_updt_Sub[kkk] = sinoT.T.copy()
+ astra.matlab.data3d('delete', sino_id)
+ else:
+ # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8)
+ sino_id, sino_updt_Sub = \
+ astra.creators.create_sino3d_gpu (X_t,
+ proj_geomSUB,
+ vol_geom)
+
+ astra.matlab.data3d('delete', sino_id)
+
+
+
+
+ ## RING REMOVAL
+ residual = fistaRecon.residual
+
+
+ if lambdaR_L1 > 0 :
+ print ("ring removal")
+ residualSub = numpy.zeros(shape)
+ ## for a chosen subset
+ ## for kkk = 1:numProjSub
+ ## indC = CurrSubIndeces(kkk);
+ ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
+ ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
+ ## end
+ for kkk in range(numProjSub):
+ #print ("ring removal indC ... {0}".format(kkk))
+ indC = int(CurrSubIndices[kkk])
+ residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
+ (sino_updt_Sub[:,kkk,:].squeeze() - \
+ sino[:,indC,:].squeeze() - alpha_ring * r_x)
+ # filling the full sinogram
+ sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
+
+ else:
+ #PWLS model
+ # I guess we need to use mask here instead
+ residualSub = weights[:,CurrSubIndices,:] * \
+ ( sino_updt_Sub - \
+ sino[:,CurrSubIndices,:].squeeze() )
+ # it seems that in the original code the following like is not
+ # calculated in the case of ring removal
+ objective[i] = 0.5 * numpy.linalg.norm(residualSub)
+
+ #backprojection
+ if geometry_type == 'parallel' or \
+ geometry_type == 'fanflat' or \
+ geometry_type == 'fanflat_vec' :
+ # if geometry is 2D use slice-by-slice projection-backprojection
+ # routine
+ x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residualSub[kkk:kkk+1],
+ proj_geomSUB, vol_geom)
+ astra.matlab.data3d('delete', x_id)
+
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residualSub, proj_geomSUB, vol_geom)
+
+ astra.matlab.data3d('delete', x_id)
+
+ X = X_t - (1/L_const) * x_temp
+
+
+
+ ## REGULARIZATION
+ ## SKIPPING FOR NOW
+ ## Should be simpli
+ # regularizer = fistaRecon.getParameter('regularizer')
+ # for slices:
+ # out = regularizer(input=X)
+ print ("regularizer")
+ reg = fistaRecon.getParameter('regularizer')
+
+ if reg is not None:
+ X = reg(input=X,
+ output_all=False)
+
+ t = (1 + numpy.sqrt(1 + 4 * t **2))/2
+ X_t = X + (((t_old -1)/t) * (X-X_old))
+ counterInd = counterInd + numProjSub - 1
+ if i == 1:
+ r_old = fistaRecon.r.copy()
+
+ ## FINAL
+ print ("final")
+ lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+ if lambdaR_L1 > 0:
+ fistaRecon.r = numpy.max(
+ numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+ numpy.sign(fistaRecon.r)
+ # updating r
+ r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old)
+
+
+ if fistaRecon.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], objective[i]))
+
+ results.append(X[10])
+ numpy.save("X_out_os.npy", X)
+
+else:
+
+
+
+ astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [proj_geom['DetectorRowCount'] ,
+ proj_geom['DetectorColCount'] ,
+ proj_geom['DetectorSpacingX'] ,
+ proj_geom['DetectorSpacingY'] ,
+ proj_geom['ProjectionAngles']
+ ],
+ [
+ vol_geom['GridColCount'],
+ vol_geom['GridRowCount'],
+ vol_geom['GridSliceCount'] ] )
+ regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+ regul.setParameter(regularization_parameter=5e6,
+ number_of_iterations=50,
+ tolerance_constant=1e-4,
+ TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
+ fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ weights=Weights3D,
+ device=astradevice,
+ #regularizer = regul,
+ subsets=8)
+
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ fistaRecon.setParameter(number_of_iterations = 1)
+ fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+ fistaRecon.setParameter(ring_alpha = 21)
+ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+ #fistaRecon.setParameter(subsets=8)
+
+ #lc = fistaRecon.getParameter('Lipschitz_constant')
+ #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
+
+ fistaRecon.prepareForIteration()
+ X = fistaRecon.iterate(numpy.load("X.npy"))
+
+
+# plot
+fig = plt.figure()
+cols = 3
+
+## add the difference
+rd = []
+for i in range(1,len(results)):
+ rd.append(results[i-1])
+ rd.append(results[i])
+ rd.append(results[i] - results[i-1])
+
+rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \
+ (len (rd))
+for i in range(len (results)):
+ a=fig.add_subplot(rows,cols,i+1)
+ imgplot = plt.imshow(results[i], vmin=0, vmax=1)
+ a.text(0.05, 0.95, "iteration {0}".format(i),
+ verticalalignment='top')
+## i = i + 1
+## a=fig.add_subplot(rows,cols,i+1)
+## imgplot = plt.imshow(results[i], vmin=0, vmax=10)
+## a.text(0.05, 0.95, "iteration {0}".format(i),
+## verticalalignment='top')
+
+## a=fig.add_subplot(rows,cols,i+2)
+## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10)
+## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1),
+## verticalalignment='top')
+
+
+
+plt.show()
diff --git a/Wrappers/Python/test/test_reconstructor.py b/Wrappers/Python/test/test_reconstructor.py
new file mode 100644
index 0000000..40065e7
--- /dev/null
+++ b/Wrappers/Python/test/test_reconstructor.py
@@ -0,0 +1,359 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Aug 23 16:34:49 2017
+
+@author: ofn77899
+Based on DemoRD2.m
+"""
+
+import h5py
+import numpy
+
+from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
+import astra
+import matplotlib.pyplot as plt
+from ccpi.imaging.Regularizer import Regularizer
+from ccpi.reconstruction.AstraDevice import AstraDevice
+from ccpi.reconstruction.DeviceModel import DeviceModel
+
+def RMSE(signal1, signal2):
+ '''RMSE Root Mean Squared Error'''
+ if numpy.shape(signal1) == numpy.shape(signal2):
+ err = (signal1 - signal2)
+ err = numpy.sum( err * err )/numpy.size(signal1); # MSE
+ err = sqrt(err); # RMSE
+ return err
+ else:
+ raise Exception('Input signals must have the same shape')
+
+def createAstraDevice(projector_geometry, output_geometry):
+ '''TODO remove'''
+
+ device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [projector_geometry['DetectorRowCount'] ,
+ projector_geometry['DetectorColCount'] ,
+ projector_geometry['DetectorSpacingX'] ,
+ projector_geometry['DetectorSpacingY'] ,
+ projector_geometry['ProjectionAngles']
+ ],
+ [
+ output_geometry['GridColCount'],
+ output_geometry['GridRowCount'],
+ output_geometry['GridSliceCount'] ] )
+ return device
+
+filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
+nx = h5py.File(filename, "r")
+#getEntry(nx, '/')
+# I have exported the entries as children of /
+entries = [entry for entry in nx['/'].keys()]
+print (entries)
+
+Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
+Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
+angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
+angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
+recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
+size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
+slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
+
+Z_slices = 20
+det_row_count = Z_slices
+# next definition is just for consistency of naming
+det_col_count = size_det
+
+detectorSpacingX = 1.0
+detectorSpacingY = detectorSpacingX
+
+
+proj_geom = astra.creators.create_proj_geom('parallel3d',
+ detectorSpacingX,
+ detectorSpacingY,
+ det_row_count,
+ det_col_count,
+ angles_rad)
+
+#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
+image_size_x = recon_size
+image_size_y = recon_size
+image_size_z = Z_slices
+vol_geom = astra.creators.create_vol_geom( image_size_x,
+ image_size_y,
+ image_size_z)
+
+## First pass the arguments to the FISTAReconstructor and test the
+## Lipschitz constant
+
+##fistaRecon = FISTAReconstructor(proj_geom,
+## vol_geom,
+## Sino3D ,
+## weights=Weights3D)
+##
+##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+##fistaRecon.setParameter(number_of_iterations = 12)
+##fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+##fistaRecon.setParameter(ring_alpha = 21)
+##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+##
+##reg = Regularizer(Regularizer.Algorithm.LLT_model)
+##reg.setParameter(regularization_parameter=25,
+## time_step=0.0003,
+## tolerance_constant=0.0001,
+## number_of_iterations=300)
+##fistaRecon.setParameter(regularizer=reg)
+
+## Ordered subset
+if False:
+ subsets = 16
+ angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
+ #binEdges = numpy.linspace(angles.min(),
+ # angles.max(),
+ # subsets + 1)
+ binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
+ # get rearranged subset indices
+ IndicesReorg = numpy.zeros((numpy.shape(angles)))
+ counterM = 0
+ for ii in range(binsDiscr.max()):
+ counter = 0
+ for jj in range(subsets):
+ curr_index = ii + jj + counter
+ #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
+ if binsDiscr[jj] > ii:
+ if (counterM < numpy.size(IndicesReorg)):
+ IndicesReorg[counterM] = curr_index
+ counterM = counterM + 1
+
+ counter = counter + binsDiscr[jj] - 1
+
+
+if False:
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ print ("prepare for iteration")
+ fistaRecon.prepareForIteration()
+
+
+
+ print("initializing ...")
+ if False:
+ # if X doesn't exist
+ #N = params.vol_geom.GridColCount
+ N = vol_geom['GridColCount']
+ print ("N " + str(N))
+ X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
+ else:
+ #X = fistaRecon.initialize()
+ X = numpy.load("X.npy")
+
+ print (numpy.shape(X))
+ X_t = X.copy()
+ print ("initialized")
+ proj_geom , vol_geom, sino , \
+ SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
+ 'output_geometry',
+ 'input_sinogram',
+ 'SlicesZ'])
+
+ #fistaRecon.setParameter(number_of_iterations = 3)
+ iterFISTA = fistaRecon.getParameter('number_of_iterations')
+ # errors vector (if the ground truth is given)
+ Resid_error = numpy.zeros((iterFISTA));
+ # objective function values vector
+ objective = numpy.zeros((iterFISTA));
+
+
+ t = 1
+
+
+ print ("starting iterations")
+## % Outer FISTA iterations loop
+ for i in range(fistaRecon.getParameter('number_of_iterations')):
+ X_old = X.copy()
+ t_old = t
+ r_old = fistaRecon.r.copy()
+ if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
+ # if the geometry is parallel use slice-by-slice
+ # projection-backprojection routine
+ #sino_updt = zeros(size(sino),'single');
+ proj_geomT = proj_geom.copy()
+ proj_geomT['DetectorRowCount'] = 1
+ vol_geomT = vol_geom.copy()
+ vol_geomT['GridSliceCount'] = 1;
+ sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
+ for kkk in range(SlicesZ):
+ sino_id, sino_updt[kkk] = \
+ astra.creators.create_sino3d_gpu(
+ X_t[kkk:kkk+1], proj_geom, vol_geom)
+ astra.matlab.data3d('delete', sino_id)
+ else:
+ # for divergent 3D geometry (watch the GPU memory overflow in
+ # ASTRA versions < 1.8)
+ #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
+ sino_id, sino_updt = astra.creators.create_sino3d_gpu(
+ X_t, proj_geom, vol_geom)
+
+ ## RING REMOVAL
+ residual = fistaRecon.residual
+ lambdaR_L1 , alpha_ring , weights , L_const= \
+ fistaRecon.getParameter(['ring_lambda_R_L1',
+ 'ring_alpha' , 'weights',
+ 'Lipschitz_constant'])
+ r_x = fistaRecon.r_x
+ SlicesZ, anglesNumb, Detectors = \
+ numpy.shape(fistaRecon.getParameter('input_sinogram'))
+ if lambdaR_L1 > 0 :
+ print ("ring removal")
+ for kkk in range(anglesNumb):
+
+ residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
+ ((sino_updt[:,kkk,:]).squeeze() - \
+ (sino[:,kkk,:]).squeeze() -\
+ (alpha_ring * r_x)
+ )
+ vec = residual.sum(axis = 1)
+ #if SlicesZ > 1:
+ # vec = vec[:,1,:].squeeze()
+ fistaRecon.r = (r_x - (1./L_const) * vec).copy()
+ objective[i] = (0.5 * (residual ** 2).sum())
+## % the ring removal part (Group-Huber fidelity)
+## for kkk = 1:anglesNumb
+## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*
+## (squeeze(sino_updt(:,kkk,:)) -
+## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+## end
+## vec = sum(residual,2);
+## if (SlicesZ > 1)
+## vec = squeeze(vec(:,1,:));
+## end
+## r = r_x - (1./L_const).*vec;
+## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
+
+
+
+ # Projection/Backprojection Routine
+ if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
+ fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
+ x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
+ print ("Projection/Backprojection Routine")
+ for kkk in range(SlicesZ):
+
+ x_id, x_temp[kkk] = \
+ astra.creators.create_backprojection3d_gpu(
+ residual[kkk:kkk+1],
+ proj_geomT, vol_geomT)
+ astra.matlab.data3d('delete', x_id)
+ else:
+ x_id, x_temp = \
+ astra.creators.create_backprojection3d_gpu(
+ residual, proj_geom, vol_geom)
+
+ X = X_t - (1/L_const) * x_temp
+ astra.matlab.data3d('delete', sino_id)
+ astra.matlab.data3d('delete', x_id)
+
+
+ ## REGULARIZATION
+ ## SKIPPING FOR NOW
+ ## Should be simpli
+ # regularizer = fistaRecon.getParameter('regularizer')
+ # for slices:
+ # out = regularizer(input=X)
+ print ("skipping regularizer")
+
+
+ ## FINAL
+ print ("final")
+ lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
+ if lambdaR_L1 > 0:
+ fistaRecon.r = numpy.max(
+ numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
+ numpy.sign(fistaRecon.r)
+ t = (1 + numpy.sqrt(1 + 4 * t**2))/2
+ X_t = X + (((t_old -1)/t) * (X - X_old))
+
+ if lambdaR_L1 > 0:
+ fistaRecon.r_x = fistaRecon.r + \
+ (((t_old-1)/t) * (fistaRecon.r - r_old))
+
+ if fistaRecon.getParameter('region_of_interest') is None:
+ string = 'Iteration Number {0} | Objective {1} \n'
+ print (string.format( i, objective[i]))
+ else:
+ ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
+ 'ideal_image')
+
+ Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
+ string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
+ print (string.format(i,Resid_error[i], objective[i]))
+
+## if (lambdaR_L1 > 0)
+## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
+## end
+##
+## t = (1 + sqrt(1 + 4*t^2))/2; % updating t
+## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+##
+## if (lambdaR_L1 > 0)
+## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+## end
+##
+## if (show == 1)
+## figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+## if (lambdaR_L1 > 0)
+## figure(11); plot(r); title('Rings offset vector')
+## end
+## pause(0.01);
+## end
+## if (strcmp(X_ideal, 'none' ) == 0)
+## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
+## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
+## else
+## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
+## end
+else:
+
+ # create a device for forward/backprojection
+ #astradevice = createAstraDevice(proj_geom, vol_geom)
+
+ astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
+ [proj_geom['DetectorRowCount'] ,
+ proj_geom['DetectorColCount'] ,
+ proj_geom['DetectorSpacingX'] ,
+ proj_geom['DetectorSpacingY'] ,
+ proj_geom['ProjectionAngles']
+ ],
+ [
+ vol_geom['GridColCount'],
+ vol_geom['GridRowCount'],
+ vol_geom['GridSliceCount'] ] )
+
+ regul = Regularizer(Regularizer.Algorithm.FGP_TV)
+ regul.setParameter(regularization_parameter=5e6,
+ number_of_iterations=50,
+ tolerance_constant=1e-4,
+ TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
+
+ fistaRecon = FISTAReconstructor(proj_geom,
+ vol_geom,
+ Sino3D ,
+ device = astradevice,
+ weights=Weights3D,
+ regularizer = regul
+ )
+
+ print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
+ fistaRecon.setParameter(number_of_iterations = 18)
+ fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
+ fistaRecon.setParameter(ring_alpha = 21)
+ fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
+
+
+
+ fistaRecon.prepareForIteration()
+ X = numpy.load("X.npy")
+
+
+ X = fistaRecon.iterate(X)
+ #numpy.save("X_out.npy", X)
diff --git a/Wrappers/Python/test/test_regularizers.py b/Wrappers/Python/test/test_regularizers.py
new file mode 100644
index 0000000..27e4ed3
--- /dev/null
+++ b/Wrappers/Python/test/test_regularizers.py
@@ -0,0 +1,412 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug 4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE:
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+# 2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+## plot
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0,cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+ reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+ print (reg.pars)
+ reg.setParameter(input=u0)
+ reg.setParameter(regularization_parameter=10.)
+ # or
+ # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+ plotme = reg() [0]
+ pars = reg.pars
+ textstr = reg.printParametersToString()
+
+ #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ # TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+ out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+ pars = out2[2]
+ reg_output.append(out2)
+ plotme = reg_output[-1][0]
+ textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme,cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+ number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+#input, regularization_parameter , time_step, number_of_iterations,
+# tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+ time_step=0.0003,
+ tolerance_constant=0.0001,
+ number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+ searching_window_ratio=3,
+ similarity_window_ratio=1,
+ PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+ first_order_term=1.3,
+ second_order_term=1,
+ number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+## 3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+# reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+## #tolerance_constant=1e-4,
+## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+# number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+##input, regularization_parameter , time_step, number_of_iterations,
+## tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+# time_step=0.0003,
+# tolerance_constant=0.0001,
+# number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+# searching_window_ratio=3,
+# similarity_window_ratio=1,
+# PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+# first_order_term=1.3,
+# second_order_term=1,
+# number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/test_regularizers_3d.py b/Wrappers/Python/test/test_regularizers_3d.py
new file mode 100644
index 0000000..2d11a7e
--- /dev/null
+++ b/Wrappers/Python/test/test_regularizers_3d.py
@@ -0,0 +1,425 @@
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Aug 4 11:10:05 2017
+
+@author: ofn77899
+"""
+
+#from ccpi.viewer.CILViewer2D import Converter
+#import vtk
+
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+from enum import Enum
+import timeit
+#from PIL import Image
+#from Regularizer import Regularizer
+from ccpi.imaging.Regularizer import Regularizer
+
+###############################################################################
+#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956
+#NRMSE a normalization of the root of the mean squared error
+#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum
+# intensity from the two images being compared, and respectively the same for
+# minval. RMSE is given by the square root of MSE:
+# sqrt[(sum(A - B) ** 2) / |A|],
+# where |A| means the number of elements in A. By doing this, the maximum value
+# given by RMSE is maxval.
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+###############################################################################
+
+###############################################################################
+#
+# 2D Regularizers
+#
+###############################################################################
+#Example:
+# figure;
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif"
+filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif"
+#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif'
+
+#reader = vtk.vtkTIFFReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+Im = plt.imread(filename)
+#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255
+#img.show()
+Im = np.asarray(Im, dtype='float32')
+
+# create a 3D image by stacking N of this images
+
+
+#imgplot = plt.imshow(Im)
+perc = 0.05
+u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+y,z = np.shape(u_n)
+u_n = np.reshape(u_n , (1,y,z))
+
+u0 = u_n.copy()
+for i in range (19):
+ u_n = Im + (perc* np.random.normal(size=np.shape(Im)))
+ u_n = np.reshape(u_n , (1,y,z))
+
+ u0 = np.vstack ( (u0, u_n) )
+
+# map the u0 u0->u0>0
+f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+u0 = f(u0).astype('float32')
+
+print ("Passed image shape {0}".format(np.shape(u0)))
+
+## plot
+fig = plt.figure()
+#a=fig.add_subplot(3,3,1)
+#a.set_title('Original')
+#imgplot = plt.imshow(Im)
+sliceno = 10
+
+a=fig.add_subplot(2,3,1)
+a.set_title('noise')
+imgplot = plt.imshow(u0[sliceno],cmap="gray")
+
+reg_output = []
+##############################################################################
+# Call regularizer
+
+####################### SplitBregman_TV #####################################
+# u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+
+use_object = True
+if use_object:
+ reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+ print (reg.pars)
+ reg.setParameter(input=u0)
+ reg.setParameter(regularization_parameter=10.)
+ # or
+ # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ #TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+ plotme = reg() [0]
+ pars = reg.pars
+ textstr = reg.printParametersToString()
+
+ #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+ #tolerance_constant=1e-4,
+ # TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+
+else:
+ out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. )
+ pars = out2[2]
+ reg_output.append(out2)
+ plotme = reg_output[-1][0]
+ textstr = out2[-1]
+
+a=fig.add_subplot(2,3,2)
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(plotme[sliceno],cmap="gray")
+
+###################### FGP_TV #########################################
+# u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005,
+ number_of_iterations=50)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,3)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno])
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+###################### LLT_model #########################################
+# * u0 = Im + .03*randn(size(Im)); % adding noise
+# [Den] = LLT_model(single(u0), 10, 0.1, 1);
+#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+#input, regularization_parameter , time_step, number_of_iterations,
+# tolerance_constant, restrictive_Z_smoothing=0
+out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+ time_step=0.0003,
+ tolerance_constant=0.0001,
+ number_of_iterations=300)
+pars = out2[-2]
+
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,4)
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### PatchBased_Regul #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+
+out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+ searching_window_ratio=3,
+ similarity_window_ratio=1,
+ PB_filtering_parameter=0.08)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,5)
+
+
+textstr = out2[-1]
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+# ###################### TGV_PD #########################################
+# # Quick 2D denoising example in Matlab:
+# # Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+ first_order_term=1.3,
+ second_order_term=1,
+ number_of_iterations=550)
+pars = out2[-2]
+reg_output.append(out2)
+
+a=fig.add_subplot(2,3,6)
+
+
+textstr = out2[-1]
+
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+# place a text box in upper left in axes coords
+a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray")
+
+
+plt.show()
+
+################################################################################
+##
+## 3D Regularizers
+##
+################################################################################
+##Example:
+## figure;
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha"
+#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha"
+#
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName(os.path.normpath(filename))
+#reader.Update()
+##vtk returns 3D images, let's take just the one slice there is as 2D
+#Im = Converter.vtk2numpy(reader.GetOutput())
+#Im = Im.astype('float32')
+##imgplot = plt.imshow(Im)
+#perc = 0.05
+#u0 = Im + (perc* np.random.normal(size=np.shape(Im)))
+## map the u0 u0->u0>0
+#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1)
+#u0 = f(u0).astype('float32')
+#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(),
+# reader.GetOutput().GetOrigin())
+#converter.Update()
+#writer = vtk.vtkMetaImageWriter()
+#writer.SetInputData(converter.GetOutput())
+#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha")
+##writer.Write()
+#
+#
+### plot
+#fig3D = plt.figure()
+##a=fig.add_subplot(3,3,1)
+##a.set_title('Original')
+##imgplot = plt.imshow(Im)
+#sliceNo = 32
+#
+#a=fig3D.add_subplot(2,3,1)
+#a.set_title('noise')
+#imgplot = plt.imshow(u0.T[sliceNo])
+#
+#reg_output3d = []
+#
+###############################################################################
+## Call regularizer
+#
+######################## SplitBregman_TV #####################################
+## u = SplitBregman_TV(single(u0), 10, 30, 1e-04);
+#
+##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV)
+#
+##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30,
+## #tolerance_constant=1e-4,
+## TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30,
+# tolerance_constant=1e-4,
+# TV_Penalty=Regularizer.TotalVariationPenalty.l1)
+#
+#
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### FGP_TV #########################################
+## u = FGP_TV(single(u0), 0.05, 100, 1e-04);
+#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005,
+# number_of_iterations=200)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### LLT_model #########################################
+## * u0 = Im + .03*randn(size(Im)); % adding noise
+## [Den] = LLT_model(single(u0), 10, 0.1, 1);
+##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0);
+##input, regularization_parameter , time_step, number_of_iterations,
+## tolerance_constant, restrictive_Z_smoothing=0
+#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25,
+# time_step=0.0003,
+# tolerance_constant=0.0001,
+# number_of_iterations=300)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+####################### PatchBased_Regul #########################################
+## Quick 2D denoising example in Matlab:
+## Im = double(imread('lena_gray_256.tif'))/255; % loading image
+## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05);
+#
+#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05,
+# searching_window_ratio=3,
+# similarity_window_ratio=1,
+# PB_filtering_parameter=0.08)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
+#
+
+###################### TGV_PD #########################################
+# Quick 2D denoising example in Matlab:
+# Im = double(imread('lena_gray_256.tif'))/255; % loading image
+# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise
+# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550);
+
+
+#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05,
+# first_order_term=1.3,
+# second_order_term=1,
+# number_of_iterations=550)
+#pars = out2[-2]
+#reg_output3d.append(out2)
+#
+#a=fig3D.add_subplot(2,3,2)
+#
+#
+#textstr = out2[-1]
+#
+#
+## these are matplotlib.patch.Patch properties
+#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
+## place a text box in upper left in axes coords
+#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14,
+# verticalalignment='top', bbox=props)
+#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo])
diff --git a/Wrappers/Python/test/view_result.py b/Wrappers/Python/test/view_result.py
new file mode 100644
index 0000000..f89a90c
--- /dev/null
+++ b/Wrappers/Python/test/view_result.py
@@ -0,0 +1,12 @@
+import numpy
+from ccpi.viewer.CILViewer2D import *
+import sys
+#reader = vtk.vtkMetaImageReader()
+#reader.SetFileName("X_out_os_s.mhd")
+#reader.Update()
+
+X = numpy.load(sys.argv[1])
+
+v = CILViewer2D()
+v.setInputAsNumpy(X)
+v.startRenderLoop()