diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2017-11-10 14:03:37 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2017-11-10 14:03:37 +0000 |
commit | 4b74129efead9b8af67f92c3c67a0d9e2b18cdf4 (patch) | |
tree | 8ad51231ce6912b33264fc03de1340a0b088623d | |
parent | 28f5ddb4538b0d37422821b9b9cfd9a9e8ae0fb1 (diff) | |
download | regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.tar.gz regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.tar.bz2 regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.tar.xz regularization-4b74129efead9b8af67f92c3c67a0d9e2b18cdf4.zip |
code refactoring step1
64 files changed, 9516 insertions, 1 deletions
diff --git a/CMake/FindAnacondaEnvironment.cmake b/CMake/FindAnacondaEnvironment.cmake new file mode 100644 index 0000000..6475128 --- /dev/null +++ b/CMake/FindAnacondaEnvironment.cmake @@ -0,0 +1,154 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# #.rst: +# FindAnacondaEnvironment +# -------------- +# +# Find Python executable and library for a specific Anaconda environment +# +# This module finds the Python interpreter for a specific Anaconda enviroment, +# if installed and determines where the include files and libraries are. +# This code sets the following variables: +# +# :: +# PYTHONINTERP_FOUND - if the Python interpret has been found +# PYTHON_EXECUTABLE - the Python interpret found +# PYTHON_LIBRARY - path to the python library +# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) +# PYTHON_INCLUDE_DIRS - path to where Python.h is found +# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) +# PYTHON_VERSION_MAJOR - major Python version +# PYTHON_VERSION_MINOR - minor Python version +# PYTHON_VERSION_PATCH - patch Python version + + + +function (findPythonForAnacondaEnvironment env) + if (WIN32) + file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE) + elseif (UNIX) + file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE) + endif() + + + message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE}) + ####### FROM FindPythonInterpr ######## + # determine python version string + if(PYTHON_EXECUTABLE) + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c + "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))" + OUTPUT_VARIABLE _VERSION + RESULT_VARIABLE _PYTHON_VERSION_RESULT + ERROR_QUIET) + if(NOT _PYTHON_VERSION_RESULT) + string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}") + list(GET _VERSION 0 _PYTHON_VERSION_MAJOR) + list(GET _VERSION 1 _PYTHON_VERSION_MINOR) + list(GET _VERSION 2 _PYTHON_VERSION_PATCH) + if(PYTHON_VERSION_PATCH EQUAL 0) + # it's called "Python 2.7", not "2.7.0" + string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}") + endif() + else() + # sys.version predates sys.version_info, so use that + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)" + OUTPUT_VARIABLE _VERSION + RESULT_VARIABLE _PYTHON_VERSION_RESULT + ERROR_QUIET) + if(NOT _PYTHON_VERSION_RESULT) + string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}") + string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}") + string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}") + if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)") + set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}") + else() + set(PYTHON_VERSION_PATCH "0") + endif() + else() + # sys.version was first documented for Python 1.5, so assume + # this is older. + set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE) + set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE) + set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE) + set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE) + endif() + endif() + unset(_PYTHON_VERSION_RESULT) + unset(_VERSION) + endif() + ############################################### + + set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE) + set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE) + set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE) + set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE) + set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE) + set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE) + message("My version found " ${PYTHON_VERSION_STRING}) + ## find conda executable + if (WIN32) + set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE) + elseif(UNIX) + set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE) + endif() +endfunction() + + + +set(Python_ADDITIONAL_VERSIONS 3.5) + +find_package(PythonInterp) +if (PYTHONINTERP_FOUND) + + message("Found interpret " ${PYTHON_EXECUTABLE}) + message("Python Library " ${PYTHON_LIBRARY}) + message("Python Include Dir " ${PYTHON_INCLUDE_DIR}) + message("Python Include Path " ${PYTHON_INCLUDE_PATH}) + + foreach(pv ${PYTHON_VERSION_STRING}) + message("Found interpret " ${pv}) + endforeach() +endif() + + + +find_package(PythonLibs) +if (PYTHONLIB_FOUND) + message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES}) + message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH}) + message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS}) + message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} ) +else() + message("No PythonLibs Found") +endif() + + + + +function(findPythonPackagesPath) + execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())" + RESULT_VARIABLE PYTHON_CVPY_PROCESS + OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH + OUTPUT_STRIP_TRAILING_WHITESPACE) + #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH}) + if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages") + set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages") + endif() + + SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE) + +endfunction() + + diff --git a/CMakeLists.txt b/CMakeLists.txt index 4cfad7e..4b2aca9 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -27,4 +27,8 @@ set (CIL_VERSION_PATCH 1) set (CIL_VERSION '${CIL_VERSION_MAJOR}.${CIL_VERSION_MINOR}.${CIL_VERSION_PATCH}' CACHE INTERNAL "Core Imaging Library version" FORCE) -add_subdirectory(src) +# set the Python variables for the Conda environment +include(${CMAKE_SOURCE_DIR}/CMake/FindAnacondaEnvironment.cmake) + +add_subdirectory(Core) +add_subdirectory(Wrappers) diff --git a/Core/CCPiDefines.h b/Core/CCPiDefines.h new file mode 100644 index 0000000..c6ddc7d --- /dev/null +++ b/Core/CCPiDefines.h @@ -0,0 +1,35 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ +#ifndef CCPIDEFINES_H +#define CCPIDEFINES_H + +#if defined(_WIN32) || defined(__WIN32__) + #if defined(CCPiCore_EXPORTS) || defined(CCPiNexusWidget_EXPORTS) || defined(ContourTreeSegmentation_EXPORTS) || defined(ContourTree_EXPORTS)// add by CMake + #define CCPI_EXPORT __declspec(dllexport) + #define EXPIMP_TEMPLATE + #else + #define CCPI_EXPORT __declspec(dllimport) + #define EXPIMP_TEMPLATE extern + #endif /* CCPi_EXPORTS */ +#elif defined(linux) || defined(__linux) || defined(__APPLE__) + #define CCPI_EXPORT +#endif + +#endif diff --git a/Core/CMakeLists.txt b/Core/CMakeLists.txt new file mode 100644 index 0000000..146b6a0 --- /dev/null +++ b/Core/CMakeLists.txt @@ -0,0 +1,25 @@ +# Copyright 2017 Edoardo Pasca +cmake_minimum_required (VERSION 3.0) + +project(regularizers) + +## Build the regularizers package as a library +message("Adding regularizers as shared library") +set(CMAKE_C_FLAGS "-fopenmp -O2 -funsigned-char -Wall -std=c++0x") +#set(CMAKE_C_COMPILER /apps/pgi/linux86-64/17.4/bin/pgcc) +#set(CMAKE_C_FLAGS "-acc -Minfo -ta=tesla:cc20 -openmp") +#set(CMAKE_C_FLAGS "-acc -Minfo -ta=multicore -openmp -fPIC") +add_library(regularizers_lib SHARED + ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/FGP_TV_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/LLT_model_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/PatchBased_Regul_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/SplitBregman_TV_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/TGV_PD_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/regularizers_CPU/utils.c + ) +#GENERATE_EXPORT_HEADER(regularizers_lib) +install (TARGETS regularizers_lib DESTINATION $ENV{PREFIX}/lib) + +add_executable(regularizer_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regularizer.cpp) + +target_link_libraries (regularizer_test LINK_PUBLIC regularizers_lib)
\ No newline at end of file diff --git a/Core/recipe/bld.bat b/Core/recipe/bld.bat new file mode 100644 index 0000000..1b97893 --- /dev/null +++ b/Core/recipe/bld.bat @@ -0,0 +1,12 @@ +IF NOT DEFINED CIL_VERSION ( +ECHO CIL_VERSION Not Defined. +exit 1 +) + +mkdir "%SRC_DIR%\build" + +cd %SRC_DIR%\build + +BUILD_CONFIG=Release + +cmake .. -Wno-dev -DCMAKE_BUILD_TYPE=$BUILD_CONFIG -DCMAKE_PREFIX_PATH:PATH="${PREFIX}" -DCMAKE_INSTALL_PREFIX:PATH="${PREFIX}" -DCMAKE_INSTALL_RPATH:PATH="${PREFIX}/lib" diff --git a/Core/recipe/build.sh b/Core/recipe/build.sh new file mode 100644 index 0000000..ab5474b --- /dev/null +++ b/Core/recipe/build.sh @@ -0,0 +1,17 @@ +#!/usr/bin/env bash + +mkdir build +cd build + +#configure +BUILD_CONFIG=Release +echo `pwd` +cmake .. -G "Ninja" \ + -Wno-dev \ + -DCMAKE_BUILD_TYPE=$BUILD_CONFIG \ + -DCMAKE_PREFIX_PATH:PATH="${PREFIX}" \ + -DCMAKE_INSTALL_PREFIX:PATH="${PREFIX}" \ + -DCMAKE_INSTALL_RPATH:PATH="${PREFIX}/lib" + +# compile & install +ninja install diff --git a/Core/recipe/meta.yaml b/Core/recipe/meta.yaml new file mode 100644 index 0000000..1fca6bf --- /dev/null +++ b/Core/recipe/meta.yaml @@ -0,0 +1,22 @@ +package: + name: regularizer + version: {{ environ['CIL_VERSION'] }} + +source: + path: ../ + +build: + preserve_egg_dir: False + script_env: + - CIL_VERSION + +requirements: + build: + - toolchain + - cmake + - ninja + +about: + home: http://www.ccpi.ac.uk + license: Apache v2.0 + summary: Regularizer package from CCPi diff --git a/Core/regularizers_CPU/FGP_TV.c b/Core/regularizers_CPU/FGP_TV.c new file mode 100644 index 0000000..30cea1a --- /dev/null +++ b/Core/regularizers_CPU/FGP_TV.c @@ -0,0 +1,216 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ +#include "matrix.h" +#include "mex.h" +#include "FGP_TV_core.h" + +/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. Number of iterations [OPTIONAL parameter] + * 4. eplsilon: tolerance constant [OPTIONAL parameter] + * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] + * + * Output: + * [1] Filtered/regularized image + * [2] last function value + * + * Example of image denoising: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .05*randn(size(Im)); % adding noise + * u = FGP_TV(single(u0), 0.05, 100, 1e-04); + * + * to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * This function is based on the Matlab's code and paper by + * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" + * + * D. Kazantsev, 2016-17 + * + */ + + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV; + const int *dim_array; + float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + iter = 50; /* default iterations number */ + epsil = 0.0001; /* default tolerance constant */ + methTV = 0; /* default isotropic TV penalty */ + + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if (nrhs == 5) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + mxFree(penalty_type); + } + /*output function value (last iteration) */ + plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); + float *funcvalA = (float *) mxGetData(plhs[1]); + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + tk = 1.0f; + tkp1=1.0f; + count = 0; + re_old = 0.0f; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* begin iterations */ + for(ll=0; ll<iter; ll++) { + + /* computing the gradient of the objective function */ + Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); + + /*Taking a step towards minus of the gradient*/ + Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); + + /* projection step */ + Proj_func2D(P1, P2, methTV, dimX, dimY); + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); + + /* calculate norm */ + re = 0.0f; re1 = 0.0f; + for(j=0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j],2); + re1 += pow(D[j],2); + } + re = sqrt(re)/sqrt(re1); + if (re < epsil) count++; + if (count > 4) { + Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); + break; } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); + break; }} + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + tk = tkp1; + + /* calculating the objective function value */ + if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); + } + printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + } + if (number_of_dims == 3) { + D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* begin iterations */ + for(ll=0; ll<iter; ll++) { + + /* computing the gradient of the objective function */ + Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ); + + /*Taking a step towards minus of the gradient*/ + Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + + /* projection step */ + Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); + + /* calculate norm - stopping rules*/ + re = 0.0f; re1 = 0.0f; + for(j=0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j],2); + re1 += pow(D[j],2); + } + re = sqrt(re)/sqrt(re1); + /* stop if the norm residual is less than the tolerance EPS */ + if (re < epsil) count++; + if (count > 3) { + Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); + break;} + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); + }} + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + copyIm(P3, P3_old, dimX, dimY, dimZ); + tk = tkp1; + + if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); + } + printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + } +} diff --git a/Core/regularizers_CPU/FGP_TV_core.c b/Core/regularizers_CPU/FGP_TV_core.c new file mode 100644 index 0000000..03cd445 --- /dev/null +++ b/Core/regularizers_CPU/FGP_TV_core.c @@ -0,0 +1,266 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "FGP_TV_core.h" + +/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. lambda - regularization parameter [REQUIRED] + * 3. Number of iterations [OPTIONAL parameter] + * 4. eplsilon: tolerance constant [OPTIONAL parameter] + * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] + * + * Output: + * [1] Filtered/regularized image + * [2] last function value + * + * Example of image denoising: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .05*randn(size(Im)); % adding noise + * u = FGP_TV(single(u0), 0.05, 100, 1e-04); + * + * This function is based on the Matlab's code and paper by + * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" + * + * D. Kazantsev, 2016-17 + * + */ + +/* 2D-case related Functions */ +/*****************************************************************/ +float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY) +{ + int i,j; + float f1, f2, val1, val2; + + /*data-related term */ + f1 = 0.0f; + for(i=0; i<dimX*dimY; i++) f1 += pow(D[i] - A[i],2); + + /*TV-related term */ + f2 = 0.0f; + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* boundary conditions */ + if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(i+1)*dimY + (j)] - A[(i)*dimY + (j)];} + if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(i)*dimY + (j+1)] - A[(i)*dimY + (j)];} + f2 += sqrt(pow(val1,2) + pow(val2,2)); + }} + + /* sum of two terms */ + funcvalA[0] = 0.5f*f1 + lambda*f2; + return *funcvalA; +} + +float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) +{ + float val1, val2; + int i, j; +#pragma omp parallel for shared(A,D,R1,R2) private(i,j,val1,val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* boundary conditions */ + if (i == 0) { val1 = 0.0f; } + else { val1 = R1[(i - 1)*dimY + (j)]; } + if (j == 0) { val2 = 0.0f; } + else { val2 = R2[(i)*dimY + (j - 1)]; } + D[(i)*dimY + (j)] = A[(i)*dimY + (j)] - lambda*(R1[(i)*dimY + (j)] + R2[(i)*dimY + (j)] - val1 - val2); + } + } + return *D; +} +float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY) +{ + float val1, val2, multip; + int i, j; + multip = (1.0f / (8.0f*lambda)); +#pragma omp parallel for shared(P1,P2,D,R1,R2,multip) private(i,j,val1,val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* boundary conditions */ + if (i == dimX - 1) val1 = 0.0f; else val1 = D[(i)*dimY + (j)] - D[(i + 1)*dimY + (j)]; + if (j == dimY - 1) val2 = 0.0f; else val2 = D[(i)*dimY + (j)] - D[(i)*dimY + (j + 1)]; + P1[(i)*dimY + (j)] = R1[(i)*dimY + (j)] + multip*val1; + P2[(i)*dimY + (j)] = R2[(i)*dimY + (j)] + multip*val2; + } + } + return 1; +} +float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY) +{ + float val1, val2, denom; + int i, j; + if (methTV == 0) { + /* isotropic TV*/ +#pragma omp parallel for shared(P1,P2) private(i,j,denom) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + denom = pow(P1[(i)*dimY + (j)], 2) + pow(P2[(i)*dimY + (j)], 2); + if (denom > 1) { + P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / sqrt(denom); + P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / sqrt(denom); + } + } + } + } + else { + /* anisotropic TV*/ +#pragma omp parallel for shared(P1,P2) private(i,j,val1,val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + val1 = fabs(P1[(i)*dimY + (j)]); + val2 = fabs(P2[(i)*dimY + (j)]); + if (val1 < 1.0f) { val1 = 1.0f; } + if (val2 < 1.0f) { val2 = 1.0f; } + P1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] / val1; + P2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] / val2; + } + } + } + return 1; +} +float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY) +{ + int i, j; + float multip; + multip = ((tk - 1.0f) / tkp1); +#pragma omp parallel for shared(P1,P2,P1_old,P2_old,R1,R2,multip) private(i,j) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + R1[(i)*dimY + (j)] = P1[(i)*dimY + (j)] + multip*(P1[(i)*dimY + (j)] - P1_old[(i)*dimY + (j)]); + R2[(i)*dimY + (j)] = P2[(i)*dimY + (j)] + multip*(P2[(i)*dimY + (j)] - P2_old[(i)*dimY + (j)]); + } + } + return 1; +} + +/* 3D-case related Functions */ +/*****************************************************************/ +float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ) +{ + int i,j,k; + float f1, f2, val1, val2, val3; + + /*data-related term */ + f1 = 0.0f; + for(i=0; i<dimX*dimY*dimZ; i++) f1 += pow(D[i] - A[i],2); + + /*TV-related term */ + f2 = 0.0f; + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* boundary conditions */ + if (i == dimX-1) {val1 = 0.0f;} else {val1 = A[(dimX*dimY)*k + (i+1)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];} + if (j == dimY-1) {val2 = 0.0f;} else {val2 = A[(dimX*dimY)*k + (i)*dimY + (j+1)] - A[(dimX*dimY)*k + (i)*dimY + (j)];} + if (k == dimZ-1) {val3 = 0.0f;} else {val3 = A[(dimX*dimY)*(k+1) + (i)*dimY + (j)] - A[(dimX*dimY)*k + (i)*dimY + (j)];} + f2 += sqrt(pow(val1,2) + pow(val2,2) + pow(val3,2)); + }}} + /* sum of two terms */ + funcvalA[0] = 0.5f*f1 + lambda*f2; + return *funcvalA; +} + +float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) +{ + float val1, val2, val3; + int i, j, k; +#pragma omp parallel for shared(A,D,R1,R2,R3) private(i,j,k,val1,val2,val3) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + /* boundary conditions */ + if (i == 0) { val1 = 0.0f; } + else { val1 = R1[(dimX*dimY)*k + (i - 1)*dimY + (j)]; } + if (j == 0) { val2 = 0.0f; } + else { val2 = R2[(dimX*dimY)*k + (i)*dimY + (j - 1)]; } + if (k == 0) { val3 = 0.0f; } + else { val3 = R3[(dimX*dimY)*(k - 1) + (i)*dimY + (j)]; } + D[(dimX*dimY)*k + (i)*dimY + (j)] = A[(dimX*dimY)*k + (i)*dimY + (j)] - lambda*(R1[(dimX*dimY)*k + (i)*dimY + (j)] + R2[(dimX*dimY)*k + (i)*dimY + (j)] + R3[(dimX*dimY)*k + (i)*dimY + (j)] - val1 - val2 - val3); + } + } + } + return *D; +} +float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ) +{ + float val1, val2, val3, multip; + int i, j, k; + multip = (1.0f / (8.0f*lambda)); +#pragma omp parallel for shared(P1,P2,P3,D,R1,R2,R3,multip) private(i,j,k,val1,val2,val3) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + /* boundary conditions */ + if (i == dimX - 1) val1 = 0.0f; else val1 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i + 1)*dimY + (j)]; + if (j == dimY - 1) val2 = 0.0f; else val2 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*k + (i)*dimY + (j + 1)]; + if (k == dimZ - 1) val3 = 0.0f; else val3 = D[(dimX*dimY)*k + (i)*dimY + (j)] - D[(dimX*dimY)*(k + 1) + (i)*dimY + (j)]; + P1[(dimX*dimY)*k + (i)*dimY + (j)] = R1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val1; + P2[(dimX*dimY)*k + (i)*dimY + (j)] = R2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val2; + P3[(dimX*dimY)*k + (i)*dimY + (j)] = R3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*val3; + } + } + } + return 1; +} +float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ) +{ + float val1, val2, val3; + int i, j, k; +#pragma omp parallel for shared(P1,P2,P3) private(i,j,k,val1,val2,val3) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + val1 = fabs(P1[(dimX*dimY)*k + (i)*dimY + (j)]); + val2 = fabs(P2[(dimX*dimY)*k + (i)*dimY + (j)]); + val3 = fabs(P3[(dimX*dimY)*k + (i)*dimY + (j)]); + if (val1 < 1.0f) { val1 = 1.0f; } + if (val2 < 1.0f) { val2 = 1.0f; } + if (val3 < 1.0f) { val3 = 1.0f; } + + P1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] / val1; + P2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] / val2; + P3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] / val3; + } + } + } + return 1; +} +float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ) +{ + int i, j, k; + float multip; + multip = ((tk - 1.0f) / tkp1); +#pragma omp parallel for shared(P1,P2,P3,P1_old,P2_old,P3_old,R1,R2,R3,multip) private(i,j,k) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + R1[(dimX*dimY)*k + (i)*dimY + (j)] = P1[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P1[(dimX*dimY)*k + (i)*dimY + (j)] - P1_old[(dimX*dimY)*k + (i)*dimY + (j)]); + R2[(dimX*dimY)*k + (i)*dimY + (j)] = P2[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P2[(dimX*dimY)*k + (i)*dimY + (j)] - P2_old[(dimX*dimY)*k + (i)*dimY + (j)]); + R3[(dimX*dimY)*k + (i)*dimY + (j)] = P3[(dimX*dimY)*k + (i)*dimY + (j)] + multip*(P3[(dimX*dimY)*k + (i)*dimY + (j)] - P3_old[(dimX*dimY)*k + (i)*dimY + (j)]); + } + } + } + return 1; +} + + diff --git a/Core/regularizers_CPU/FGP_TV_core.h b/Core/regularizers_CPU/FGP_TV_core.h new file mode 100644 index 0000000..6430bf2 --- /dev/null +++ b/Core/regularizers_CPU/FGP_TV_core.h @@ -0,0 +1,71 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +//#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" + +/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) +* +* Input Parameters: +* 1. Noisy image/volume [REQUIRED] +* 2. lambda - regularization parameter [REQUIRED] +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon: tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* +* Output: +* [1] Filtered/regularized image +* [2] last function value +* +* Example of image denoising: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .05*randn(size(Im)); % adding noise +* u = FGP_TV(single(u0), 0.05, 100, 1e-04); +* +* to compile with OMP support: mex FGP_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* This function is based on the Matlab's code and paper by +* [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" +* +* D. Kazantsev, 2016-17 +* +*/ +#ifdef __cplusplus +extern "C" { +#endif +//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); +float Obj_func2D(float *A, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); +float Grad_func2D(float *P1, float *P2, float *D, float *R1, float *R2, float lambda, int dimX, int dimY); +float Proj_func2D(float *P1, float *P2, int methTV, int dimX, int dimY); +float Rupd_func2D(float *P1, float *P1_old, float *P2, float *P2_old, float *R1, float *R2, float tkp1, float tk, int dimX, int dimY); +float Obj_func_CALC2D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY); + +float Obj_func3D(float *A, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); +float Grad_func3D(float *P1, float *P2, float *P3, float *D, float *R1, float *R2, float *R3, float lambda, int dimX, int dimY, int dimZ); +float Proj_func3D(float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ); +float Rupd_func3D(float *P1, float *P1_old, float *P2, float *P2_old, float *P3, float *P3_old, float *R1, float *R2, float *R3, float tkp1, float tk, int dimX, int dimY, int dimZ); +float Obj_func_CALC3D(float *A, float *D, float *funcvalA, float lambda, int dimX, int dimY, int dimZ); +#ifdef __cplusplus +} +#endif
\ No newline at end of file diff --git a/Core/regularizers_CPU/LLT_model.c b/Core/regularizers_CPU/LLT_model.c new file mode 100644 index 0000000..0b07b47 --- /dev/null +++ b/Core/regularizers_CPU/LLT_model.c @@ -0,0 +1,169 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "mex.h" +#include "matrix.h" +#include "LLT_model_core.h" + +/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty +* +* Input Parameters: +* 1. U0 - original noise image/volume +* 2. lambda - regularization parameter +* 3. tau - time-step for explicit scheme +* 4. iter - iterations number +* 5. epsil - tolerance constant (to terminate earlier) +* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* [Den] = LLT_model(single(u0), 10, 0.1, 1); +* +* +* to compile with OMP support: mex LLT_model.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE +* +* 28.11.16/Harwell +*/ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, switcher; + const int *dim_array; + float *U0, *U=NULL, *U_old=NULL, *D1=NULL, *D2=NULL, *D3=NULL, lambda, tau, re, re1, epsil, re_old; + unsigned short *Map=NULL; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + U0 = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/ + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); } + lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/ + tau = (float) mxGetScalar(prhs[2]); /* time-step */ + iter = (int) mxGetScalar(prhs[3]); /*iterations number*/ + epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ + switcher = (int) mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/ + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1; + + if (number_of_dims == 2) { + /*2D case*/ + U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + else if (number_of_dims == 3) { + /*3D case*/ + dimZ = dim_array[2]; + U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + if (switcher != 0) { + Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + } + } + else {mexErrMsgTxt("The input data should be 2D or 3D");} + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + if (number_of_dims == 2) { + for(ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der2D(U, D1, D2, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for(j=0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j],2); + re1 += pow(U_old[j],2); + } + re = sqrt(re)/sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + printf("HO iterations stopped at iteration: %i\n", ll); + } + /*3D version*/ + if (number_of_dims == 3) { + + if (switcher == 1) { + /* apply restrictive smoothing */ + calcMap(U, Map, dimX, dimY, dimZ); + /*clear outliers */ + cleanMap(Map, dimX, dimY, dimZ); + } + for(ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der3D(U, D1, D2, D3, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for(j=0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j],2); + re1 += pow(U_old[j],2); + } + re = sqrt(re)/sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + printf("HO iterations stopped at iteration: %i\n", ll); + } +} diff --git a/Core/regularizers_CPU/LLT_model_core.c b/Core/regularizers_CPU/LLT_model_core.c new file mode 100644 index 0000000..3a853d2 --- /dev/null +++ b/Core/regularizers_CPU/LLT_model_core.c @@ -0,0 +1,318 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "LLT_model_core.h" + +/* C-OMP implementation of Lysaker, Lundervold and Tai (LLT) model of higher order regularization penalty +* +* Input Parameters: +* 1. U0 - origanal noise image/volume +* 2. lambda - regularization parameter +* 3. tau - time-step for explicit scheme +* 4. iter - iterations number +* 5. epsil - tolerance constant (to terminate earlier) +* 6. switcher - default is 0, switch to (1) to restrictive smoothing in Z dimension (in test) +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* [Den] = LLT_model(single(u0), 10, 0.1, 1); +* +* References: Lysaker, Lundervold and Tai (LLT) 2003, IEEE +* +* 28.11.16/Harwell +*/ + + +float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ) +{ + int i, j, i_p, i_m, j_m, j_p; + float dxx, dyy, denom_xx, denom_yy; +#pragma omp parallel for shared(U,D1,D2) private(i, j, i_p, i_m, j_m, j_p, denom_xx, denom_yy, dxx, dyy) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + + dxx = U[i_p*dimY + j] - 2.0f*U[i*dimY + j] + U[i_m*dimY + j]; + dyy = U[i*dimY + j_p] - 2.0f*U[i*dimY + j] + U[i*dimY + j_m]; + + denom_xx = fabs(dxx) + EPS; + denom_yy = fabs(dyy) + EPS; + + D1[i*dimY + j] = dxx / denom_xx; + D2[i*dimY + j] = dyy / denom_yy; + } + } + return 1; +} +float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + int i, j, i_p, i_m, j_m, j_p; + float div, dxx, dyy; +#pragma omp parallel for shared(U,U0,D1,D2) private(i, j, i_p, i_m, j_m, j_p, div, dxx, dyy) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + + dxx = D1[i_p*dimY + j] - 2.0f*D1[i*dimY + j] + D1[i_m*dimY + j]; + dyy = D2[i*dimY + j_p] - 2.0f*D2[i*dimY + j] + D2[i*dimY + j_m]; + + div = dxx + dyy; + + U[i*dimY + j] = U[i*dimY + j] - tau*div - tau*lambda*(U[i*dimY + j] - U0[i*dimY + j]); + } + } + return *U0; +} + +float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ) +{ + int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; + float dxx, dyy, dzz, denom_xx, denom_yy, denom_zz; +#pragma omp parallel for shared(U,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, dxx, dyy, dzz) + for (i = 0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + for (j = 0; j<dimY; j++) { + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + for (k = 0; k<dimZ; k++) { + k_p = k + 1; if (k_p == dimZ) k_p = k - 1; + k_m = k - 1; if (k_m < 0) k_m = k + 1; + + dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; + dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; + dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; + + denom_xx = fabs(dxx) + EPS; + denom_yy = fabs(dyy) + EPS; + denom_zz = fabs(dzz) + EPS; + + D1[dimX*dimY*k + i*dimY + j] = dxx / denom_xx; + D2[dimX*dimY*k + i*dimY + j] = dyy / denom_yy; + D3[dimX*dimY*k + i*dimY + j] = dzz / denom_zz; + + } + } + } + return 1; +} + +float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m; + float div, dxx, dyy, dzz; +#pragma omp parallel for shared(U,U0,D1,D2,D3) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, div, dxx, dyy, dzz) + for (i = 0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i_p = i + 1; if (i_p == dimX) i_p = i - 1; + i_m = i - 1; if (i_m < 0) i_m = i + 1; + for (j = 0; j<dimY; j++) { + j_p = j + 1; if (j_p == dimY) j_p = j - 1; + j_m = j - 1; if (j_m < 0) j_m = j + 1; + for (k = 0; k<dimZ; k++) { + k_p = k + 1; if (k_p == dimZ) k_p = k - 1; + k_m = k - 1; if (k_m < 0) k_m = k + 1; + // k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; + // k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; + + dxx = D1[dimX*dimY*k + i_p*dimY + j] - 2.0f*D1[dimX*dimY*k + i*dimY + j] + D1[dimX*dimY*k + i_m*dimY + j]; + dyy = D2[dimX*dimY*k + i*dimY + j_p] - 2.0f*D2[dimX*dimY*k + i*dimY + j] + D2[dimX*dimY*k + i*dimY + j_m]; + dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; + + if ((switcher == 1) && (Map[dimX*dimY*k + i*dimY + j] == 0)) dzz = 0; + div = dxx + dyy + dzz; + + // if (switcher == 1) { + // if (Map2[dimX*dimY*k + i*dimY + j] == 0) dzz2 = 0; + //else dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; + // div = dzz + dzz2; + // } + + // dzz = D3[dimX*dimY*k_p + i*dimY + j] - 2.0f*D3[dimX*dimY*k + i*dimY + j] + D3[dimX*dimY*k_m + i*dimY + j]; + // dzz2 = D4[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*D4[dimX*dimY*k + i*dimY + j] + D4[dimX*dimY*k_m1 + i*dimY + j]; + // div = dzz + dzz2; + + U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] - tau*div - tau*lambda*(U[dimX*dimY*k + i*dimY + j] - U0[dimX*dimY*k + i*dimY + j]); + } + } + } + return *U0; +} + +// float der3D_2(float *U, float *D1, float *D2, float *D3, float *D4, int dimX, int dimY, int dimZ) +// { +// int i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, k_p1, k_m1; +// float dxx, dyy, dzz, dzz2, denom_xx, denom_yy, denom_zz, denom_zz2; +// #pragma omp parallel for shared(U,D1,D2,D3,D4) private(i, j, k, i_p, i_m, j_m, j_p, k_p, k_m, denom_xx, denom_yy, denom_zz, denom_zz2, dxx, dyy, dzz, dzz2, k_p1, k_m1) +// for(i=0; i<dimX; i++) { +// /* symmetric boundary conditions (Neuman) */ +// i_p = i + 1; if (i_p == dimX) i_p = i - 1; +// i_m = i - 1; if (i_m < 0) i_m = i + 1; +// for(j=0; j<dimY; j++) { +// j_p = j + 1; if (j_p == dimY) j_p = j - 1; +// j_m = j - 1; if (j_m < 0) j_m = j + 1; +// for(k=0; k<dimZ; k++) { +// k_p = k + 1; if (k_p == dimZ) k_p = k - 1; +// k_m = k - 1; if (k_m < 0) k_m = k + 1; +// k_p1 = k + 2; if (k_p1 >= dimZ) k_p1 = k - 2; +// k_m1 = k - 2; if (k_m1 < 0) k_m1 = k + 2; +// +// dxx = U[dimX*dimY*k + i_p*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i_m*dimY + j]; +// dyy = U[dimX*dimY*k + i*dimY + j_p] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k + i*dimY + j_m]; +// dzz = U[dimX*dimY*k_p + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m + i*dimY + j]; +// dzz2 = U[dimX*dimY*k_p1 + i*dimY + j] - 2.0f*U[dimX*dimY*k + i*dimY + j] + U[dimX*dimY*k_m1 + i*dimY + j]; +// +// denom_xx = fabs(dxx) + EPS; +// denom_yy = fabs(dyy) + EPS; +// denom_zz = fabs(dzz) + EPS; +// denom_zz2 = fabs(dzz2) + EPS; +// +// D1[dimX*dimY*k + i*dimY + j] = dxx/denom_xx; +// D2[dimX*dimY*k + i*dimY + j] = dyy/denom_yy; +// D3[dimX*dimY*k + i*dimY + j] = dzz/denom_zz; +// D4[dimX*dimY*k + i*dimY + j] = dzz2/denom_zz2; +// }}} +// return 1; +// } + +float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ) +{ + int i, j, k, i1, j1, i2, j2, windowSize; + float val1, val2, thresh_val, maxval; + windowSize = 1; + thresh_val = 0.0001; /*thresh_val = 0.0035;*/ + + /* normalize volume first */ + maxval = 0.0f; + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + if (U[dimX*dimY*k + i*dimY + j] > maxval) maxval = U[dimX*dimY*k + i*dimY + j]; + } + } + } + + if (maxval != 0.0f) { + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + U[dimX*dimY*k + i*dimY + j] = U[dimX*dimY*k + i*dimY + j] / maxval; + } + } + } + } + else { + printf("%s \n", "Maximum value is zero!"); + return 0; + } + +#pragma omp parallel for shared(U,Map) private(i, j, k, i1, j1, i2, j2, val1, val2) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + + Map[dimX*dimY*k + i*dimY + j] = 0; + // Map2[dimX*dimY*k + i*dimY + j] = 0; + + val1 = 0.0f; val2 = 0.0f; + for (i1 = -windowSize; i1 <= windowSize; i1++) { + for (j1 = -windowSize; j1 <= windowSize; j1++) { + i2 = i + i1; + j2 = j + j1; + + if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { + if (k == 0) { + val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); + } + else if (k == dimZ - 1) { + val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); + } + // else if (k == 1) { + // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); + // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); + // } + // else if (k == dimZ-2) { + // val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-1) + i2*dimY + j2],2); + // val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+1) + i2*dimY + j2],2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); + // } + else { + val1 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k - 1) + i2*dimY + j2], 2); + val2 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k + 1) + i2*dimY + j2], 2); + // val3 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k-2) + i2*dimY + j2],2); + // val4 += pow(U[dimX*dimY*k + i2*dimY + j2] - U[dimX*dimY*(k+2) + i2*dimY + j2],2); + } + } + } + } + + val1 = 0.111f*val1; val2 = 0.111f*val2; + // val3 = 0.111f*val3; val4 = 0.111f*val4; + if ((val1 <= thresh_val) && (val2 <= thresh_val)) Map[dimX*dimY*k + i*dimY + j] = 1; + // if ((val3 <= thresh_val) && (val4 <= thresh_val)) Map2[dimX*dimY*k + i*dimY + j] = 1; + } + } + } + return 1; +} + +float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ) +{ + int i, j, k, i1, j1, i2, j2, counter; +#pragma omp parallel for shared(Map) private(i, j, k, i1, j1, i2, j2, counter) + for (i = 0; i<dimX; i++) { + for (j = 0; j<dimY; j++) { + for (k = 0; k<dimZ; k++) { + + counter = 0; + for (i1 = -3; i1 <= 3; i1++) { + for (j1 = -3; j1 <= 3; j1++) { + i2 = i + i1; + j2 = j + j1; + if ((i2 >= 0) && (i2 < dimX) && (j2 >= 0) && (j2 < dimY)) { + if (Map[dimX*dimY*k + i2*dimY + j2] == 0) counter++; + } + } + } + if (counter < 24) Map[dimX*dimY*k + i*dimY + j] = 1; + } + } + } + return *Map; +} + + +/*********************3D *********************/
\ No newline at end of file diff --git a/Core/regularizers_CPU/LLT_model_core.h b/Core/regularizers_CPU/LLT_model_core.h new file mode 100644 index 0000000..13fce5a --- /dev/null +++ b/Core/regularizers_CPU/LLT_model_core.h @@ -0,0 +1,46 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +//#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" + +#define EPS 0.01 + +/* 2D functions */ +#ifdef __cplusplus +extern "C" { +#endif +float der2D(float *U, float *D1, float *D2, int dimX, int dimY, int dimZ); +float div_upd2D(float *U0, float *U, float *D1, float *D2, int dimX, int dimY, int dimZ, float lambda, float tau); + +float der3D(float *U, float *D1, float *D2, float *D3, int dimX, int dimY, int dimZ); +float div_upd3D(float *U0, float *U, float *D1, float *D2, float *D3, unsigned short *Map, int switcher, int dimX, int dimY, int dimZ, float lambda, float tau); + +float calcMap(float *U, unsigned short *Map, int dimX, int dimY, int dimZ); +float cleanMap(unsigned short *Map, int dimX, int dimY, int dimZ); + +//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); +#ifdef __cplusplus +} +#endif
\ No newline at end of file diff --git a/Core/regularizers_CPU/PatchBased_Regul.c b/Core/regularizers_CPU/PatchBased_Regul.c new file mode 100644 index 0000000..5d89b0c --- /dev/null +++ b/Core/regularizers_CPU/PatchBased_Regul.c @@ -0,0 +1,140 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "mex.h" +#include "matrix.h" +#include "PatchBased_Regul_core.h" + + +/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). + * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function + * + * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" + * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" + * + * Input Parameters: + * 1. Image (2D or 3D) [required] + * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional] + * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional] + * 4. h - parameter for the PB penalty function [optional] + * 5. lambda - regularization parameter [optional] + + * Output: + * 1. regularized (denoised) Image (N x N)/volume (N x N x N) + * + * 2D denoising example in Matlab: + Im = double(imread('lena_gray_256.tif'))/255; % loading image + u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise + ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05); + * + * Matlab + C/mex compilers needed + * to compile with OMP support: mex PatchBased_Regul.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" + * + * D. Kazantsev * + * 02/07/2014 + * Harwell, UK + */ + + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) +{ + int N, M, Z, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop; + const int *dims; + float *A, *B=NULL, *Ap=NULL, *Bp=NULL, h, lambda; + + numdims = mxGetNumberOfDimensions(prhs[0]); + dims = mxGetDimensions(prhs[0]); + + N = dims[0]; + M = dims[1]; + Z = dims[2]; + + if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input is 2D image or 3D volume");} + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); } + + if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter"); + + /*Handling inputs*/ + A = (float *) mxGetData(prhs[0]); /* the image/volume to regularize/filter */ + SearchW_real = 3; /*default value*/ + SimilW = 1; /*default value*/ + h = 0.1; + lambda = 0.1; + + if ((nrhs == 2) || (nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */ + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */ + if ((nrhs == 4) || (nrhs == 5)) h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */ + if ((nrhs == 5)) lambda = (float) mxGetScalar(prhs[4]); /* regularization parameter */ + + + if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0"); + if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0"); + + SearchW = SearchW_real + 2*SimilW; + + /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */ + + padXY = SearchW + 2*SimilW; /* padding sizes */ + newsizeX = N + 2*(padXY); /* the X size of the padded array */ + newsizeY = M + 2*(padXY); /* the Y size of the padded array */ + newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */ + int N_dims[] = {newsizeX, newsizeY, newsizeZ}; + + /******************************2D case ****************************/ + if (numdims == 2) { + /*Handling output*/ + B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + /*allocating memory for the padded arrays */ + Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + /**************************************************************************/ + /*Perform padding of image A to the size of [newsizeX * newsizeY] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + } + else + { + /******************************3D case ****************************/ + /*Handling output*/ + B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); + /*allocating memory for the padded arrays */ + Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + /**************************************************************************/ + + /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + } /*end else ndims*/ +} diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.c b/Core/regularizers_CPU/PatchBased_Regul_core.c new file mode 100644 index 0000000..fe88ffb --- /dev/null +++ b/Core/regularizers_CPU/PatchBased_Regul_core.c @@ -0,0 +1,232 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "PatchBased_Regul_core.h" +#include <string.h> +/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). + * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function + * + * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" + * 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" + * + * Input Parameters: + * 1. Image (2D or 3D) [required] + * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) [optional] + * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) [optional] + * 4. h - parameter for the PB penalty function [optional] + * 5. lambda - regularization parameter [optional] + + * Output: + * 1. regularized (denoised) Image (N x N)/volume (N x N x N) + * + * 2D denoising example in Matlab: + Im = double(imread('lena_gray_256.tif'))/255; % loading image + u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise + ImDen = PatchBased_Regul(single(u0), 3, 1, 0.08, 0.05); + + * D. Kazantsev * + * 02/07/2014 + * Harwell, UK + */ + +/*2D version function */ +float PB_FUNC2D(float *Ap, float *Bp, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda) +{ + int i, j, i_n, j_n, i_m, j_m, i_p, j_p, i_l, j_l, i1, j1, i2, j2, i3, j3, i5,j5, count, SimilW_full; + float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob, t1; + + float A[dimX*dimY], B[dimX*dimY]; + + //fill the structures + int index=0; + for (i=0;i<dimX;i++){ + for (j=0;j<dimY;j++){ + int index = j + dimX * i; + + float val = (*(Ap + index)); + memcpy(A + index , &val, sizeof(float)); + val = (*(Bp + index)); + memcpy(B + index , &val, sizeof(float)); + } + } + /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + SimilW_full = 2*SimilW + 1; /* the full similarity window size */ + h2 = h*h; + denh2 = 1/(2*h2); + + /*Gaussian kernel */ + Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full,sizeof(float)); + count = 0; + for(i_n=-SimilW; i_n<=SimilW; i_n++) { + for(j_n=-SimilW; j_n<=SimilW; j_n++) { + t1 = pow(((float)i_n), 2) + pow(((float)j_n), 2); + Eucl_Vec[count] = exp(-(t1)/(2*SimilW*SimilW)); + count = count + 1; + }} /*main neighb loop */ + + #pragma acc kernels copy(A[0:dimX*dimY], B[0:dimX*dimY], Eucl_Vec[0:SimilW_full*SimilW_full]) + { + /*The NLM code starts here*/ + /* setting OMP here */ + //#pragma omp parallel for shared (A, B, dimX, dimY, Eucl_Vec, lambda, denh2) private(denom, i, j, WeightGlob, count, i1, j1, i2, j2, i3, j3, i5, j5, Weight_norm, normsum, i_m, j_m, i_n, j_n, i_l, j_l, i_p, j_p, Weight, value) + + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY))) { + + /* Massive Search window loop */ + Weight_norm = 0; value = 0.0; + for(i_m=-SearchW; i_m<=SearchW; i_m++) { + for(j_m=-SearchW; j_m<=SearchW; j_m++) { + /*checking boundaries*/ + i1 = i+i_m; j1 = j+j_m; + + WeightGlob = 0.0; + /* if inside the searching window */ + for(i_l=-SimilW; i_l<=SimilW; i_l++) { + for(j_l=-SimilW; j_l<=SimilW; j_l++) { + i2 = i1+i_l; j2 = j1+j_l; + + i3 = i+i_l; j3 = j+j_l; /*coordinates of the inner patch loop */ + + count = 0; normsum = 0.0; + for(i_p=-SimilW; i_p<=SimilW; i_p++) { + for(j_p=-SimilW; j_p<=SimilW; j_p++) { + i5 = i2 + i_p; j5 = j2 + j_p; + normsum = normsum + Eucl_Vec[count]*pow(A[(i3+i_p)*dimY+(j3+j_p)]-A[i5*dimY+j5], 2); + count = count + 1; + }} + if (normsum != 0) Weight = (exp(-normsum*denh2)); + else Weight = 0.0; + WeightGlob += Weight; + }} + + value += A[i1*dimY+j1] + * WeightGlob; + Weight_norm += WeightGlob; + }} /*search window loop end*/ + + /* the final loop to average all values in searching window with weights */ + denom = 1 + lambda*Weight_norm; + B[i*dimY+j] = (A[i*dimY+j] + lambda*value)/denom; + } + }} /*main loop*/ + + } // OpenAcc pragma + return (*B); + free(Eucl_Vec); +} + +/*3D version*/ + float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda) + { + int SimilW_full, count, i, j, k, i_n, j_n, k_n, i_m, j_m, k_m, i_p, j_p, k_p, i_l, j_l, k_l, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5; + float *Eucl_Vec, h2, denh2, normsum, Weight, Weight_norm, value, denom, WeightGlob; + + /*SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + SimilW_full = 2*SimilW + 1; /* the full similarity window size */ + h2 = h*h; + denh2 = 1/(2*h2); + + /*Gaussian kernel */ + Eucl_Vec = (float*) calloc (SimilW_full*SimilW_full*SimilW_full,sizeof(float)); + count = 0; + for(i_n=-SimilW; i_n<=SimilW; i_n++) { + for(j_n=-SimilW; j_n<=SimilW; j_n++) { + for(k_n=-SimilW; k_n<=SimilW; k_n++) { + Eucl_Vec[count] = exp(-(pow((float)i_n, 2) + pow((float)j_n, 2) + pow((float)k_n, 2))/(2*SimilW*SimilW*SimilW)); + count = count + 1; + }}} /*main neighb loop */ + + /*The NLM code starts here*/ + /* setting OMP here */ + #pragma omp parallel for shared (A, B, dimX, dimY, dimZ, Eucl_Vec, lambda, denh2) private(denom, i, j, k, WeightGlob,count, i1, j1, k1, i2, j2, k2, i3, j3, k3, i5, j5, k5, Weight_norm, normsum, i_m, j_m, k_m, i_n, j_n, k_n, i_l, j_l, k_l, i_p, j_p, k_p, Weight, value) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + if (((i >= padXY) && (i < dimX-padXY)) && ((j >= padXY) && (j < dimY-padXY)) && ((k >= padXY) && (k < dimZ-padXY))) { + /* take all elements around the pixel of interest */ + /* Massive Search window loop */ + Weight_norm = 0; value = 0.0; + for(i_m=-SearchW; i_m<=SearchW; i_m++) { + for(j_m=-SearchW; j_m<=SearchW; j_m++) { + for(k_m=-SearchW; k_m<=SearchW; k_m++) { + /*checking boundaries*/ + i1 = i+i_m; j1 = j+j_m; k1 = k+k_m; + + WeightGlob = 0.0; + /* if inside the searching window */ + for(i_l=-SimilW; i_l<=SimilW; i_l++) { + for(j_l=-SimilW; j_l<=SimilW; j_l++) { + for(k_l=-SimilW; k_l<=SimilW; k_l++) { + i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l; + + i3 = i+i_l; j3 = j+j_l; k3 = k+k_l; /*coordinates of the inner patch loop */ + + count = 0; normsum = 0.0; + for(i_p=-SimilW; i_p<=SimilW; i_p++) { + for(j_p=-SimilW; j_p<=SimilW; j_p++) { + for(k_p=-SimilW; k_p<=SimilW; k_p++) { + i5 = i2 + i_p; j5 = j2 + j_p; k5 = k2 + k_p; + normsum = normsum + Eucl_Vec[count]*pow(A[(dimX*dimY)*(k3+k_p)+(i3+i_p)*dimY+(j3+j_p)]-A[(dimX*dimY)*k5 + i5*dimY+j5], 2); + count = count + 1; + }}} + if (normsum != 0) Weight = (exp(-normsum*denh2)); + else Weight = 0.0; + WeightGlob += Weight; + }}} + value += A[(dimX*dimY)*k1 + i1*dimY+j1]*WeightGlob; + Weight_norm += WeightGlob; + + }}} /*search window loop end*/ + + /* the final loop to average all values in searching window with weights */ + denom = 1 + lambda*Weight_norm; + B[(dimX*dimY)*k + i*dimY+j] = (A[(dimX*dimY)*k + i*dimY+j] + lambda*value)/denom; + } + }}} /*main loop*/ + free(Eucl_Vec); + return *B; +} + +float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop) +{ + /* padding-cropping function */ + int i,j,k; + if (NewSizeZ > 1) { + for (i=0; i < NewSizeX; i++) { + for (j=0; j < NewSizeY; j++) { + for (k=0; k < NewSizeZ; k++) { + if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) { + if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)]; + else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j]; + } + }}} + } + else { + for (i=0; i < NewSizeX; i++) { + for (j=0; j < NewSizeY; j++) { + if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) { + if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)]; + else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j]; + } + }} + } + return *Ap; +} diff --git a/Core/regularizers_CPU/PatchBased_Regul_core.h b/Core/regularizers_CPU/PatchBased_Regul_core.h new file mode 100644 index 0000000..d4a8a46 --- /dev/null +++ b/Core/regularizers_CPU/PatchBased_Regul_core.h @@ -0,0 +1,69 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#define _USE_MATH_DEFINES + +//#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +/* C-OMP implementation of patch-based (PB) regularization (2D and 3D cases). +* This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function +* +* References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" +* 2. Kazantsev D. et al. "4D-CT reconstruction with unified spatial-temporal patch-based regularization" +* +* Input Parameters (mandatory): +* 1. Image (2D or 3D) +* 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) +* 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) +* 4. h - parameter for the PB penalty function +* 5. lambda - regularization parameter + +* Output: +* 1. regularized (denoised) Image (N x N)/volume (N x N x N) +* +* Quick 2D denoising example in Matlab: +Im = double(imread('lena_gray_256.tif'))/255; % loading image +u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +* +* Please see more tests in a file: +TestTemporalSmoothing.m + +* +* Matlab + C/mex compilers needed +* to compile with OMP support: mex PB_Regul_CPU.c CFLAGS="\$CFLAGS -fopenmp -Wall" LDFLAGS="\$LDFLAGS -fopenmp" +* +* D. Kazantsev * +* 02/07/2014 +* Harwell, UK +*/ +#ifdef __cplusplus +extern "C" { +#endif +float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop); +float PB_FUNC2D(float *A, float *B, int dimX, int dimY, int padXY, int SearchW, int SimilW, float h, float lambda); +float PB_FUNC3D(float *A, float *B, int dimX, int dimY, int dimZ, int padXY, int SearchW, int SimilW, float h, float lambda); +#ifdef __cplusplus +} +#endif
\ No newline at end of file diff --git a/Core/regularizers_CPU/SplitBregman_TV.c b/Core/regularizers_CPU/SplitBregman_TV.c new file mode 100644 index 0000000..38f6a9d --- /dev/null +++ b/Core/regularizers_CPU/SplitBregman_TV.c @@ -0,0 +1,179 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "mex.h" +#include <matrix.h> +#include "SplitBregman_TV_core.h" + +/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) + * + * Input Parameters: + * 1. Noisy image/volume + * 2. lambda - regularization parameter + * 3. Number of iterations [OPTIONAL parameter] + * 4. eplsilon - tolerance constant [OPTIONAL parameter] + * 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] + * + * Output: + * Filtered/regularized image + * + * Example: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; + * u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + * + * to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * References: + * The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. + * D. Kazantsev, 2016* + */ + + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV; + const int *dim_array; + float *A, *U=NULL, *U_old=NULL, *Dx=NULL, *Dy=NULL, *Dz=NULL, *Bx=NULL, *By=NULL, *Bz=NULL, lambda, mu, epsil, re, re1, re_old; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + /*Handling Matlab input data*/ + A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + mu = (float) mxGetScalar(prhs[1]); /* regularization parameter */ + iter = 35; /* default iterations number */ + epsil = 0.0001; /* default tolerance constant */ + methTV = 0; /* default isotropic TV penalty */ + if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ + if ((nrhs == 4) || (nrhs == 5)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ + if (nrhs == 5) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + mxFree(penalty_type); + } + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + lambda = 2.0f*mu; + count = 1; + re_old = 0.0f; + /*Handling Matlab output data*/ + dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for(ll=0; ll<iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu); + + if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + + updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for(j=0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j],2); + re1 += pow(U_old[j],2); + } + re = sqrt(re)/sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*copyIm(U_old, U, dimX, dimY, dimZ); */ + } + printf("SB iterations stopped at iteration: %i\n", ll); + } + if (number_of_dims == 3) { + U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for(ll=0; ll<iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu); + + if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + + updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for(j=0; j<dimX*dimY*dimZ; j++) + { + re += pow(U[j] - U_old[j],2); + re1 += pow(U[j],2); + } + re = sqrt(re)/sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; } + /*printf("%f %i %i \n", re, ll, count); */ + re_old = re; + } + printf("SB iterations stopped at iteration: %i\n", ll); + } +}
\ No newline at end of file diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.c b/Core/regularizers_CPU/SplitBregman_TV_core.c new file mode 100644 index 0000000..4109a4b --- /dev/null +++ b/Core/regularizers_CPU/SplitBregman_TV_core.c @@ -0,0 +1,259 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "SplitBregman_TV_core.h" + +/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) +* +* Input Parameters: +* 1. Noisy image/volume +* 2. lambda - regularization parameter +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon - tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +* +* References: +* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. +* D. Kazantsev, 2016* +*/ + + +/* 2D-case related Functions */ +/*****************************************************************/ +float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu) +{ + float sum, normConst; + int i,j,i1,i2,j1,j2; + normConst = 1.0f/(mu + 4.0f*lambda); + +#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,sum) + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + + sum = Dx[(i2)*dimY + (j)] - Dx[(i)*dimY + (j)] + Dy[(i)*dimY + (j2)] - Dy[(i)*dimY + (j)] - Bx[(i2)*dimY + (j)] + Bx[(i)*dimY + (j)] - By[(i)*dimY + (j2)] + By[(i)*dimY + (j)]; + sum += (U[(i1)*dimY + (j)] + U[(i2)*dimY + (j)] + U[(i)*dimY + (j1)] + U[(i)*dimY + (j2)]); + sum *= lambda; + sum += mu*A[(i)*dimY + (j)]; + U[(i)*dimY + (j)] = normConst*sum; + }} + return *U; +} + +float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) +{ + int i,j,i1,j1; + float val1, val11, val2, val22, denom_lam; + denom_lam = 1.0f/lambda; +#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,val22) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + + val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; + val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; + + val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; + val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; + + if (val1 !=0) Dx[(i)*dimY + (j)] = (val1/fabs(val1))*val11; else Dx[(i)*dimY + (j)] = 0; + if (val2 !=0) Dy[(i)*dimY + (j)] = (val2/fabs(val2))*val22; else Dy[(i)*dimY + (j)] = 0; + + }} + return 1; +} +float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda) +{ + int i,j,i1,j1; + float val1, val11, val2, denom, denom_lam; + denom_lam = 1.0f/lambda; + +#pragma omp parallel for shared(U,denom_lam) private(i,j,i1,j1,val1,val11,val2,denom) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + + val1 = (U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) + Bx[(i)*dimY + (j)]; + val2 = (U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) + By[(i)*dimY + (j)]; + + denom = sqrt(val1*val1 + val2*val2); + + val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; + + if (denom != 0.0f) { + Dx[(i)*dimY + (j)] = val11*(val1/denom); + Dy[(i)*dimY + (j)] = val11*(val2/denom); + } + else { + Dx[(i)*dimY + (j)] = 0; + Dy[(i)*dimY + (j)] = 0; + } + }} + return 1; +} +float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY) +{ + int i,j,i1,j1; +#pragma omp parallel for shared(U) private(i,j,i1,j1) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + + Bx[(i)*dimY + (j)] = Bx[(i)*dimY + (j)] + ((U[(i1)*dimY + (j)] - U[(i)*dimY + (j)]) - Dx[(i)*dimY + (j)]); + By[(i)*dimY + (j)] = By[(i)*dimY + (j)] + ((U[(i)*dimY + (j1)] - U[(i)*dimY + (j)]) - Dy[(i)*dimY + (j)]); + }} + return 1; +} + + +/* 3D-case related Functions */ +/*****************************************************************/ +float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu) +{ + float normConst, d_val, b_val, sum; + int i,j,i1,i2,j1,j2,k,k1,k2; + normConst = 1.0f/(mu + 6.0f*lambda); +#pragma omp parallel for shared(U) private(i,j,i1,i2,j1,j2,k,k1,k2,d_val,b_val,sum) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + k2 = k-1; if (k2 < 0) k2 = k+1; + + d_val = Dx[(dimX*dimY)*k + (i2)*dimY + (j)] - Dx[(dimX*dimY)*k + (i)*dimY + (j)] + Dy[(dimX*dimY)*k + (i)*dimY + (j2)] - Dy[(dimX*dimY)*k + (i)*dimY + (j)] + Dz[(dimX*dimY)*k2 + (i)*dimY + (j)] - Dz[(dimX*dimY)*k + (i)*dimY + (j)]; + b_val = -Bx[(dimX*dimY)*k + (i2)*dimY + (j)] + Bx[(dimX*dimY)*k + (i)*dimY + (j)] - By[(dimX*dimY)*k + (i)*dimY + (j2)] + By[(dimX*dimY)*k + (i)*dimY + (j)] - Bz[(dimX*dimY)*k2 + (i)*dimY + (j)] + Bz[(dimX*dimY)*k + (i)*dimY + (j)]; + sum = d_val + b_val; + sum += U[(dimX*dimY)*k + (i1)*dimY + (j)] + U[(dimX*dimY)*k + (i2)*dimY + (j)] + U[(dimX*dimY)*k + (i)*dimY + (j1)] + U[(dimX*dimY)*k + (i)*dimY + (j2)] + U[(dimX*dimY)*k1 + (i)*dimY + (j)] + U[(dimX*dimY)*k2 + (i)*dimY + (j)]; + sum *= lambda; + sum += mu*A[(dimX*dimY)*k + (i)*dimY + (j)]; + U[(dimX*dimY)*k + (i)*dimY + (j)] = normConst*sum; + }}} + return *U; +} + +float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) +{ + int i,j,i1,j1,k,k1,index; + float val1, val11, val2, val22, val3, val33, denom_lam; + denom_lam = 1.0f/lambda; +#pragma omp parallel for shared(U,denom_lam) private(index,i,j,i1,j1,k,k1,val1,val11,val2,val22,val3,val33) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + index = (dimX*dimY)*k + (i)*dimY + (j); + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + + val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; + val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; + val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; + + val11 = fabs(val1) - denom_lam; if (val11 < 0) val11 = 0; + val22 = fabs(val2) - denom_lam; if (val22 < 0) val22 = 0; + val33 = fabs(val3) - denom_lam; if (val33 < 0) val33 = 0; + + if (val1 !=0) Dx[index] = (val1/fabs(val1))*val11; else Dx[index] = 0; + if (val2 !=0) Dy[index] = (val2/fabs(val2))*val22; else Dy[index] = 0; + if (val3 !=0) Dz[index] = (val3/fabs(val3))*val33; else Dz[index] = 0; + + }}} + return 1; +} +float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda) +{ + int i,j,i1,j1,k,k1,index; + float val1, val11, val2, val3, denom, denom_lam; + denom_lam = 1.0f/lambda; +#pragma omp parallel for shared(U,denom_lam) private(index,denom,i,j,i1,j1,k,k1,val1,val11,val2,val3) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + index = (dimX*dimY)*k + (i)*dimY + (j); + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + + val1 = (U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[index]) + Bx[index]; + val2 = (U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[index]) + By[index]; + val3 = (U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[index]) + Bz[index]; + + denom = sqrt(val1*val1 + val2*val2 + val3*val3); + + val11 = (denom - denom_lam); if (val11 < 0) val11 = 0.0f; + + if (denom != 0.0f) { + Dx[index] = val11*(val1/denom); + Dy[index] = val11*(val2/denom); + Dz[index] = val11*(val3/denom); + } + else { + Dx[index] = 0; + Dy[index] = 0; + Dz[index] = 0; + } + }}} + return 1; +} +float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ) +{ + int i,j,k,i1,j1,k1; +#pragma omp parallel for shared(U) private(i,j,k,i1,j1,k1) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + j1 = j+1; if (j1 == dimY) j1 = j-1; + k1 = k+1; if (k1 == dimZ) k1 = k-1; + + Bx[(dimX*dimY)*k + (i)*dimY + (j)] = Bx[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i1)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dx[(dimX*dimY)*k + (i)*dimY + (j)]); + By[(dimX*dimY)*k + (i)*dimY + (j)] = By[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k + (i)*dimY + (j1)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dy[(dimX*dimY)*k + (i)*dimY + (j)]); + Bz[(dimX*dimY)*k + (i)*dimY + (j)] = Bz[(dimX*dimY)*k + (i)*dimY + (j)] + ((U[(dimX*dimY)*k1 + (i)*dimY + (j)] - U[(dimX*dimY)*k + (i)*dimY + (j)]) - Dz[(dimX*dimY)*k + (i)*dimY + (j)]); + + }}} + return 1; +} diff --git a/Core/regularizers_CPU/SplitBregman_TV_core.h b/Core/regularizers_CPU/SplitBregman_TV_core.h new file mode 100644 index 0000000..6ed3ff9 --- /dev/null +++ b/Core/regularizers_CPU/SplitBregman_TV_core.h @@ -0,0 +1,69 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ +//#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" + +#include "utils.h" + +/* C-OMP implementation of Split Bregman - TV denoising-regularization model (2D/3D) +* +* Input Parameters: +* 1. Noisy image/volume +* 2. lambda - regularization parameter +* 3. Number of iterations [OPTIONAL parameter] +* 4. eplsilon - tolerance constant [OPTIONAL parameter] +* 5. TV-type: 'iso' or 'l1' [OPTIONAL parameter] +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +* u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +* +* to compile with OMP support: mex SplitBregman_TV.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: +* The Split Bregman Method for L1 Regularized Problems, by Tom Goldstein and Stanley Osher. +* D. Kazantsev, 2016* +*/ + +#ifdef __cplusplus +extern "C" { +#endif + +//float copyIm(float *A, float *B, int dimX, int dimY, int dimZ); +float gauss_seidel2D(float *U, float *A, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda, float mu); +float updDxDy_shrinkAniso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); +float updDxDy_shrinkIso2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY, float lambda); +float updBxBy2D(float *U, float *Dx, float *Dy, float *Bx, float *By, int dimX, int dimY); + +float gauss_seidel3D(float *U, float *A, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda, float mu); +float updDxDyDz_shrinkAniso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); +float updDxDyDz_shrinkIso3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ, float lambda); +float updBxByBz3D(float *U, float *Dx, float *Dy, float *Dz, float *Bx, float *By, float *Bz, int dimX, int dimY, int dimZ); + +#ifdef __cplusplus +} +#endif
\ No newline at end of file diff --git a/Core/regularizers_CPU/TGV_PD.c b/Core/regularizers_CPU/TGV_PD.c new file mode 100644 index 0000000..c9cb440 --- /dev/null +++ b/Core/regularizers_CPU/TGV_PD.c @@ -0,0 +1,144 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "TGV_PD_core.h" +#include "mex.h" + +/* C-OMP implementation of Primal-Dual denoising method for + * Total Generilized Variation (TGV)-L2 model (2D case only) + * + * Input Parameters: + * 1. Noisy image/volume (2D) + * 2. lambda - regularization parameter + * 3. parameter to control first-order term (alpha1) + * 4. parameter to control the second-order term (alpha0) + * 5. Number of CP iterations + * + * Output: + * Filtered/regularized image + * + * Example: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .03*randn(size(Im)); % adding noise + * tic; u = TGV_PD(single(u0), 0.02, 1.3, 1, 550); toc; + * + * to compile with OMP support: mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + * References: + * K. Bredies "Total Generalized Variation" + * + * 28.11.16/Harwell + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, ll; + const int *dim_array; + float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + + /*Handling Matlab input data*/ + A = (float *) mxGetData(prhs[0]); /*origanal noise image/volume*/ + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); } + lambda = (float) mxGetScalar(prhs[1]); /*regularization parameter*/ + alpha1 = (float) mxGetScalar(prhs[2]); /*first-order term*/ + alpha0 = (float) mxGetScalar(prhs[3]); /*second-order term*/ + iter = (int) mxGetScalar(prhs[4]); /*iterations number*/ + if(nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations"); + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; + + if (number_of_dims == 2) { + /*2D case*/ + dimZ = 1; + U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + /*dual variables*/ + P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + + /*printf("%i \n", i);*/ + L2 = 12.0f; /*Lipshitz constant*/ + tau = 1.0/pow(L2,0.5); + sigma = 1.0/pow(L2,0.5); + + /*Copy A to U*/ + copyIm(A, U, dimX, dimY, dimZ); + + /* Here primal-dual iterations begin for 2D */ + for(ll = 0; ll < iter; ll++) { + + /* Calculate Dual Variable P */ + DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for P*/ + ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1); + + /* Calculate Dual Variable Q */ + DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for Q*/ + ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0); + + /*saving U into U_old*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*adjoint operation -> divergence and projection of P*/ + DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau); + + /*get updated solution U*/ + newU(U, U_old, dimX, dimY, dimZ); + + /*saving V into V_old*/ + copyIm(V1, V1_old, dimX, dimY, dimZ); + copyIm(V2, V2_old, dimX, dimY, dimZ); + + /* upd V*/ + UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau); + + /*get new V*/ + newU(V1, V1_old, dimX, dimY, dimZ); + newU(V2, V2_old, dimX, dimY, dimZ); + } /*end of iterations*/ + } + else if (number_of_dims == 3) { + mexErrMsgTxt("The input data should be a 2D array"); + /*3D case*/ + } + else {mexErrMsgTxt("The input data should be a 2D array");} + +} diff --git a/Core/regularizers_CPU/TGV_PD_core.c b/Core/regularizers_CPU/TGV_PD_core.c new file mode 100644 index 0000000..4139d10 --- /dev/null +++ b/Core/regularizers_CPU/TGV_PD_core.c @@ -0,0 +1,208 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "TGV_PD_core.h" + +/* C-OMP implementation of Primal-Dual denoising method for + * Total Generilized Variation (TGV)-L2 model (2D case only) + * + * Input Parameters: + * 1. Noisy image/volume (2D) + * 2. lambda - regularization parameter + * 3. parameter to control first-order term (alpha1) + * 4. parameter to control the second-order term (alpha0) + * 5. Number of CP iterations + * + * Output: + * Filtered/regularized image + * + * Example: + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .03*randn(size(Im)); % adding noise + * tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; + * + * References: + * K. Bredies "Total Generalized Variation" + * + * 28.11.16/Harwell + */ + + + + +/*Calculating dual variable P (using forward differences)*/ +float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma) +{ + int i,j; +#pragma omp parallel for shared(U,V1,V2,P1,P2) private(i,j) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i-1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); + else P1[i*dimY + (j)] = P1[i*dimY + (j)] + sigma*((U[(i + 1)*dimY + (j)] - U[i*dimY + (j)]) - V1[i*dimY + (j)]); + if (j == dimY-1) P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j-1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); + else P2[i*dimY + (j)] = P2[i*dimY + (j)] + sigma*((U[(i)*dimY + (j+1)] - U[i*dimY + (j)]) - V2[i*dimY + (j)]); + }} + return 1; +} +/*Projection onto convex set for P*/ +float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1) +{ + float grad_magn; + int i,j; +#pragma omp parallel for shared(P1,P2) private(i,j,grad_magn) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + grad_magn = sqrt(pow(P1[i*dimY + (j)],2) + pow(P2[i*dimY + (j)],2)); + grad_magn = grad_magn/alpha1; + if (grad_magn > 1.0) { + P1[i*dimY + (j)] = P1[i*dimY + (j)]/grad_magn; + P2[i*dimY + (j)] = P2[i*dimY + (j)]/grad_magn; + } + }} + return 1; +} +/*Calculating dual variable Q (using forward differences)*/ +float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma) +{ + int i,j; + float q1, q2, q11, q22; +#pragma omp parallel for shared(Q1,Q2,Q3,V1,V2) private(i,j,q1,q2,q11,q22) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) + { q1 = (V1[(i-1)*dimY + (j)] - V1[i*dimY + (j)]); + q11 = (V2[(i-1)*dimY + (j)] - V2[i*dimY + (j)]); + } + else { + q1 = (V1[(i+1)*dimY + (j)] - V1[i*dimY + (j)]); + q11 = (V2[(i+1)*dimY + (j)] - V2[i*dimY + (j)]); + } + if (j == dimY-1) { + q2 = (V2[(i)*dimY + (j-1)] - V2[i*dimY + (j)]); + q22 = (V1[(i)*dimY + (j-1)] - V1[i*dimY + (j)]); + } + else { + q2 = (V2[(i)*dimY + (j+1)] - V2[i*dimY + (j)]); + q22 = (V1[(i)*dimY + (j+1)] - V1[i*dimY + (j)]); + } + Q1[i*dimY + (j)] = Q1[i*dimY + (j)] + sigma*(q1); + Q2[i*dimY + (j)] = Q2[i*dimY + (j)] + sigma*(q2); + Q3[i*dimY + (j)] = Q3[i*dimY + (j)] + sigma*(0.5f*(q11 + q22)); + }} + return 1; +} + +float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0) +{ + float grad_magn; + int i,j; +#pragma omp parallel for shared(Q1,Q2,Q3) private(i,j,grad_magn) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + grad_magn = sqrt(pow(Q1[i*dimY + (j)],2) + pow(Q2[i*dimY + (j)],2) + 2*pow(Q3[i*dimY + (j)],2)); + grad_magn = grad_magn/alpha0; + if (grad_magn > 1.0) { + Q1[i*dimY + (j)] = Q1[i*dimY + (j)]/grad_magn; + Q2[i*dimY + (j)] = Q2[i*dimY + (j)]/grad_magn; + Q3[i*dimY + (j)] = Q3[i*dimY + (j)]/grad_magn; + } + }} + return 1; +} +/* Divergence and projection for P*/ +float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau) +{ + int i,j; + float P_v1, P_v2, div; +#pragma omp parallel for shared(U,A,P1,P2) private(i,j,P_v1,P_v2,div) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + if (i == 0) P_v1 = (P1[i*dimY + (j)]); + else P_v1 = (P1[i*dimY + (j)] - P1[(i-1)*dimY + (j)]); + if (j == 0) P_v2 = (P2[i*dimY + (j)]); + else P_v2 = (P2[i*dimY + (j)] - P2[(i)*dimY + (j-1)]); + div = P_v1 + P_v2; + U[i*dimY + (j)] = (lambda*(U[i*dimY + (j)] + tau*div) + tau*A[i*dimY + (j)])/(lambda + tau); + }} + return *U; +} +/*get updated solution U*/ +float newU(float *U, float *U_old, int dimX, int dimY, int dimZ) +{ + int i; +#pragma omp parallel for shared(U,U_old) private(i) + for(i=0; i<dimX*dimY*dimZ; i++) U[i] = 2*U[i] - U_old[i]; + return *U; +} + +/*get update for V*/ +float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau) +{ + int i,j; + float q1, q11, q2, q22, div1, div2; +#pragma omp parallel for shared(V1,V2,P1,P2,Q1,Q2,Q3) private(i,j, q1, q11, q2, q22, div1, div2) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + if (i == 0) { + q1 = (Q1[i*dimY + (j)]); + q11 = (Q3[i*dimY + (j)]); + } + else { + q1 = (Q1[i*dimY + (j)] - Q1[(i-1)*dimY + (j)]); + q11 = (Q3[i*dimY + (j)] - Q3[(i-1)*dimY + (j)]); + } + if (j == 0) { + q2 = (Q2[i*dimY + (j)]); + q22 = (Q3[i*dimY + (j)]); + } + else { + q2 = (Q2[i*dimY + (j)] - Q2[(i)*dimY + (j-1)]); + q22 = (Q3[i*dimY + (j)] - Q3[(i)*dimY + (j-1)]); + } + div1 = q1 + q22; + div2 = q2 + q11; + V1[i*dimY + (j)] = V1[i*dimY + (j)] + tau*(P1[i*dimY + (j)] + div1); + V2[i*dimY + (j)] = V2[i*dimY + (j)] + tau*(P2[i*dimY + (j)] + div2); + }} + return 1; +} +/*********************3D *********************/ + +/*Calculating dual variable P (using forward differences)*/ +float DualP_3D(float *U, float *V1, float *V2, float *V3, float *P1, float *P2, float *P3, int dimX, int dimY, int dimZ, float sigma) +{ + int i,j,k; +#pragma omp parallel for shared(U,V1,V2,V3,P1,P2,P3) private(i,j,k) + for(i=0; i<dimX; i++) { + for(j=0; j<dimY; j++) { + for(k=0; k<dimZ; k++) { + /* symmetric boundary conditions (Neuman) */ + if (i == dimX-1) P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i-1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); + else P1[dimX*dimY*k + i*dimY + (j)] = P1[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i + 1)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V1[dimX*dimY*k + i*dimY + (j)]); + if (j == dimY-1) P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j-1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); + else P2[dimX*dimY*k + i*dimY + (j)] = P2[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*k + (i)*dimY + (j+1)] - U[dimX*dimY*k + i*dimY + (j)]) - V2[dimX*dimY*k + i*dimY + (j)]); + if (k == dimZ-1) P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k-1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); + else P3[dimX*dimY*k + i*dimY + (j)] = P3[dimX*dimY*k + i*dimY + (j)] + sigma*((U[dimX*dimY*(k+1) + (i)*dimY + (j)] - U[dimX*dimY*k + i*dimY + (j)]) - V3[dimX*dimY*k + i*dimY + (j)]); + }}} + return 1; +}
\ No newline at end of file diff --git a/Core/regularizers_CPU/TGV_PD_core.h b/Core/regularizers_CPU/TGV_PD_core.h new file mode 100644 index 0000000..d5378df --- /dev/null +++ b/Core/regularizers_CPU/TGV_PD_core.h @@ -0,0 +1,67 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +//#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" + +/* C-OMP implementation of Primal-Dual denoising method for +* Total Generilized Variation (TGV)-L2 model (2D case only) +* +* Input Parameters: +* 1. Noisy image/volume (2D) +* 2. lambda - regularization parameter +* 3. parameter to control first-order term (alpha1) +* 4. parameter to control the second-order term (alpha0) +* 5. Number of CP iterations +* +* Output: +* Filtered/regularized image +* +* Example: +* figure; +* Im = double(imread('lena_gray_256.tif'))/255; % loading image +* u0 = Im + .03*randn(size(Im)); % adding noise +* tic; u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); toc; +* +* to compile with OMP support: mex TGV_PD.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +* References: +* K. Bredies "Total Generalized Variation" +* +* 28.11.16/Harwell +*/ +#ifdef __cplusplus +extern "C" { +#endif +/* 2D functions */ +float DualP_2D(float *U, float *V1, float *V2, float *P1, float *P2, int dimX, int dimY, int dimZ, float sigma); +float ProjP_2D(float *P1, float *P2, int dimX, int dimY, int dimZ, float alpha1); +float DualQ_2D(float *V1, float *V2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float sigma); +float ProjQ_2D(float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float alpha0); +float DivProjP_2D(float *U, float *A, float *P1, float *P2, int dimX, int dimY, int dimZ, float lambda, float tau); +float UpdV_2D(float *V1, float *V2, float *P1, float *P2, float *Q1, float *Q2, float *Q3, int dimX, int dimY, int dimZ, float tau); +float newU(float *U, float *U_old, int dimX, int dimY, int dimZ); +//float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); +#ifdef __cplusplus +} +#endif diff --git a/Core/regularizers_CPU/utils.c b/Core/regularizers_CPU/utils.c new file mode 100644 index 0000000..0e83d2c --- /dev/null +++ b/Core/regularizers_CPU/utils.c @@ -0,0 +1,29 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazanteev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include "utils.h" + +/* Copy Image */ +float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) +{ + int j; +#pragma omp parallel for shared(A, U) private(j) + for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; + return *U; +}
\ No newline at end of file diff --git a/Core/regularizers_CPU/utils.h b/Core/regularizers_CPU/utils.h new file mode 100644 index 0000000..53463a3 --- /dev/null +++ b/Core/regularizers_CPU/utils.h @@ -0,0 +1,32 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +//#include <matrix.h> +//#include <math.h> +#include <stdlib.h> +#include <memory.h> +//#include <stdio.h> +#include "omp.h" +#ifdef __cplusplus +extern "C" { +#endif +float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); +#ifdef __cplusplus +} +#endif diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp new file mode 100644 index 0000000..e5b1ee0 --- /dev/null +++ b/Core/regularizers_GPU/Diffus_HO/Diff4thHajiaboli_GPU.cpp @@ -0,0 +1,114 @@ +#include "mex.h" +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include <iostream> +#include "Diff4th_GPU_kernel.h" + +/* + * 2D and 3D CUDA implementation of the 4th order PDE denoising model by Hajiaboli + * + * Reference : + * "An anisotropic fourth-order diffusion filter for image noise removal" by M. Hajiaboli + * + * Example + * figure; + * Im = double(imread('lena_gray_256.tif'))/255; % loading image + * u0 = Im + .05*randn(size(Im)); % adding noise + * u = Diff4thHajiaboli_GPU(single(u0), 0.02, 150); + * subplot (1,2,1); imshow(u0,[ ]); title('Noisy Image') + * subplot (1,2,2); imshow(u,[ ]); title('Denoised Image') + * + * + * Linux/Matlab compilation: + * compile in terminal: nvcc -Xcompiler -fPIC -shared -o Diff4th_GPU_kernel.o Diff4th_GPU_kernel.cu + * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart Diff4thHajiaboli_GPU.cpp Diff4th_GPU_kernel.o + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) +{ + int numdims, dimZ, size; + float *A, *B, *A_L, *B_L; + const int *dims; + + numdims = mxGetNumberOfDimensions(prhs[0]); + dims = mxGetDimensions(prhs[0]); + + float sigma = (float)mxGetScalar(prhs[1]); /* edge-preserving parameter */ + float lambda = (float)mxGetScalar(prhs[2]); /* regularization parameter */ + int iter = (int)mxGetScalar(prhs[3]); /* iterations number */ + + if (numdims == 2) { + + int N, M, Z, i, j; + Z = 0; // for the 2D case + float tau = 0.01; // time step is sufficiently small for an explicit methods + + /*Input data*/ + A = (float*)mxGetData(prhs[0]); + N = dims[0] + 2; + M = dims[1] + 2; + A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + + /*Output data*/ + B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(dims[0], dims[1], mxSINGLE_CLASS, mxREAL)); + + // copy A to the bigger A_L with boundaries + #pragma omp parallel for shared(A_L, A) private(i,j) + for (i=0; i < N; i++) { + for (j=0; j < M; j++) { + if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)]; + }} + + // Running CUDA code here + Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda); + + // copy the processed B_L to a smaller B + #pragma omp parallel for shared(B_L, B) private(i,j) + for (i=0; i < N; i++) { + for (j=0; j < M; j++) { + if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j]; + }} + } + if (numdims == 3) { + // 3D image denoising / regularization + int N, M, Z, i, j, k; + float tau = 0.0007; // Time Step is small for an explicit methods + A = (float*)mxGetData(prhs[0]); + N = dims[0] + 2; + M = dims[1] + 2; + Z = dims[2] + 2; + int N_dims[] = {N, M, Z}; + A_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + B_L = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + + /* output data */ + B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); + + // copy A to the bigger A_L with boundaries + #pragma omp parallel for shared(A_L, A) private(i,j,k) + for (i=0; i < N; i++) { + for (j=0; j < M; j++) { + for (k=0; k < Z; k++) { + if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) { + A_L[(N*M)*(k)+(i)*M+(j)] = A[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)]; + }}}} + + // Running CUDA kernel here for diffusivity + Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda); + + // copy the processed B_L to a smaller B + #pragma omp parallel for shared(B_L, B) private(i,j,k) + for (i=0; i < N; i++) { + for (j=0; j < M; j++) { + for (k=0; k < Z; k++) { + if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1)) && ((k > 0) && (k < Z-1))) { + B[(dims[0]*dims[1])*(k-1)+(i-1)*dims[1]+(j-1)] = B_L[(N*M)*(k)+(i)*M+(j)]; + }}}} + } +}
\ No newline at end of file diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu new file mode 100644 index 0000000..90269bf --- /dev/null +++ b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.cu @@ -0,0 +1,270 @@ +#include <stdio.h> +#include <stdlib.h> +#include <memory.h> +#include "Diff4th_GPU_kernel.h" + +#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__) + +inline void __checkCudaErrors(cudaError err, const char *file, const int line) +{ + if (cudaSuccess != err) + { + fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n", + file, line, (int)err, cudaGetErrorString(err)); + exit(EXIT_FAILURE); + } +} + +#define idivup(a, b) ( ((a)%(b) != 0) ? (a)/(b)+1 : (a)/(b) ) +#define sizeT (sizeX*sizeY*sizeZ) +#define epsilon 0.00000001 + +///////////////////////////////////////////////// +// 2D Image denosing - Second Step (The second derrivative) +__global__ void Diff4th2D_derriv(float* B, float* A, float *A0, int N, int M, float sigma, int iter, float tau, float lambda) +{ + float gradXXc = 0, gradYYc = 0; + int i = blockIdx.x*blockDim.x + threadIdx.x; + int j = blockIdx.y*blockDim.y + threadIdx.y; + + int index = j + i*N; + + if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) { + return; } + + int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index; + int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index; + int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index; + int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index; + + gradXXc = B[indexN] + B[indexS] - 2*B[index] ; + gradYYc = B[indexW] + B[indexE] - 2*B[index] ; + A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc)); +} + +// 2D Image denosing - The First Step +__global__ void Diff4th2D(float* A, float* B, int N, int M, float sigma, int iter, float tau) +{ + float gradX, gradX_sq, gradY, gradY_sq, gradXX, gradYY, gradXY, sq_sum, xy_2, V_norm, V_orth, c, c_sq; + + int i = blockIdx.x*blockDim.x + threadIdx.x; + int j = blockIdx.y*blockDim.y + threadIdx.y; + + int index = j + i*N; + + V_norm = 0.0f; V_orth = 0.0f; + + if (((i < 1) || (i > N-2)) || ((j < 1) || (j > M-2))) { + return; } + + int indexN = (j)+(i-1)*(N); if (A[indexN] == 0) indexN = index; + int indexS = (j)+(i+1)*(N); if (A[indexS] == 0) indexS = index; + int indexW = (j-1)+(i)*(N); if (A[indexW] == 0) indexW = index; + int indexE = (j+1)+(i)*(N); if (A[indexE] == 0) indexE = index; + int indexNW = (j-1)+(i-1)*(N); if (A[indexNW] == 0) indexNW = index; + int indexNE = (j+1)+(i-1)*(N); if (A[indexNE] == 0) indexNE = index; + int indexWS = (j-1)+(i+1)*(N); if (A[indexWS] == 0) indexWS = index; + int indexES = (j+1)+(i+1)*(N); if (A[indexES] == 0) indexES = index; + + gradX = 0.5f*(A[indexN]-A[indexS]); + gradX_sq = gradX*gradX; + gradXX = A[indexN] + A[indexS] - 2*A[index]; + + gradY = 0.5f*(A[indexW]-A[indexE]); + gradY_sq = gradY*gradY; + gradYY = A[indexW] + A[indexE] - 2*A[index]; + + gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]); + xy_2 = 2.0f*gradX*gradY*gradXY; + sq_sum = gradX_sq + gradY_sq; + + if (sq_sum <= epsilon) { + V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/epsilon; + V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/epsilon; } + else { + V_norm = (gradXX*gradX_sq + xy_2 + gradYY*gradY_sq)/sq_sum; + V_orth = (gradXX*gradY_sq - xy_2 + gradYY*gradX_sq)/sq_sum; } + + c = 1.0f/(1.0f + sq_sum/sigma); + c_sq = c*c; + B[index] = c_sq*V_norm + c*V_orth; +} + +///////////////////////////////////////////////// +// 3D data parocerssing +__global__ void Diff4th3D_derriv(float *B, float *A, float *A0, int N, int M, int Z, float sigma, int iter, float tau, float lambda) +{ + float gradXXc = 0, gradYYc = 0, gradZZc = 0; + int xIndex = blockDim.x * blockIdx.x + threadIdx.x; + int yIndex = blockDim.y * blockIdx.y + threadIdx.y; + int zIndex = blockDim.z * blockIdx.z + threadIdx.z; + + int index = xIndex + M*yIndex + N*M*zIndex; + + if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) { + return; } + + int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index; + int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index; + int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index; + int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index; + int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index; + int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index; + + gradXXc = B[indexN] + B[indexS] - 2*B[index] ; + gradYYc = B[indexW] + B[indexE] - 2*B[index] ; + gradZZc = B[indexU] + B[indexD] - 2*B[index] ; + + A[index] = A[index] - tau*((A[index] - A0[index]) + lambda*(gradXXc + gradYYc + gradZZc)); +} + +__global__ void Diff4th3D(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau) +{ + float gradX, gradX_sq, gradY, gradY_sq, gradZ, gradZ_sq, gradXX, gradYY, gradZZ, gradXY, gradXZ, gradYZ, sq_sum, xy_2, xyz_1, xyz_2, V_norm, V_orth, c, c_sq; + + int xIndex = blockDim.x * blockIdx.x + threadIdx.x; + int yIndex = blockDim.y * blockIdx.y + threadIdx.y; + int zIndex = blockDim.z * blockIdx.z + threadIdx.z; + + int index = xIndex + M*yIndex + N*M*zIndex; + V_norm = 0.0f; V_orth = 0.0f; + + if (((xIndex < 1) || (xIndex > N-2)) || ((yIndex < 1) || (yIndex > M-2)) || ((zIndex < 1) || (zIndex > Z-2))) { + return; } + + B[index] = 0; + + int indexN = (xIndex-1) + M*yIndex + N*M*zIndex; if (A[indexN] == 0) indexN = index; + int indexS = (xIndex+1) + M*yIndex + N*M*zIndex; if (A[indexS] == 0) indexS = index; + int indexW = xIndex + M*(yIndex-1) + N*M*zIndex; if (A[indexW] == 0) indexW = index; + int indexE = xIndex + M*(yIndex+1) + N*M*zIndex; if (A[indexE] == 0) indexE = index; + int indexU = xIndex + M*yIndex + N*M*(zIndex-1); if (A[indexU] == 0) indexU = index; + int indexD = xIndex + M*yIndex + N*M*(zIndex+1); if (A[indexD] == 0) indexD = index; + + int indexNW = (xIndex-1) + M*(yIndex-1) + N*M*zIndex; if (A[indexNW] == 0) indexNW = index; + int indexNE = (xIndex-1) + M*(yIndex+1) + N*M*zIndex; if (A[indexNE] == 0) indexNE = index; + int indexWS = (xIndex+1) + M*(yIndex-1) + N*M*zIndex; if (A[indexWS] == 0) indexWS = index; + int indexES = (xIndex+1) + M*(yIndex+1) + N*M*zIndex; if (A[indexES] == 0) indexES = index; + + int indexUW = (xIndex-1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUW] == 0) indexUW = index; + int indexUE = (xIndex+1) + M*(yIndex) + N*M*(zIndex-1); if (A[indexUE] == 0) indexUE = index; + int indexDW = (xIndex-1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDW] == 0) indexDW = index; + int indexDE = (xIndex+1) + M*(yIndex) + N*M*(zIndex+1); if (A[indexDE] == 0) indexDE = index; + + int indexUN = (xIndex) + M*(yIndex-1) + N*M*(zIndex-1); if (A[indexUN] == 0) indexUN = index; + int indexUS = (xIndex) + M*(yIndex+1) + N*M*(zIndex-1); if (A[indexUS] == 0) indexUS = index; + int indexDN = (xIndex) + M*(yIndex-1) + N*M*(zIndex+1); if (A[indexDN] == 0) indexDN = index; + int indexDS = (xIndex) + M*(yIndex+1) + N*M*(zIndex+1); if (A[indexDS] == 0) indexDS = index; + + gradX = 0.5f*(A[indexN]-A[indexS]); + gradX_sq = gradX*gradX; + gradXX = A[indexN] + A[indexS] - 2*A[index]; + + gradY = 0.5f*(A[indexW]-A[indexE]); + gradY_sq = gradY*gradY; + gradYY = A[indexW] + A[indexE] - 2*A[index]; + + gradZ = 0.5f*(A[indexU]-A[indexD]); + gradZ_sq = gradZ*gradZ; + gradZZ = A[indexU] + A[indexD] - 2*A[index]; + + gradXY = 0.25f*(A[indexNW] - A[indexNE] - A[indexWS] + A[indexES]); + gradXZ = 0.25f*(A[indexUW] - A[indexUE] - A[indexDW] + A[indexDE]); + gradYZ = 0.25f*(A[indexUN] - A[indexUS] - A[indexDN] + A[indexDS]); + + xy_2 = 2.0f*gradX*gradY*gradXY; + xyz_1 = 2.0f*gradX*gradZ*gradXZ; + xyz_2 = 2.0f*gradY*gradZ*gradYZ; + + sq_sum = gradX_sq + gradY_sq + gradZ_sq; + + if (sq_sum <= epsilon) { + V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/epsilon; + V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/epsilon; } + else { + V_norm = (gradXX*gradX_sq + gradYY*gradY_sq + gradZZ*gradZ_sq + xy_2 + xyz_1 + xyz_2)/sq_sum; + V_orth = ((gradY_sq + gradZ_sq)*gradXX + (gradX_sq + gradZ_sq)*gradYY + (gradX_sq + gradY_sq)*gradZZ - xy_2 - xyz_1 - xyz_2)/sq_sum; } + + c = 1; + if ((1.0f + sq_sum/sigma) != 0.0f) {c = 1.0f/(1.0f + sq_sum/sigma);} + + c_sq = c*c; + B[index] = c_sq*V_norm + c*V_orth; +} + +/******************************************************/ +/********* HOST FUNCTION*************/ +extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda) +{ + int deviceCount = -1; // number of devices + cudaGetDeviceCount(&deviceCount); + if (deviceCount == 0) { + fprintf(stderr, "No CUDA devices found\n"); + return; + } + + int BLKXSIZE, BLKYSIZE,BLKZSIZE; + float *Ad, *Bd, *Cd; + sigma = sigma*sigma; + + if (Z == 0){ + // 4th order diffusion for 2D case + BLKXSIZE = 8; + BLKYSIZE = 16; + + dim3 dimBlock(BLKXSIZE,BLKYSIZE); + dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE)); + + checkCudaErrors(cudaMalloc((void**)&Ad,N*M*sizeof(float))); + checkCudaErrors(cudaMalloc((void**)&Bd,N*M*sizeof(float))); + checkCudaErrors(cudaMalloc((void**)&Cd,N*M*sizeof(float))); + + checkCudaErrors(cudaMemcpy(Ad,A,N*M*sizeof(float),cudaMemcpyHostToDevice)); + checkCudaErrors(cudaMemcpy(Bd,A,N*M*sizeof(float),cudaMemcpyHostToDevice)); + checkCudaErrors(cudaMemcpy(Cd,A,N*M*sizeof(float),cudaMemcpyHostToDevice)); + + int n = 1; + while (n <= iter) { + Diff4th2D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, sigma, iter, tau); + cudaDeviceSynchronize(); + checkCudaErrors( cudaPeekAtLastError() ); + Diff4th2D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, sigma, iter, tau, lambda); + cudaDeviceSynchronize(); + checkCudaErrors( cudaPeekAtLastError() ); + n++; + } + checkCudaErrors(cudaMemcpy(B,Bd,N*M*sizeof(float),cudaMemcpyDeviceToHost)); + cudaFree(Ad); cudaFree(Bd); cudaFree(Cd); + } + + if (Z != 0){ + // 4th order diffusion for 3D case + BLKXSIZE = 8; + BLKYSIZE = 8; + BLKZSIZE = 8; + + dim3 dimBlock(BLKXSIZE,BLKYSIZE,BLKZSIZE); + dim3 dimGrid(idivup(N,BLKXSIZE), idivup(M,BLKYSIZE),idivup(Z,BLKXSIZE)); + + checkCudaErrors(cudaMalloc((void**)&Ad,N*M*Z*sizeof(float))); + checkCudaErrors(cudaMalloc((void**)&Bd,N*M*Z*sizeof(float))); + checkCudaErrors(cudaMalloc((void**)&Cd,N*M*Z*sizeof(float))); + + checkCudaErrors(cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); + checkCudaErrors(cudaMemcpy(Bd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); + checkCudaErrors(cudaMemcpy(Cd,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice)); + + int n = 1; + while (n <= iter) { + Diff4th3D<<<dimGrid,dimBlock>>>(Bd, Cd, N, M, Z, sigma, iter, tau); + cudaDeviceSynchronize(); + checkCudaErrors( cudaPeekAtLastError() ); + Diff4th3D_derriv<<<dimGrid,dimBlock>>>(Cd, Bd, Ad, N, M, Z, sigma, iter, tau, lambda); + cudaDeviceSynchronize(); + checkCudaErrors( cudaPeekAtLastError() ); + n++; + } + checkCudaErrors(cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost)); + cudaFree(Ad); cudaFree(Bd); cudaFree(Cd); + } +}
\ No newline at end of file diff --git a/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h new file mode 100644 index 0000000..cfbb45a --- /dev/null +++ b/Core/regularizers_GPU/Diffus_HO/Diff4th_GPU_kernel.h @@ -0,0 +1,6 @@ +#ifndef __DIFF_HO_H_ +#define __DIFF_HO_H_ + +extern "C" void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, float sigma, int iter, float tau, float lambda); + +#endif diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp new file mode 100644 index 0000000..858b865 --- /dev/null +++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU.cpp @@ -0,0 +1,171 @@ +#include "mex.h" +#include <matrix.h> +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include <iostream> +#include "NLM_GPU_kernel.h" + +/* CUDA implementation of the patch-based (PB) regularization for 2D and 3D images/volumes + * This method finds self-similar patches in data and performs one fixed point iteration to mimimize the PB penalty function + * + * References: 1. Yang Z. & Jacob M. "Nonlocal Regularization of Inverse Problems" + * 2. Kazantsev D. at. all "4D-CT reconstruction with unified spatial-temporal patch-based regularization" + * + * Input Parameters (mandatory): + * 1. Image/volume (2D/3D) + * 2. ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window) + * 3. ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window) + * 4. h - parameter for the PB penalty function + * 5. lambda - regularization parameter + + * Output: + * 1. regularized (denoised) Image/volume (N x N x N) + * + * In matlab check what kind of GPU you have with "gpuDevice" command, + * then set your ComputeCapability, here I use -arch compute_35 + * + * Quick 2D denoising example in Matlab: + Im = double(imread('lena_gray_256.tif'))/255; % loading image + u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise + ImDen = NLM_GPU(single(u0), 3, 2, 0.15, 1); + + * Linux/Matlab compilation: + * compile in terminal: nvcc -Xcompiler -fPIC -shared -o NLM_GPU_kernel.o NLM_GPU_kernel.cu + * then compile in Matlab: mex -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart NLM_GPU.cpp NLM_GPU_kernel.o + * + * D. Kazantsev + * 2014-17 + * Harwell/Manchester UK + */ + +float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop); + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) +{ + int N, M, Z, i_n, j_n, k_n, numdims, SearchW, SimilW, SearchW_real, padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop, count, SearchW_full, SimilW_full; + const int *dims; + float *A, *B=NULL, *Ap=NULL, *Bp=NULL, *Eucl_Vec, h, h2, lambda, val, denh2; + + numdims = mxGetNumberOfDimensions(prhs[0]); + dims = mxGetDimensions(prhs[0]); + + N = dims[0]; + M = dims[1]; + Z = dims[2]; + + if ((numdims < 2) || (numdims > 3)) {mexErrMsgTxt("The input should be 2D image or 3D volume");} + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input in single precision is required"); } + + if(nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter"); + + /*Handling inputs*/ + A = (float *) mxGetData(prhs[0]); /* the image to regularize/filter */ + SearchW_real = (int) mxGetScalar(prhs[1]); /* the searching window ratio */ + SimilW = (int) mxGetScalar(prhs[2]); /* the similarity window ratio */ + h = (float) mxGetScalar(prhs[3]); /* parameter for the PB filtering function */ + lambda = (float) mxGetScalar(prhs[4]); + + if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0"); + + SearchW = SearchW_real + 2*SimilW; + + SearchW_full = 2*SearchW + 1; /* the full searching window size */ + SimilW_full = 2*SimilW + 1; /* the full similarity window size */ + h2 = h*h; + + padXY = SearchW + 2*SimilW; /* padding sizes */ + newsizeX = N + 2*(padXY); /* the X size of the padded array */ + newsizeY = M + 2*(padXY); /* the Y size of the padded array */ + newsizeZ = Z + 2*(padXY); /* the Z size of the padded array */ + int N_dims[] = {newsizeX, newsizeY, newsizeZ}; + + /******************************2D case ****************************/ + if (numdims == 2) { + /*Handling output*/ + B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + /*allocating memory for the padded arrays */ + Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL)); + + /*Gaussian kernel */ + count = 0; + for(i_n=-SimilW; i_n<=SimilW; i_n++) { + for(j_n=-SimilW; j_n<=SimilW; j_n++) { + val = (float)(i_n*i_n + j_n*j_n)/(2*SimilW*SimilW); + Eucl_Vec[count] = exp(-val); + count = count + 1; + }} /*main neighb loop */ + + /**************************************************************************/ + /*Perform padding of image A to the size of [newsizeX * newsizeY] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, 0, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + } + else + { + /******************************3D case ****************************/ + /*Handling output*/ + B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); + /*allocating memory for the padded arrays */ + Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + Eucl_Vec = (float*)mxGetData(mxCreateNumericMatrix(SimilW_full*SimilW_full*SimilW_full, 1, mxSINGLE_CLASS, mxREAL)); + + /*Gaussian kernel */ + count = 0; + for(i_n=-SimilW; i_n<=SimilW; i_n++) { + for(j_n=-SimilW; j_n<=SimilW; j_n++) { + for(k_n=-SimilW; k_n<=SimilW; k_n++) { + val = (float)(i_n*i_n + j_n*j_n + k_n*k_n)/(2*SimilW*SimilW*SimilW); + Eucl_Vec[count] = exp(-val); + count = count + 1; + }}} /*main neighb loop */ + /**************************************************************************/ + /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + NLM_GPU_kernel(Ap, Bp, Eucl_Vec, newsizeY, newsizeX, newsizeZ, numdims, SearchW, SimilW, SearchW_real, (float)h2, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + } /*end else ndims*/ +} + +float pad_crop(float *A, float *Ap, int OldSizeX, int OldSizeY, int OldSizeZ, int NewSizeX, int NewSizeY, int NewSizeZ, int padXY, int switchpad_crop) +{ + /* padding-cropping function */ + int i,j,k; + if (NewSizeZ > 1) { + for (i=0; i < NewSizeX; i++) { + for (j=0; j < NewSizeY; j++) { + for (k=0; k < NewSizeZ; k++) { + if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY)) && ((k >= padXY) && (k < NewSizeZ-padXY))) { + if (switchpad_crop == 0) Ap[NewSizeX*NewSizeY*k + i*NewSizeY+j] = A[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)]; + else Ap[OldSizeX*OldSizeY*(k - padXY) + (i-padXY)*(OldSizeY)+(j-padXY)] = A[NewSizeX*NewSizeY*k + i*NewSizeY+j]; + } + }}} + } + else { + for (i=0; i < NewSizeX; i++) { + for (j=0; j < NewSizeY; j++) { + if (((i >= padXY) && (i < NewSizeX-padXY)) && ((j >= padXY) && (j < NewSizeY-padXY))) { + if (switchpad_crop == 0) Ap[i*NewSizeY+j] = A[(i-padXY)*(OldSizeY)+(j-padXY)]; + else Ap[(i-padXY)*(OldSizeY)+(j-padXY)] = A[i*NewSizeY+j]; + } + }} + } + return *Ap; +}
\ No newline at end of file diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu new file mode 100644 index 0000000..1089539 --- /dev/null +++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.cu @@ -0,0 +1,239 @@ +#include <stdio.h> +#include <stdlib.h> +#include <memory.h> +#include "NLM_GPU_kernel.h" + +#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__) + +inline void __checkCudaErrors(cudaError err, const char *file, const int line) +{ + if (cudaSuccess != err) + { + fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n", + file, line, (int)err, cudaGetErrorString(err)); + exit(EXIT_FAILURE); + } +} + +extern __shared__ float sharedmem[]; + +// run PB den kernel here +__global__ void NLM_kernel(float *Ad, float* Bd, float *Eucl_Vec_d, int N, int M, int Z, int SearchW, int SimilW, int SearchW_real, int SearchW_full, int SimilW_full, int padXY, float h2, float lambda, dim3 imagedim, dim3 griddim, dim3 kerneldim, dim3 sharedmemdim, int nUpdatePerThread, float neighborsize) +{ + + int i1, j1, k1, i2, j2, k2, i3, j3, k3, i_l, j_l, k_l, count; + float value, Weight_norm, normsum, Weight; + + int bidx = blockIdx.x; + int bidy = blockIdx.y%griddim.y; + int bidz = (int)((blockIdx.y)/griddim.y); + + // global index for block endpoint + int beidx = __mul24(bidx,blockDim.x); + int beidy = __mul24(bidy,blockDim.y); + int beidz = __mul24(bidz,blockDim.z); + + int tid = __mul24(threadIdx.z,__mul24(blockDim.x,blockDim.y)) + + __mul24(threadIdx.y,blockDim.x) + threadIdx.x; + + #ifdef __DEVICE_EMULATION__ + printf("tid : %d", tid); + #endif + + // update shared memory + int nthreads = blockDim.x*blockDim.y*blockDim.z; + int sharedMemSize = sharedmemdim.x * sharedmemdim.y * sharedmemdim.z; + for(int i=0; i<nUpdatePerThread; i++) + { + int sid = tid + i*nthreads; // index in shared memory + if (sid < sharedMemSize) + { + // global x/y/z index in volume + int gidx, gidy, gidz; + int sidx, sidy, sidz, tid; + + sidz = sid / (sharedmemdim.x*sharedmemdim.y); + tid = sid - sidz*(sharedmemdim.x*sharedmemdim.y); + sidy = tid / (sharedmemdim.x); + sidx = tid - sidy*(sharedmemdim.x); + + gidx = (int)sidx - (int)kerneldim.x + (int)beidx; + gidy = (int)sidy - (int)kerneldim.y + (int)beidy; + gidz = (int)sidz - (int)kerneldim.z + (int)beidz; + + // Neumann boundary condition + int cx = (int) min(max(0,gidx),imagedim.x-1); + int cy = (int) min(max(0,gidy),imagedim.y-1); + int cz = (int) min(max(0,gidz),imagedim.z-1); + + int gid = cz*imagedim.x*imagedim.y + cy*imagedim.x + cx; + + sharedmem[sid] = Ad[gid]; + } + } + __syncthreads(); + + // global index of the current voxel in the input volume + int idx = beidx + threadIdx.x; + int idy = beidy + threadIdx.y; + int idz = beidz + threadIdx.z; + + if (Z == 1) { + /* 2D case */ + /*checking boundaries to be within the image and avoid padded spaces */ + if( idx >= padXY && idx < (imagedim.x - padXY) && + idy >= padXY && idy < (imagedim.y - padXY)) + { + int i_centr = threadIdx.x + (SearchW); /*indices of the centrilized (main) pixel */ + int j_centr = threadIdx.y + (SearchW); /*indices of the centrilized (main) pixel */ + + if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M)) { + + Weight_norm = 0; value = 0.0; + /* Massive Search window loop */ + for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) { + for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) { + /* if inside the searching window */ + count = 0; normsum = 0.0; + for(i_l=-SimilW; i_l<=SimilW; i_l++) { + for(j_l=-SimilW; j_l<=SimilW; j_l++) { + i2 = i1+i_l; j2 = j1+j_l; + i3 = i_centr+i_l; j3 = j_centr+j_l; /*coordinates of the inner patch loop */ + if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M)) { + if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M)) { + normsum += Eucl_Vec_d[count]*pow((sharedmem[(j3)*sharedmemdim.x+(i3)] - sharedmem[j2*sharedmemdim.x+i2]), 2); + }} + count++; + }} + if (normsum != 0) Weight = (expf(-normsum/h2)); + else Weight = 0.0; + Weight_norm += Weight; + value += sharedmem[j1*sharedmemdim.x+i1]*Weight; + }} + + if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm; + else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx]; + } + } /*boundary conditions end*/ + } + else { + /*3D case*/ + /*checking boundaries to be within the image and avoid padded spaces */ + if( idx >= padXY && idx < (imagedim.x - padXY) && + idy >= padXY && idy < (imagedim.y - padXY) && + idz >= padXY && idz < (imagedim.z - padXY) ) + { + int i_centr = threadIdx.x + SearchW; /*indices of the centrilized (main) pixel */ + int j_centr = threadIdx.y + SearchW; /*indices of the centrilized (main) pixel */ + int k_centr = threadIdx.z + SearchW; /*indices of the centrilized (main) pixel */ + + if ((i_centr > 0) && (i_centr < N) && (j_centr > 0) && (j_centr < M) && (k_centr > 0) && (k_centr < Z)) { + + Weight_norm = 0; value = 0.0; + /* Massive Search window loop */ + for(i1 = i_centr - SearchW_real ; i1 <= i_centr + SearchW_real; i1++) { + for(j1 = j_centr - SearchW_real ; j1<= j_centr + SearchW_real ; j1++) { + for(k1 = k_centr - SearchW_real ; k1<= k_centr + SearchW_real ; k1++) { + /* if inside the searching window */ + count = 0; normsum = 0.0; + for(i_l=-SimilW; i_l<=SimilW; i_l++) { + for(j_l=-SimilW; j_l<=SimilW; j_l++) { + for(k_l=-SimilW; k_l<=SimilW; k_l++) { + i2 = i1+i_l; j2 = j1+j_l; k2 = k1+k_l; + i3 = i_centr+i_l; j3 = j_centr+j_l; k3 = k_centr+k_l; /*coordinates of the inner patch loop */ + if ((i2 > 0) && (i2 < N) && (j2 > 0) && (j2 < M) && (k2 > 0) && (k2 < Z)) { + if ((i3 > 0) && (i3 < N) && (j3 > 0) && (j3 < M) && (k3 > 0) && (k3 < Z)) { + normsum += Eucl_Vec_d[count]*pow((sharedmem[(k3)*sharedmemdim.x*sharedmemdim.y + (j3)*sharedmemdim.x+(i3)] - sharedmem[(k2)*sharedmemdim.x*sharedmemdim.y + j2*sharedmemdim.x+i2]), 2); + }} + count++; + }}} + if (normsum != 0) Weight = (expf(-normsum/h2)); + else Weight = 0.0; + Weight_norm += Weight; + value += sharedmem[k1*sharedmemdim.x*sharedmemdim.y + j1*sharedmemdim.x+i1]*Weight; + }}} /* BIG search window loop end*/ + + + if (Weight_norm != 0) Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = value/Weight_norm; + else Bd[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx] = Ad[idz*imagedim.x*imagedim.y + idy*imagedim.x + idx]; + } + } /* boundary conditions end */ + } +} + +///////////////////////////////////////////////// +// HOST FUNCTION +extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float h2, float lambda) +{ + int deviceCount = -1; // number of devices + cudaGetDeviceCount(&deviceCount); + if (deviceCount == 0) { + fprintf(stderr, "No CUDA devices found\n"); + return; + } + +// cudaDeviceReset(); + + int padXY, SearchW_full, SimilW_full, blockWidth, blockHeight, blockDepth, nBlockX, nBlockY, nBlockZ, kernel_depth; + float *Ad, *Bd, *Eucl_Vec_d; + + if (dimension == 2) { + blockWidth = 16; + blockHeight = 16; + blockDepth = 1; + Z = 1; + kernel_depth = 0; + } + else { + blockWidth = 8; + blockHeight = 8; + blockDepth = 8; + kernel_depth = SearchW; + } + + // compute how many blocks are needed + nBlockX = ceil((float)N / (float)blockWidth); + nBlockY = ceil((float)M / (float)blockHeight); + nBlockZ = ceil((float)Z / (float)blockDepth); + + dim3 dimGrid(nBlockX,nBlockY*nBlockZ); + dim3 dimBlock(blockWidth, blockHeight, blockDepth); + dim3 imagedim(N,M,Z); + dim3 griddim(nBlockX,nBlockY,nBlockZ); + + dim3 kerneldim(SearchW,SearchW,kernel_depth); + dim3 sharedmemdim((SearchW*2)+blockWidth,(SearchW*2)+blockHeight,(kernel_depth*2)+blockDepth); + int sharedmemsize = sizeof(float)*sharedmemdim.x*sharedmemdim.y*sharedmemdim.z; + int updateperthread = ceil((float)(sharedmemdim.x*sharedmemdim.y*sharedmemdim.z)/(float)(blockWidth*blockHeight*blockDepth)); + float neighborsize = (2*SearchW+1)*(2*SearchW+1)*(2*kernel_depth+1); + + padXY = SearchW + 2*SimilW; /* padding sizes */ + + SearchW_full = 2*SearchW + 1; /* the full searching window size */ + SimilW_full = 2*SimilW + 1; /* the full similarity window size */ + + /*allocate space for images on device*/ + checkCudaErrors( cudaMalloc((void**)&Ad,N*M*Z*sizeof(float)) ); + checkCudaErrors( cudaMalloc((void**)&Bd,N*M*Z*sizeof(float)) ); + /*allocate space for vectors on device*/ + if (dimension == 2) { + checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*sizeof(float)) ); + checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) ); + } + else { + checkCudaErrors( cudaMalloc((void**)&Eucl_Vec_d,SimilW_full*SimilW_full*SimilW_full*sizeof(float)) ); + checkCudaErrors( cudaMemcpy(Eucl_Vec_d,Eucl_Vec,SimilW_full*SimilW_full*SimilW_full*sizeof(float),cudaMemcpyHostToDevice) ); + } + + /* copy data from the host to device */ + checkCudaErrors( cudaMemcpy(Ad,A,N*M*Z*sizeof(float),cudaMemcpyHostToDevice) ); + + // Run CUDA kernel here + NLM_kernel<<<dimGrid,dimBlock,sharedmemsize>>>(Ad, Bd, Eucl_Vec_d, M, N, Z, SearchW, SimilW, SearchW_real, SearchW_full, SimilW_full, padXY, h2, lambda, imagedim, griddim, kerneldim, sharedmemdim, updateperthread, neighborsize); + + checkCudaErrors( cudaPeekAtLastError() ); +// gpuErrchk( cudaDeviceSynchronize() ); + + checkCudaErrors( cudaMemcpy(B,Bd,N*M*Z*sizeof(float),cudaMemcpyDeviceToHost) ); + cudaFree(Ad); cudaFree(Bd); cudaFree(Eucl_Vec_d); +} diff --git a/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h new file mode 100644 index 0000000..bc9d4a3 --- /dev/null +++ b/Core/regularizers_GPU/NL_Regul/NLM_GPU_kernel.h @@ -0,0 +1,6 @@ +#ifndef __NLMREG_KERNELS_H_ +#define __NLMREG_KERNELS_H_ + +extern "C" void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, int N, int M, int Z, int dimension, int SearchW, int SimilW, int SearchW_real, float denh2, float lambda); + +#endif diff --git a/Core/test/test_regularizer.cpp b/Core/test/test_regularizer.cpp new file mode 100644 index 0000000..6a9225c --- /dev/null +++ b/Core/test/test_regularizer.cpp @@ -0,0 +1,3 @@ +unsigned char *rawData = (unsigned char *)malloc(sizeof(unsigned char) * sampleSize * nVertices); + +long nSamplesRead = fread(rawData, sizeof(unsigned char), nVertices, inFile); // read in the block of data
\ No newline at end of file diff --git a/Core/test/test_regularizer.h b/Core/test/test_regularizer.h new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/Core/test/test_regularizer.h diff --git a/Wrappers/CMakeLists.txt b/Wrappers/CMakeLists.txt new file mode 100644 index 0000000..cbe2fec --- /dev/null +++ b/Wrappers/CMakeLists.txt @@ -0,0 +1,14 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +add_subdirectory(Python)
\ No newline at end of file diff --git a/Wrappers/Matlab/FISTA_REC.m b/Wrappers/Matlab/FISTA_REC.m new file mode 100644 index 0000000..d717a03 --- /dev/null +++ b/Wrappers/Matlab/FISTA_REC.m @@ -0,0 +1,704 @@ +function [X, output] = FISTA_REC(params) + +% <<<< FISTA-based reconstruction routine using ASTRA-toolbox >>>> +% This code solves regularised PWLS problem using FISTA approach. +% The code contains multiple regularisation penalties as well as it can be +% accelerated by using ordered-subset version. Various projection +% geometries supported. + +% DISCLAIMER +% It is recommended to use ASTRA version 1.8 or later in order to avoid +% crashing due to GPU memory overflow for big datasets + +% ___Input___: +% params.[] file: +%----------------General Parameters------------------------ +% - .proj_geom (geometry of the projector) [required] +% - .vol_geom (geometry of the reconstructed object) [required] +% - .sino (2D or 3D sinogram) [required] +% - .iterFISTA (iterations for the main loop, default 40) +% - .L_const (Lipschitz constant, default Power method) ) +% - .X_ideal (ideal image, if given) +% - .weights (statisitcal weights for the PWLS model, size of the sinogram) +% - .fidelity (use 'studentt' fidelity) +% - .ROI (Region-of-interest, only if X_ideal is given) +% - .initialize (a 'warm start' using SIRT method from ASTRA) +%----------------Regularization choices------------------------ +% 1 .Regul_Lambda_FGPTV (FGP-TV regularization parameter) +% 2 .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) +% 3 .Regul_LambdaLLT (Higher order LLT regularization parameter) +% 3.1 .Regul_tauLLT (time step parameter for LLT (HO) term) +% 4 .Regul_LambdaPatchBased_CPU (Patch-based nonlocal regularization parameter) +% 4.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)) +% 4.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)) +% 4.3 .Regul_PB_h (PB penalty function threshold) +% 5 .Regul_LambdaPatchBased_GPU (Patch-based nonlocal regularization parameter) +% 5.1 .Regul_PB_SearchW (ratio of the searching window (e.g. 3 = (2*3+1) = 7 pixels window)) +% 5.2 .Regul_PB_SimilW (ratio of the similarity window (e.g. 1 = (2*1+1) = 3 pixels window)) +% 5.3 .Regul_PB_h (PB penalty function threshold) +% 6 .Regul_LambdaDiffHO (Higher-Order Diffusion regularization parameter) +% 6.1 .Regul_DiffHO_EdgePar (edge-preserving noise related parameter) +% 7 .Regul_LambdaTGV (Total Generalized variation regularization parameter) +% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) +% - .Regul_Iterations (iterations for the selected penalty, default 25) +% - .Regul_Dimension ('2D' or '3D' way to apply regularization, '3D' is the default) +%----------------Ring removal------------------------ +% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) +% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) +%----------------Visualization parameters------------------------ +% - .show (visualize reconstruction 1/0, (0 default)) +% - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) +% - .slice (for 3D volumes - slice number to imshow) +% ___Output___: +% 1. X - reconstructed image/volume +% 2. output - a structure with +% - .Resid_error - residual error (if X_ideal is given) +% - .objective: value of the objective function +% - .L_const: Lipshitz constant to avoid recalculations + +% References: +% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse +% Problems" by A. Beck and M Teboulle +% 2. "Ring artifacts correction in compressed sensing..." by P. Paleo +% 3. "A novel tomographic reconstruction method based on the robust +% Student's t function for suppressing data outliers" D. Kazantsev et.al. +% D. Kazantsev, 2016-17 + +% Dealing with input parameters +if (isfield(params,'proj_geom') == 0) + error('%s \n', 'Please provide ASTRA projection geometry - proj_geom'); +else + proj_geom = params.proj_geom; +end +if (isfield(params,'vol_geom') == 0) + error('%s \n', 'Please provide ASTRA object geometry - vol_geom'); +else + vol_geom = params.vol_geom; +end +N = params.vol_geom.GridColCount; +if (isfield(params,'sino')) + sino = params.sino; + [Detectors, anglesNumb, SlicesZ] = size(sino); + fprintf('%s %i %s %i %s %i %s \n', 'Sinogram has a dimension of', Detectors, 'detectors;', anglesNumb, 'projections;', SlicesZ, 'vertical slices.'); +else + error('%s \n', 'Please provide a sinogram'); +end +if (isfield(params,'iterFISTA')) + iterFISTA = params.iterFISTA; +else + iterFISTA = 40; +end +if (isfield(params,'weights')) + weights = params.weights; +else + weights = ones(size(sino)); +end +if (isfield(params,'fidelity')) + studentt = 0; + if (strcmp(params.fidelity,'studentt') == 1) + studentt = 1; + end +else + studentt = 0; +end +if (isfield(params,'L_const')) + L_const = params.L_const; +else + % using Power method (PM) to establish L constant + fprintf('%s %s %s \n', 'Calculating Lipshitz constant for',proj_geom.type, 'beam geometry...'); + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % for 2D geometry we can do just one selected slice + niter = 15; % number of iteration for the PM + x1 = rand(N,N,1); + sqweight = sqrt(weights(:,:,1)); + [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y'; + astra_mex_data2d('delete', sino_id); + for i = 1:niter + [x1] = astra_create_backprojection_cuda((sqweight.*y)', proj_geom, vol_geom); + s = norm(x1(:)); + x1 = x1./s; + [sino_id, y] = astra_create_sino_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y'; + astra_mex_data2d('delete', sino_id); + end + elseif (strcmp(proj_geom.type,'cone') || strcmp(proj_geom.type,'parallel3d') || strcmp(proj_geom.type,'parallel3d_vec') || strcmp(proj_geom.type,'cone_vec')) + % 3D geometry + niter = 8; % number of iteration for PM + x1 = rand(N,N,SlicesZ); + sqweight = sqrt(weights); + [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y; + astra_mex_data3d('delete', sino_id); + + for i = 1:niter + [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); + s = norm(x1(:)); + x1 = x1/s; + [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geom, vol_geom); + y = sqweight.*y; + astra_mex_data3d('delete', sino_id); + astra_mex_data3d('delete', id); + end + clear x1 + else + error('%s \n', 'No suitable geometry has been found!'); + end + L_const = s; +end +if (isfield(params,'X_ideal')) + X_ideal = params.X_ideal; +else + X_ideal = 'none'; +end +if (isfield(params,'ROI')) + ROI = params.ROI; +else + ROI = find(X_ideal>=0.0); +end +if (isfield(params,'Regul_Lambda_FGPTV')) + lambdaFGP_TV = params.Regul_Lambda_FGPTV; +else + lambdaFGP_TV = 0; +end +if (isfield(params,'Regul_Lambda_SBTV')) + lambdaSB_TV = params.Regul_Lambda_SBTV; +else + lambdaSB_TV = 0; +end +if (isfield(params,'Regul_tol')) + tol = params.Regul_tol; +else + tol = 1.0e-05; +end +if (isfield(params,'Regul_Iterations')) + IterationsRegul = params.Regul_Iterations; +else + IterationsRegul = 45; +end +if (isfield(params,'Regul_LambdaLLT')) + lambdaHO = params.Regul_LambdaLLT; +else + lambdaHO = 0; +end +if (isfield(params,'Regul_iterHO')) + iterHO = params.Regul_iterHO; +else + iterHO = 50; +end +if (isfield(params,'Regul_tauLLT')) + tauHO = params.Regul_tauLLT; +else + tauHO = 0.0001; +end +if (isfield(params,'Regul_LambdaPatchBased_CPU')) + lambdaPB = params.Regul_LambdaPatchBased_CPU; +else + lambdaPB = 0; +end +if (isfield(params,'Regul_LambdaPatchBased_GPU')) + lambdaPB_GPU = params.Regul_LambdaPatchBased_GPU; +else + lambdaPB_GPU = 0; +end +if (isfield(params,'Regul_PB_SearchW')) + SearchW = params.Regul_PB_SearchW; +else + SearchW = 3; % default +end +if (isfield(params,'Regul_PB_SimilW')) + SimilW = params.Regul_PB_SimilW; +else + SimilW = 1; % default +end +if (isfield(params,'Regul_PB_h')) + h_PB = params.Regul_PB_h; +else + h_PB = 0.1; % default +end +if (isfield(params,'Regul_LambdaDiffHO')) + LambdaDiff_HO = params.Regul_LambdaDiffHO; +else + LambdaDiff_HO = 0; +end +if (isfield(params,'Regul_DiffHO_EdgePar')) + LambdaDiff_HO_EdgePar = params.Regul_DiffHO_EdgePar; +else + LambdaDiff_HO_EdgePar = 0.01; +end +if (isfield(params,'Regul_LambdaTGV')) + LambdaTGV = params.Regul_LambdaTGV; +else + LambdaTGV = 0; +end +if (isfield(params,'Ring_LambdaR_L1')) + lambdaR_L1 = params.Ring_LambdaR_L1; +else + lambdaR_L1 = 0; +end +if (isfield(params,'Ring_Alpha')) + alpha_ring = params.Ring_Alpha; % higher values can accelerate ring removal procedure +else + alpha_ring = 1; +end +if (isfield(params,'Regul_Dimension')) + Dimension = params.Regul_Dimension; + if ((strcmp('2D', Dimension) ~= 1) && (strcmp('3D', Dimension) ~= 1)) + Dimension = '3D'; + end +else + Dimension = '3D'; +end +if (isfield(params,'show')) + show = params.show; +else + show = 0; +end +if (isfield(params,'maxvalplot')) + maxvalplot = params.maxvalplot; +else + maxvalplot = 1; +end +if (isfield(params,'slice')) + slice = params.slice; +else + slice = 1; +end +if (isfield(params,'initialize')) + X = params.initialize; + if ((size(X,1) ~= N) || (size(X,2) ~= N) || (size(X,3) ~= SlicesZ)) + error('%s \n', 'The initialized volume has different dimensions!'); + end +else + X = zeros(N,N,SlicesZ, 'single'); % storage for the solution +end +if (isfield(params,'subsets')) + % Ordered Subsets reorganisation of data and angles + subsets = params.subsets; % subsets number + angles = proj_geom.ProjectionAngles; + binEdges = linspace(min(angles),max(angles),subsets+1); + + % assign values to bins + [binsDiscr,~] = histc(angles, [binEdges(1:end-1) Inf]); + + % get rearranged subset indices + IndicesReorg = zeros(length(angles),1); + counterM = 0; + for ii = 1:max(binsDiscr(:)) + counter = 0; + for jj = 1:subsets + curr_index = ii+jj-1 + counter; + if (binsDiscr(jj) >= ii) + counterM = counterM + 1; + IndicesReorg(counterM) = curr_index; + end + counter = (counter + binsDiscr(jj)) - 1; + end + end +else + subsets = 0; % Classical FISTA +end + +%----------------Reconstruction part------------------------ +Resid_error = zeros(iterFISTA,1); % errors vector (if the ground truth is given) +objective = zeros(iterFISTA,1); % objective function values vector + + +if (subsets == 0) + % Classical FISTA + t = 1; + X_t = X; + + r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors + r_x = r; % another ring variable + residual = zeros(size(sino),'single'); + + % Outer FISTA iterations loop + for i = 1:iterFISTA + + X_old = X; + t_old = t; + r_old = r; + + + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + sino_updt = zeros(size(sino),'single'); + for kkk = 1:SlicesZ + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geom, vol_geom); + sino_updt(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); + end + else + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + astra_mex_data3d('delete', sino_id); + end + + if (lambdaR_L1 > 0) + % the ring removal part (Group-Huber fidelity) + for kkk = 1:anglesNumb + residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + end + vec = sum(residual,2); + if (SlicesZ > 1) + vec = squeeze(vec(:,1,:)); + end + r = r_x - (1./L_const).*vec; + objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output + elseif (studentt > 0) + % artifacts removal with Students t penalty + residual = weights.*(sino_updt - sino); + for kkk = 1:SlicesZ + res_vec = reshape(residual(:,:,kkk), Detectors*anglesNumb, 1); % 1D vectorized sinogram + %s = 100; + %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); + [ff, gr] = studentst(res_vec, 1); + residual(:,:,kkk) = reshape(gr, Detectors, anglesNumb); + end + objective(i) = ff; % for the objective function output + else + % no ring removal (LS model) + residual = weights.*(sino_updt - sino); + objective(i) = 0.5*norm(residual(:)); % for the objective function output + end + + % if the geometry is 2D use slice-by-slice projection-backprojection routine + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + x_temp = zeros(size(X),'single'); + for kkk = 1:SlicesZ + [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residual(:,:,kkk))', proj_geom, vol_geom); + end + else + [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom); + astra_mex_data3d('delete', id); + end + X = X_t - (1/L_const).*x_temp; + + % ----------------Regularization part------------------------% + if (lambdaFGP_TV > 0) + % FGP-TV regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso'); + end + else + % 3D regularization + [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/L_const, IterationsRegul, tol, 'iso'); + end + objective(i) = (objective(i) + f_val)./(Detectors*anglesNumb*SlicesZ); + end + if (lambdaSB_TV > 0) + % Split Bregman regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent) + end + else + % 3D regularization + X = SplitBregman_TV(single(X), lambdaSB_TV/L_const, IterationsRegul, tol); % (more memory efficent) + end + end + if (lambdaHO > 0) + % Higher Order (LLT) regularization + X2 = zeros(N,N,SlicesZ,'single'); + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0); + end + else + % 3D regularization + X2 = LLT_model(single(X), lambdaHO/L_const, tauHO, iterHO, 3.0e-05, 0); + end + X = 0.5.*(X + X2); % averaged combination of two solutions + + end + if (lambdaPB > 0) + % Patch-Based regularization (can be very slow on CPU) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/L_const); + end + else + X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/L_const); + end + end + if (lambdaPB_GPU > 0) + % Patch-Based regularization (GPU CUDA implementation) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const); + end + else + X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/L_const); + end + end + if (LambdaDiff_HO > 0) + % Higher-order diffusion penalty (GPU CUDA implementation) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul); + end + else + X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/L_const, IterationsRegul); + end + end + if (LambdaTGV > 0) + % Total Generalized variation (currently only 2D) + lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper + lamTGV2 = 0.8; % second-order term + for kkk = 1:SlicesZ + X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/L_const, lamTGV1, lamTGV2, IterationsRegul); + end + end + + if (lambdaR_L1 > 0) + r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector + end + + t = (1 + sqrt(1 + 4*t^2))/2; % updating t + X_t = X + ((t_old-1)/t).*(X - X_old); % updating X + + if (lambdaR_L1 > 0) + r_x = r + ((t_old-1)/t).*(r - r_old); % updating r + end + + if (show == 1) + figure(10); imshow(X(:,:,slice), [0 maxvalplot]); + if (lambdaR_L1 > 0) + figure(11); plot(r); title('Rings offset vector') + end + pause(0.01); + end + if (strcmp(X_ideal, 'none' ) == 0) + Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); + fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); + else + fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); + end + end +else + % Ordered Subsets (OS) FISTA reconstruction routine (normally one order of magnitude faster than the classical version) + t = 1; + X_t = X; + proj_geomSUB = proj_geom; + + r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors + r_x = r; % another ring variable + residual2 = zeros(size(sino),'single'); + sino_updt_FULL = zeros(size(sino),'single'); + + + % Outer FISTA iterations loop + for i = 1:iterFISTA + + if ((i > 1) && (lambdaR_L1 > 0)) + % in order to make Group-Huber fidelity work with ordered subsets + % we still need to work with full sinogram + + % the offset variable must be calculated for the whole + % updated sinogram - sino_updt_FULL + for kkk = 1:anglesNumb + residual2(:,kkk,:) = squeeze(weights(:,kkk,:)).*(squeeze(sino_updt_FULL(:,kkk,:)) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); + end + + r_old = r; + vec = sum(residual2,2); + if (SlicesZ > 1) + vec = squeeze(vec(:,1,:)); + end + r = r_x - (1./L_const).*vec; % update ring variable + end + + % subsets loop + counterInd = 1; + for ss = 1:subsets + X_old = X; + t_old = t; + + numProjSub = binsDiscr(ss); % the number of projections per subset + sino_updt_Sub = zeros(Detectors, numProjSub, SlicesZ,'single'); + CurrSubIndeces = IndicesReorg(counterInd:(counterInd + numProjSub - 1)); % extract indeces attached to the subset + proj_geomSUB.ProjectionAngles = angles(CurrSubIndeces); + + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + for kkk = 1:SlicesZ + [sino_id, sinoT] = astra_create_sino_cuda(X_t(:,:,kkk), proj_geomSUB, vol_geom); + sino_updt_Sub(:,:,kkk) = sinoT'; + astra_mex_data2d('delete', sino_id); + end + else + % for 3D geometry (watch the GPU memory overflow in earlier ASTRA versions < 1.8) + [sino_id, sino_updt_Sub] = astra_create_sino3d_cuda(X_t, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', sino_id); + end + + if (lambdaR_L1 > 0) + % Group-Huber fidelity (ring removal) + residualSub = zeros(Detectors, numProjSub, SlicesZ,'single'); % residual for a chosen subset + for kkk = 1:numProjSub + indC = CurrSubIndeces(kkk); + residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram + end + + elseif (studentt > 0) + % student t data fidelity + + % artifacts removal with Students t penalty + residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); + + for kkk = 1:SlicesZ + res_vec = reshape(residualSub(:,:,kkk), Detectors*numProjSub, 1); % 1D vectorized sinogram + %s = 100; + %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec); + [ff, gr] = studentst(res_vec, 1); + residualSub(:,:,kkk) = reshape(gr, Detectors, numProjSub); + end + objective(i) = ff; % for the objective function output + else + % PWLS model + residualSub = squeeze(weights(:,CurrSubIndeces,:)).*(sino_updt_Sub - squeeze(sino(:,CurrSubIndeces,:))); + objective(i) = 0.5*norm(residualSub(:)); % for the objective function output + end + + % perform backprojection of a subset + if (strcmp(proj_geom.type,'parallel') || strcmp(proj_geom.type,'fanflat') || strcmp(proj_geom.type,'fanflat_vec')) + % if geometry is 2D use slice-by-slice projection-backprojection routine + x_temp = zeros(size(X),'single'); + for kkk = 1:SlicesZ + [x_temp(:,:,kkk)] = astra_create_backprojection_cuda(squeeze(residualSub(:,:,kkk))', proj_geomSUB, vol_geom); + end + else + [id, x_temp] = astra_create_backprojection3d_cuda(residualSub, proj_geomSUB, vol_geom); + astra_mex_data3d('delete', id); + end + + X = X_t - (1/L_const).*x_temp; + + % ----------------Regularization part------------------------% + if (lambdaFGP_TV > 0) + % FGP-TV regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + [X(:,:,kkk), f_val] = FGP_TV(single(X(:,:,kkk)), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso'); + end + else + % 3D regularization + [X, f_val] = FGP_TV(single(X), lambdaFGP_TV/(subsets*L_const), IterationsRegul, tol, 'iso'); + end + objective(i) = objective(i) + f_val; + end + if (lambdaSB_TV > 0) + % Split Bregman regularization + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = SplitBregman_TV(single(X(:,:,kkk)), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent) + end + else + % 3D regularization + X = SplitBregman_TV(single(X), lambdaSB_TV/(subsets*L_const), IterationsRegul, tol); % (more memory efficent) + end + end + if (lambdaHO > 0) + % Higher Order (LLT) regularization + X2 = zeros(N,N,SlicesZ,'single'); + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X2(:,:,kkk) = LLT_model(single(X(:,:,kkk)), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0); + end + else + % 3D regularization + X2 = LLT_model(single(X), lambdaHO/(subsets*L_const), tauHO/subsets, iterHO, 2.0e-05, 0); + end + X = 0.5.*(X + X2); % the averaged combination of two solutions + end + if (lambdaPB > 0) + % Patch-Based regularization (can be slow on CPU) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = PatchBased_Regul(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const)); + end + else + X = PatchBased_Regul(single(X), SearchW, SimilW, h_PB, lambdaPB/(subsets*L_const)); + end + end + if (lambdaPB_GPU > 0) + % Patch-Based regularization (GPU CUDA implementation) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = NLM_GPU(single(X(:,:,kkk)), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const)); + end + else + X = NLM_GPU(single(X), SearchW, SimilW, h_PB, lambdaPB_GPU/(subsets*L_const)); + end + end + if (LambdaDiff_HO > 0) + % Higher-order diffusion penalty (GPU CUDA implementation) + if ((strcmp('2D', Dimension) == 1)) + % 2D regularization + for kkk = 1:SlicesZ + X(:,:,kkk) = Diff4thHajiaboli_GPU(single(X(:,:,kkk)), LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets)); + end + else + X = Diff4thHajiaboli_GPU(X, LambdaDiff_HO_EdgePar, LambdaDiff_HO/(subsets*L_const), round(IterationsRegul/subsets)); + end + end + if (LambdaTGV > 0) + % Total Generalized variation (currently only 2D) + lamTGV1 = 1.1; % smoothing trade-off parameters, see Pock's paper + lamTGV2 = 0.5; % second-order term + for kkk = 1:SlicesZ + X(:,:,kkk) = TGV_PD(single(X(:,:,kkk)), LambdaTGV/(subsets*L_const), lamTGV1, lamTGV2, IterationsRegul); + end + end + + t = (1 + sqrt(1 + 4*t^2))/2; % updating t + X_t = X + ((t_old-1)/t).*(X - X_old); % updating X + counterInd = counterInd + numProjSub; + end + + if (i == 1) + r_old = r; + end + + % working with a 'ring vector' + if (lambdaR_L1 > 0) + r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector + r_x = r + ((t_old-1)/t).*(r - r_old); % updating r + end + + if (show == 1) + figure(10); imshow(X(:,:,slice), [0 maxvalplot]); + if (lambdaR_L1 > 0) + figure(11); plot(r); title('Rings offset vector') + end + pause(0.01); + end + + if (strcmp(X_ideal, 'none' ) == 0) + Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); + fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); + else + fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); + end + end +end + +output.Resid_error = Resid_error; +output.objective = objective; +output.L_const = L_const; + +end diff --git a/Wrappers/Matlab/compile_mex.m b/Wrappers/Matlab/compile_mex.m new file mode 100644 index 0000000..66c05da --- /dev/null +++ b/Wrappers/Matlab/compile_mex.m @@ -0,0 +1,11 @@ +% compile mex's in Matlab once +cd regularizers_CPU/ + +mex LLT_model.c LLT_model_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex FGP_TV.c FGP_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex SplitBregman_TV.c SplitBregman_TV_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex TGV_PD.c TGV_PD_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +mex PatchBased_Regul.c PatchBased_Regul_core.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" + +cd ../../ +cd demos diff --git a/Wrappers/Matlab/studentst.m b/Wrappers/Matlab/studentst.m new file mode 100644 index 0000000..99fed1e --- /dev/null +++ b/Wrappers/Matlab/studentst.m @@ -0,0 +1,47 @@ +function [f,g,h,s,k] = studentst(r,k,s) +% Students T penalty with 'auto-tuning' +% +% use: +% [f,g,h,{k,{s}}] = studentst(r) - automatically fits s and k +% [f,g,h,{k,{s}}] = studentst(r,k) - automatically fits s +% [f,g,h,{k,{s}}] = studentst(r,k,s) - use given s and k +% +% input: +% r - residual as column vector +% s - scale (optional) +% k - degrees of freedom (optional) +% +% output: +% f - misfit (scalar) +% g - gradient (column vector) +% h - positive approximation of the Hessian (column vector, Hessian is a diagonal matrix) +% s,k - scale and degrees of freedom +% +% Tristan van Leeuwen, 2012. +% tleeuwen@eos.ubc.ca + +% fit both s and k +if nargin == 1 + opts = optimset('maxFunEvals',1e2); + tmp = fminsearch(@(x)st(r,x(1),x(2)),[1;2],opts); + s = tmp(1); + k = tmp(2); +end + + +if nargin == 2 + opts = optimset('maxFunEvals',1e2); + tmp = fminsearch(@(x)st(r,x,k),[1],opts); + s = tmp(1); +end + +% evaulate penalty +[f,g,h] = st(r,s,k); + + +function [f,g,h] = st(r,s,k) +n = length(r); +c = -n*(gammaln((k+1)/2) - gammaln(k/2) - .5*log(pi*s*k)); +f = c + .5*(k+1)*sum(log(1 + conj(r).*r/(s*k))); +g = (k+1)*r./(s*k + conj(r).*r); +h = (k+1)./(s*k + conj(r).*r); diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt new file mode 100644 index 0000000..506159a --- /dev/null +++ b/Wrappers/Python/CMakeLists.txt @@ -0,0 +1,183 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# variables that must be set for conda compilation + +#PREFIX=C:\Apps\Miniconda2\envs\cil\Library +#LIBRARY_INC=C:\\Apps\\Miniconda2\\envs\\cil\\Library\\include +set (NUMPY_VERSION 1.12) + +## Tries to parse the output of conda env list to determine the current +## active conda environment +message ("Trying to determine your active conda environment...") +execute_process(COMMAND "conda" "env" "list" + OUTPUT_VARIABLE _CONDA_ENVS + RESULT_VARIABLE _CONDA_RESULT + ERROR_VARIABLE _CONDA_ERR) + if(NOT _CONDA_RESULT) + string(REPLACE "\n" ";" ENV_LIST ${_CONDA_ENVS}) + foreach(line ${ENV_LIST}) + string(REGEX MATCHALL "(.+)[*](.+)" match ${line}) + if (NOT ${match} EQUAL "") + #message("MATCHED " ${CMAKE_MATCH_0}) + #message("MATCHED " ${CMAKE_MATCH_1}) + #message("MATCHED " ${CMAKE_MATCH_2}) + string(STRIP ${CMAKE_MATCH_1} CONDA_ENVIRONMENT) + string(STRIP ${CMAKE_MATCH_2} CONDA_ENVIRONMENT_PATH) + endif() + endforeach() + else() + message(FATAL_ERROR "ERROR with conda command " ${_CONDA_ERR}) + endif() + +if (${CONDA_ENVIRONMENT} AND ${CONDA_ENVIRONMENT_PATH}) + message (FATAL_ERROR "CONDA NOT FOUND") +else() + message("**********************************************************") + message("Using current conda environmnet " ${CONDA_ENVIRONMENT}) + message("Using current conda environmnet path " ${CONDA_ENVIRONMENT_PATH}) +endif() + +message("CIL VERSION " ${CIL_VERSION}) + +# set the Python variables for the Conda environment +include(FindAnacondaEnvironment.cmake) +findPythonForAnacondaEnvironment(${CONDA_ENVIRONMENT_PATH}) + +message("Python found " ${PYTHON_VERSION_STRING}) +message("Python found Major " ${PYTHON_VERSION_MAJOR}) +message("Python found Minor " ${PYTHON_VERSION_MINOR}) + +findPythonPackagesPath() +message("PYTHON_PACKAGES_FOUND " ${PYTHON_PACKAGES_PATH}) + +## CACHE SOME VARIABLES ## +set (CONDA_ENVIRONMENT ${CONDA_ENVIRONMENT} CACHE INTERNAL "active conda environment" FORCE) +set (CONDA_ENVIRONMENT_PATH ${CONDA_ENVIRONMENT_PATH} CACHE INTERNAL "active conda environment" FORCE) + +set (PYTHON_VERSION_STRING ${PYTHON_VERSION_STRING} CACHE INTERNAL "conda environment Python version string" FORCE) +set (PYTHON_VERSION_MAJOR ${PYTHON_VERSION_MAJOR} CACHE INTERNAL "conda environment Python version major" FORCE) +set (PYTHON_VERSION_MINOR ${PYTHON_VERSION_MINOR} CACHE INTERNAL "conda environment Python version minor" FORCE) +set (PYTHON_VERSION_PATCH ${PYTHON_VERSION_PATCH} CACHE INTERNAL "conda environment Python version patch" FORCE) +set (PYTHON_PACKAGES_PATH ${PYTHON_PACKAGES_PATH} CACHE INTERNAL "conda environment Python packages path" FORCE) + +if (WIN32) + #set (CONDA_ENVIRONMENT_PATH "C:\\Apps\\Miniconda2\\envs\\${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory") + set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}\\Library" CACHE PATH "env dir") + set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}\\include" CACHE PATH "env dir") +elseif (UNIX) + #set (CONDA_ENVIRONMENT_PATH "/apps/anaconda/2.4/envs/${CONDA_ENVIRONMENT}" CACHE PATH "Main environment directory") + set (CONDA_ENVIRONMENT_PREFIX "${CONDA_ENVIRONMENT_PATH}/lib/python${PYTHON_VERSION_MAJOR}.${PYTHON_VERSION_MINOR}" CACHE PATH "env dir") + set (CONDA_ENVIRONMENT_LIBRARY_INC "${CONDA_ENVIRONMENT_PREFIX}/include" CACHE PATH "env dir") +endif() + +######### CONFIGURE REGULARIZER PACKAGE ############# + +# copy the Pyhon files of the package regularizer +file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging/) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi) +# regularizers +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/imaging/Regularizer.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/imaging) + +# Copy and configure the relative conda build and recipes +configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup.py) +file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe) + +if (WIN32) + + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile.bat) + +elseif(UNIX) + + message ("We are on UNIX") + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/conda-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/conda-recipe/) + # assumes we will use bash + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile.sh) + +endif() + +########## CONFIGURE FISTA RECONSTRUCTOR PACKAGE +# fista reconstructor +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/FISTAReconstructor.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/__init__.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/DeviceModel.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/ccpi/reconstruction/AstraDevice.py DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/ccpi/reconstruction) + +configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup-fista.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup-fista.py) +file(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe) +file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/meta.yaml DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe) + +if (WIN32) + + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/bld.bat DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/) + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.bat.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.bat) + +elseif(UNIX) + message ("We are on UNIX") + file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/fista-recipe/build.sh DESTINATION ${CMAKE_CURRENT_BINARY_DIR}/fista-recipe/) + # assumes we will use bash + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/compile-fista.sh.in ${CMAKE_CURRENT_BINARY_DIR}/compile-fista.sh) +endif() + +############################# TARGETS + +########################## REGULARIZER PACKAGE ############################### + +# runs cmake on the build tree to update the code from source +add_custom_target(update_code + COMMAND ${CMAKE_COMMAND} + ARGS ${CMAKE_SOURCE_DIR} + WORKING_DIRECTORY ${CMAKE_BINARY_DIR} + ) + + +add_custom_target(fista + COMMAND bash + compile-fista.sh + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + DEPENDS ${update_code} + ) + +add_custom_target(regularizers + COMMAND bash + compile.sh + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + DEPENDS update_code + ) + +add_custom_target(install-fista + COMMAND ${CONDA_EXECUTABLE} + install --force --use-local ccpi-fista=${CIL_VERSION} -c ccpi -c conda-forge + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + ) + +add_custom_target(install-regularizers + COMMAND ${CONDA_EXECUTABLE} + install --force --use-local ccpi-regularizers=${CIL_VERSION} -c ccpi -c conda-forge + WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR} + ) +### add tests + +#add_executable(RegularizersTest ) +#find_package(tiff) +#if (TIFF_FOUND) +# message("LibTIFF Found") +# message("TIFF_INCLUDE_DIR " ${TIFF_INCLUDE_DIR}) +# message("TIFF_LIBRARIES" ${TIFF_LIBRARIES}) +#else() +# message("LibTIFF not found") +#endif() diff --git a/Wrappers/Python/FindAnacondaEnvironment.cmake b/Wrappers/Python/FindAnacondaEnvironment.cmake new file mode 100644 index 0000000..6475128 --- /dev/null +++ b/Wrappers/Python/FindAnacondaEnvironment.cmake @@ -0,0 +1,154 @@ +# Copyright 2017 Edoardo Pasca +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# #.rst: +# FindAnacondaEnvironment +# -------------- +# +# Find Python executable and library for a specific Anaconda environment +# +# This module finds the Python interpreter for a specific Anaconda enviroment, +# if installed and determines where the include files and libraries are. +# This code sets the following variables: +# +# :: +# PYTHONINTERP_FOUND - if the Python interpret has been found +# PYTHON_EXECUTABLE - the Python interpret found +# PYTHON_LIBRARY - path to the python library +# PYTHON_INCLUDE_PATH - path to where Python.h is found (deprecated) +# PYTHON_INCLUDE_DIRS - path to where Python.h is found +# PYTHONLIBS_VERSION_STRING - version of the Python libs found (since CMake 2.8.8) +# PYTHON_VERSION_MAJOR - major Python version +# PYTHON_VERSION_MINOR - minor Python version +# PYTHON_VERSION_PATCH - patch Python version + + + +function (findPythonForAnacondaEnvironment env) + if (WIN32) + file(TO_CMAKE_PATH ${env}/python.exe PYTHON_EXECUTABLE) + elseif (UNIX) + file(TO_CMAKE_PATH ${env}/bin/python PYTHON_EXECUTABLE) + endif() + + + message("findPythonForAnacondaEnvironment Found Python Executable" ${PYTHON_EXECUTABLE}) + ####### FROM FindPythonInterpr ######## + # determine python version string + if(PYTHON_EXECUTABLE) + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c + "import sys; sys.stdout.write(';'.join([str(x) for x in sys.version_info[:3]]))" + OUTPUT_VARIABLE _VERSION + RESULT_VARIABLE _PYTHON_VERSION_RESULT + ERROR_QUIET) + if(NOT _PYTHON_VERSION_RESULT) + string(REPLACE ";" "." _PYTHON_VERSION_STRING "${_VERSION}") + list(GET _VERSION 0 _PYTHON_VERSION_MAJOR) + list(GET _VERSION 1 _PYTHON_VERSION_MINOR) + list(GET _VERSION 2 _PYTHON_VERSION_PATCH) + if(PYTHON_VERSION_PATCH EQUAL 0) + # it's called "Python 2.7", not "2.7.0" + string(REGEX REPLACE "\\.0$" "" _PYTHON_VERSION_STRING "${PYTHON_VERSION_STRING}") + endif() + else() + # sys.version predates sys.version_info, so use that + execute_process(COMMAND "${PYTHON_EXECUTABLE}" -c "import sys; sys.stdout.write(sys.version)" + OUTPUT_VARIABLE _VERSION + RESULT_VARIABLE _PYTHON_VERSION_RESULT + ERROR_QUIET) + if(NOT _PYTHON_VERSION_RESULT) + string(REGEX REPLACE " .*" "" _PYTHON_VERSION_STRING "${_VERSION}") + string(REGEX REPLACE "^([0-9]+)\\.[0-9]+.*" "\\1" _PYTHON_VERSION_MAJOR "${PYTHON_VERSION_STRING}") + string(REGEX REPLACE "^[0-9]+\\.([0-9])+.*" "\\1" _PYTHON_VERSION_MINOR "${PYTHON_VERSION_STRING}") + if(PYTHON_VERSION_STRING MATCHES "^[0-9]+\\.[0-9]+\\.([0-9]+)") + set(PYTHON_VERSION_PATCH "${CMAKE_MATCH_1}") + else() + set(PYTHON_VERSION_PATCH "0") + endif() + else() + # sys.version was first documented for Python 1.5, so assume + # this is older. + set(PYTHON_VERSION_STRING "1.4" PARENT_SCOPE) + set(PYTHON_VERSION_MAJOR "1" PARENT_SCOPE) + set(PYTHON_VERSION_MINOR "4" PARENT_SCOPE) + set(PYTHON_VERSION_PATCH "0" PARENT_SCOPE) + endif() + endif() + unset(_PYTHON_VERSION_RESULT) + unset(_VERSION) + endif() + ############################################### + + set (PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} PARENT_SCOPE) + set (PYTHONINTERP_FOUND "ON" PARENT_SCOPE) + set (PYTHON_VERSION_STRING ${_PYTHON_VERSION_STRING} PARENT_SCOPE) + set (PYTHON_VERSION_MAJOR ${_PYTHON_VERSION_MAJOR} PARENT_SCOPE) + set (PYTHON_VERSION_MINOR ${_PYTHON_VERSION_MINOR} PARENT_SCOPE) + set (PYTHON_VERSION_PATCH ${_PYTHON_VERSION_PATCH} PARENT_SCOPE) + message("My version found " ${PYTHON_VERSION_STRING}) + ## find conda executable + if (WIN32) + set (CONDA_EXECUTABLE ${env}/Script/conda PARENT_SCOPE) + elseif(UNIX) + set (CONDA_EXECUTABLE ${env}/bin/conda PARENT_SCOPE) + endif() +endfunction() + + + +set(Python_ADDITIONAL_VERSIONS 3.5) + +find_package(PythonInterp) +if (PYTHONINTERP_FOUND) + + message("Found interpret " ${PYTHON_EXECUTABLE}) + message("Python Library " ${PYTHON_LIBRARY}) + message("Python Include Dir " ${PYTHON_INCLUDE_DIR}) + message("Python Include Path " ${PYTHON_INCLUDE_PATH}) + + foreach(pv ${PYTHON_VERSION_STRING}) + message("Found interpret " ${pv}) + endforeach() +endif() + + + +find_package(PythonLibs) +if (PYTHONLIB_FOUND) + message("Found PythonLibs PYTHON_LIBRARIES " ${PYTHON_LIBRARIES}) + message("Found PythonLibs PYTHON_INCLUDE_PATH " ${PYTHON_INCLUDE_PATH}) + message("Found PythonLibs PYTHON_INCLUDE_DIRS " ${PYTHON_INCLUDE_DIRS}) + message("Found PythonLibs PYTHONLIBS_VERSION_STRING " ${PYTHONLIBS_VERSION_STRING} ) +else() + message("No PythonLibs Found") +endif() + + + + +function(findPythonPackagesPath) + execute_process(COMMAND ${PYTHON_EXECUTABLE} -c "from distutils.sysconfig import *; print (get_python_lib())" + RESULT_VARIABLE PYTHON_CVPY_PROCESS + OUTPUT_VARIABLE PYTHON_STD_PACKAGES_PATH + OUTPUT_STRIP_TRAILING_WHITESPACE) + #message("STD_PACKAGES " ${PYTHON_STD_PACKAGES_PATH}) + if("${PYTHON_STD_PACKAGES_PATH}" MATCHES "site-packages") + set(_PYTHON_PACKAGES_PATH "python${PYTHON_VERSION_MAJOR_MINOR}/site-packages") + endif() + + SET(PYTHON_PACKAGES_PATH "${PYTHON_STD_PACKAGES_PATH}" PARENT_SCOPE) + +endfunction() + + diff --git a/Wrappers/Python/ccpi/reconstruction/AstraDevice.py b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py new file mode 100644 index 0000000..57435f8 --- /dev/null +++ b/Wrappers/Python/ccpi/reconstruction/AstraDevice.py @@ -0,0 +1,95 @@ +import astra +from ccpi.reconstruction.DeviceModel import DeviceModel +import numpy + +class AstraDevice(DeviceModel): + '''Concrete class for Astra Device''' + + def __init__(self, + device_type, + data_aquisition_geometry, + reconstructed_volume_geometry): + + super(AstraDevice, self).__init__(device_type, + data_aquisition_geometry, + reconstructed_volume_geometry) + + self.type = device_type + self.proj_geom = astra.creators.create_proj_geom( + device_type, + self.acquisition_data_geometry['detectorSpacingX'], + self.acquisition_data_geometry['detectorSpacingY'], + self.acquisition_data_geometry['cameraX'], + self.acquisition_data_geometry['cameraY'], + self.acquisition_data_geometry['angles'], + ) + + self.vol_geom = astra.creators.create_vol_geom( + self.reconstructed_volume_geometry['X'], + self.reconstructed_volume_geometry['Y'], + self.reconstructed_volume_geometry['Z'] + ) + + def doForwardProject(self, volume): + '''Forward projects the volume according to the device geometry + +Uses Astra-toolbox +''' + + try: + sino_id, y = astra.creators.create_sino3d_gpu( + volume, self.proj_geom, self.vol_geom) + astra.matlab.data3d('delete', sino_id) + return y + except Exception as e: + print(e) + print("Value Error: ", self.proj_geom, self.vol_geom) + + def doBackwardProject(self, projections): + '''Backward projects the projections according to the device geometry + +Uses Astra-toolbox +''' + idx, volume = \ + astra.creators.create_backprojection3d_gpu( + projections, + self.proj_geom, + self.vol_geom) + + astra.matlab.data3d('delete', idx) + return volume + + def createReducedDevice(self, proj_par={'cameraY' : 1} , vol_par={'Z':1}): + '''Create a new device based on the current device by changing some parameter + +VERY RISKY''' + acquisition_data_geometry = self.acquisition_data_geometry.copy() + for k,v in proj_par.items(): + if k in acquisition_data_geometry.keys(): + acquisition_data_geometry[k] = v + proj_geom = [ + acquisition_data_geometry['cameraX'], + acquisition_data_geometry['cameraY'], + acquisition_data_geometry['detectorSpacingX'], + acquisition_data_geometry['detectorSpacingY'], + acquisition_data_geometry['angles'] + ] + + reconstructed_volume_geometry = self.reconstructed_volume_geometry.copy() + for k,v in vol_par.items(): + if k in reconstructed_volume_geometry.keys(): + reconstructed_volume_geometry[k] = v + + vol_geom = [ + reconstructed_volume_geometry['X'], + reconstructed_volume_geometry['Y'], + reconstructed_volume_geometry['Z'] + ] + return AstraDevice(self.type, proj_geom, vol_geom) + + + +if __name__=="main": + a = AstraDevice() + + diff --git a/Wrappers/Python/ccpi/reconstruction/DeviceModel.py b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py new file mode 100644 index 0000000..eeb9a34 --- /dev/null +++ b/Wrappers/Python/ccpi/reconstruction/DeviceModel.py @@ -0,0 +1,63 @@ +from abc import ABCMeta, abstractmethod +from enum import Enum + +class DeviceModel(metaclass=ABCMeta): + '''Abstract class that defines the device for projection and backprojection + +This class defines the methods that must be implemented by concrete classes. + + ''' + + class DeviceType(Enum): + '''Type of device +PARALLEL BEAM +PARALLEL BEAM 3D +CONE BEAM +HELICAL''' + + PARALLEL = 'parallel' + PARALLEL3D = 'parallel3d' + CONE_BEAM = 'cone-beam' + HELICAL = 'helical' + + def __init__(self, + device_type, + data_aquisition_geometry, + reconstructed_volume_geometry): + '''Initializes the class + +Mandatory parameters are: +device_type from DeviceType Enum +data_acquisition_geometry: tuple (camera_X, camera_Y, detectorSpacingX, + detectorSpacingY, angles) +reconstructed_volume_geometry: tuple (dimX,dimY,dimZ) +''' + self.device_geometry = device_type + self.acquisition_data_geometry = { + 'cameraX': data_aquisition_geometry[0], + 'cameraY': data_aquisition_geometry[1], + 'detectorSpacingX' : data_aquisition_geometry[2], + 'detectorSpacingY' : data_aquisition_geometry[3], + 'angles' : data_aquisition_geometry[4],} + self.reconstructed_volume_geometry = { + 'X': reconstructed_volume_geometry[0] , + 'Y': reconstructed_volume_geometry[1] , + 'Z': reconstructed_volume_geometry[2] } + + @abstractmethod + def doForwardProject(self, volume): + '''Forward projects the volume according to the device geometry''' + return NotImplemented + + + @abstractmethod + def doBackwardProject(self, projections): + '''Backward projects the projections according to the device geometry''' + return NotImplemented + + @abstractmethod + def createReducedDevice(self): + '''Create a Device to do forward/backward projections on 2D slices''' + return NotImplemented + + diff --git a/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py new file mode 100644 index 0000000..e40ad24 --- /dev/null +++ b/Wrappers/Python/ccpi/reconstruction/FISTAReconstructor.py @@ -0,0 +1,882 @@ +# -*- coding: utf-8 -*- +############################################################################### +#This work is part of the Core Imaging Library developed by +#Visual Analytics and Imaging System Group of the Science Technology +#Facilities Council, STFC +# +#Copyright 2017 Edoardo Pasca, Srikanth Nagella +#Copyright 2017 Daniil Kazantsev +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +#http://www.apache.org/licenses/LICENSE-2.0 +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +############################################################################### + + + +import numpy +#from ccpi.reconstruction.parallelbeam import alg + +#from ccpi.imaging.Regularizer import Regularizer +from enum import Enum + +import astra +from ccpi.reconstruction.AstraDevice import AstraDevice + + + +class FISTAReconstructor(): + '''FISTA-based reconstruction algorithm using ASTRA-toolbox + + ''' + # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> + # ___Input___: + # params.[] file: + # - .proj_geom (geometry of the projector) [required] + # - .vol_geom (geometry of the reconstructed object) [required] + # - .sino (vectorized in 2D or 3D sinogram) [required] + # - .iterFISTA (iterations for the main loop, default 40) + # - .L_const (Lipschitz constant, default Power method) ) + # - .X_ideal (ideal image, if given) + # - .weights (statisitcal weights, size of the sinogram) + # - .ROI (Region-of-interest, only if X_ideal is given) + # - .initialize (a 'warm start' using SIRT method from ASTRA) + #----------------Regularization choices------------------------ + # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter) + # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) + # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter) + # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) + # - .Regul_Iterations (iterations for the selected penalty, default 25) + # - .Regul_tauLLT (time step parameter for LLT term) + # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) + # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) + #----------------Visualization parameters------------------------ + # - .show (visualize reconstruction 1/0, (0 default)) + # - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) + # - .slice (for 3D volumes - slice number to imshow) + # ___Output___: + # 1. X - reconstructed image/volume + # 2. output - a structure with + # - .Resid_error - residual error (if X_ideal is given) + # - .objective: value of the objective function + # - .L_const: Lipshitz constant to avoid recalculations + + # References: + # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse + # Problems" by A. Beck and M Teboulle + # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo + # 3. "A novel tomographic reconstruction method based on the robust + # Student's t function for suppressing data outliers" D. Kazantsev et.al. + # D. Kazantsev, 2016-17 + def __init__(self, projector_geometry, + output_geometry, + input_sinogram, + device, + **kwargs): + # handle parmeters: + # obligatory parameters + self.pars = dict() + self.pars['projector_geometry'] = projector_geometry # proj_geom + self.pars['output_geometry'] = output_geometry # vol_geom + self.pars['input_sinogram'] = input_sinogram # sino + sliceZ, nangles, detectors = numpy.shape(input_sinogram) + self.pars['detectors'] = detectors + self.pars['number_of_angles'] = nangles + self.pars['SlicesZ'] = sliceZ + self.pars['output_volume'] = None + self.pars['device_model'] = device + + self.use_device = True + + print (self.pars) + # handle optional input parameters (at instantiation) + + # Accepted input keywords + kw = ( + # mandatory fields + 'projector_geometry', + 'output_geometry', + 'input_sinogram', + 'detectors', + 'number_of_angles', + 'SlicesZ', + # optional fields + 'number_of_iterations', + 'Lipschitz_constant' , + 'ideal_image' , + 'weights' , + 'region_of_interest' , + 'initialize' , + 'regularizer' , + 'ring_lambda_R_L1', + 'ring_alpha', + 'subsets', + 'output_volume', + 'os_subsets', + 'os_indices', + 'os_bins', + 'device_model', + 'reduced_device_model') + self.acceptedInputKeywords = list(kw) + + # handle keyworded parameters + if kwargs is not None: + for key, value in kwargs.items(): + if key in kw: + #print("{0} = {1}".format(key, value)) + self.pars[key] = value + + # set the default values for the parameters if not set + if 'number_of_iterations' in kwargs.keys(): + self.pars['number_of_iterations'] = kwargs['number_of_iterations'] + else: + self.pars['number_of_iterations'] = 40 + if 'weights' in kwargs.keys(): + self.pars['weights'] = kwargs['weights'] + else: + self.pars['weights'] = \ + numpy.ones(numpy.shape( + self.pars['input_sinogram'])) + if 'Lipschitz_constant' in kwargs.keys(): + self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant'] + else: + self.pars['Lipschitz_constant'] = None + + if not 'ideal_image' in kwargs.keys(): + self.pars['ideal_image'] = None + + if not 'region_of_interest'in kwargs.keys() : + if self.pars['ideal_image'] == None: + self.pars['region_of_interest'] = None + else: + ## nonzero if the image is larger than m + fsm = numpy.frompyfunc(lambda x,m: 1 if x>m else 0, 2,1) + + self.pars['region_of_interest'] = fsm(self.pars['ideal_image'], 0) + + # the regularizer must be a correctly instantiated object + if not 'regularizer' in kwargs.keys() : + self.pars['regularizer'] = None + + #RING REMOVAL + if not 'ring_lambda_R_L1' in kwargs.keys(): + self.pars['ring_lambda_R_L1'] = 0 + if not 'ring_alpha' in kwargs.keys(): + self.pars['ring_alpha'] = 1 + + # ORDERED SUBSET + if not 'subsets' in kwargs.keys(): + self.pars['subsets'] = 0 + else: + self.createOrderedSubsets() + + if not 'initialize' in kwargs.keys(): + self.pars['initialize'] = False + + reduced_device = device.createReducedDevice() + self.setParameter(reduced_device_model=reduced_device) + + + + def setParameter(self, **kwargs): + '''set named parameter for the reconstructor engine + + raises Exception if the named parameter is not recognized + + ''' + for key , value in kwargs.items(): + if key in self.acceptedInputKeywords: + self.pars[key] = value + else: + raise Exception('Wrong parameter {0} for '.format(key) + + 'reconstructor') + # setParameter + + def getParameter(self, key): + if type(key) is str: + if key in self.acceptedInputKeywords: + return self.pars[key] + else: + raise Exception('Unrecongnised parameter: {0} '.format(key) ) + elif type(key) is list: + outpars = [] + for k in key: + outpars.append(self.getParameter(k)) + return outpars + else: + raise Exception('Unhandled input {0}' .format(str(type(key)))) + + + def calculateLipschitzConstantWithPowerMethod(self): + ''' using Power method (PM) to establish L constant''' + + N = self.pars['output_geometry']['GridColCount'] + proj_geom = self.pars['projector_geometry'] + vol_geom = self.pars['output_geometry'] + weights = self.pars['weights'] + SlicesZ = self.pars['SlicesZ'] + + + + if (proj_geom['type'] == 'parallel') or \ + (proj_geom['type'] == 'parallel3d'): + #% for parallel geometry we can do just one slice + #print('Calculating Lipshitz constant for parallel beam geometry...') + niter = 5;# % number of iteration for the PM + #N = params.vol_geom.GridColCount; + #x1 = rand(N,N,1); + x1 = numpy.random.rand(1,N,N) + #sqweight = sqrt(weights(:,:,1)); + sqweight = numpy.sqrt(weights[0:1,:,:]) + proj_geomT = proj_geom.copy(); + proj_geomT['DetectorRowCount'] = 1; + vol_geomT = vol_geom.copy(); + vol_geomT['GridSliceCount'] = 1; + + #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + + + for i in range(niter): + # [id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geomT, vol_geomT); + # s = norm(x1(:)); + # x1 = x1/s; + # [sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + # y = sqweight.*y; + # astra_mex_data3d('delete', sino_id); + # astra_mex_data3d('delete', id); + #print ("iteration {0}".format(i)) + + sino_id, y = astra.creators.create_sino3d_gpu(x1, + proj_geomT, + vol_geomT) + + y = (sqweight * y).copy() # element wise multiplication + + #b=fig.add_subplot(2,1,2) + #imgplot = plt.imshow(x1[0]) + #plt.show() + + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id) + del x1 + + idx,x1 = astra.creators.create_backprojection3d_gpu((sqweight*y).copy(), + proj_geomT, + vol_geomT) + del y + + + s = numpy.linalg.norm(x1) + ### this line? + x1 = (x1/s).copy(); + + # ### this line? + # sino_id, y = astra.creators.create_sino3d_gpu(x1, + # proj_geomT, + # vol_geomT); + # y = sqweight * y; + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx) + print ("iteration {0} s= {1}".format(i,s)) + + #end + del proj_geomT + del vol_geomT + #plt.show() + else: + #% divergen beam geometry + print('Calculating Lipshitz constant for divergen beam geometry...') + niter = 8; #% number of iteration for PM + x1 = numpy.random.rand(SlicesZ , N , N); + #sqweight = sqrt(weights); + sqweight = numpy.sqrt(weights[0]) + + sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom); + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id); + + for i in range(niter): + #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); + idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, + proj_geom, + vol_geom) + s = numpy.linalg.norm(x1) + ### this line? + x1 = x1/s; + ### this line? + #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom); + sino_id, y = astra.creators.create_sino3d_gpu(x1, + proj_geom, + vol_geom); + + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + #astra_mex_data3d('delete', id); + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx); + #end + #clear x1 + del x1 + + + return s + + + def setRegularizer(self, regularizer): + if regularizer is not None: + self.pars['regularizer'] = regularizer + + + def initialize(self): + # convenience variable storage + proj_geom = self.pars['projector_geometry'] + vol_geom = self.pars['output_geometry'] + sino = self.pars['input_sinogram'] + + # a 'warm start' with SIRT method + # Create a data object for the reconstruction + rec_id = astra.matlab.data3d('create', '-vol', + vol_geom); + + #sinogram_id = astra_mex_data3d('create', '-proj3d', proj_geom, sino); + sinogram_id = astra.matlab.data3d('create', '-proj3d', + proj_geom, + sino) + + sirt_config = astra.astra_dict('SIRT3D_CUDA') + sirt_config['ReconstructionDataId' ] = rec_id + sirt_config['ProjectionDataId'] = sinogram_id + + sirt = astra.algorithm.create(sirt_config) + astra.algorithm.run(sirt, iterations=35) + X = astra.matlab.data3d('get', rec_id) + + # clean up memory + astra.matlab.data3d('delete', rec_id) + astra.matlab.data3d('delete', sinogram_id) + astra.algorithm.delete(sirt) + + + + return X + + def createOrderedSubsets(self, subsets=None): + if subsets is None: + try: + subsets = self.getParameter('subsets') + except Exception(): + subsets = 0 + #return subsets + else: + self.setParameter(subsets=subsets) + + + angles = self.getParameter('projector_geometry')['ProjectionAngles'] + + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles)), dtype=numpy.int32) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + # store the OS in parameters + self.setParameter(os_subsets=subsets, + os_bins=binsDiscr, + os_indices=IndicesReorg) + + + def prepareForIteration(self): + print ("FISTA Reconstructor: prepare for iteration") + + self.residual_error = numpy.zeros((self.pars['number_of_iterations'])) + self.objective = numpy.zeros((self.pars['number_of_iterations'])) + + #2D array (for 3D data) of sparse "ring" + detectors, nangles, sliceZ = numpy.shape(self.pars['input_sinogram']) + self.r = numpy.zeros((detectors, sliceZ), dtype=numpy.float) + # another ring variable + self.r_x = self.r.copy() + + self.residual = numpy.zeros(numpy.shape(self.pars['input_sinogram'])) + + if self.getParameter('Lipschitz_constant') is None: + self.pars['Lipschitz_constant'] = \ + self.calculateLipschitzConstantWithPowerMethod() + # errors vector (if the ground truth is given) + self.Resid_error = numpy.zeros((self.getParameter('number_of_iterations'))); + # objective function values vector + self.objective = numpy.zeros((self.getParameter('number_of_iterations'))); + + + # prepareForIteration + + def iterate (self, Xin=None): + if self.getParameter('subsets') == 0: + return self.iterateStandard(Xin) + else: + return self.iterateOrderedSubsets(Xin) + + def iterateStandard(self, Xin=None): + print ("FISTA Reconstructor: iterate") + + if Xin is None: + if self.getParameter('initialize'): + X = self.initialize() + else: + N = vol_geom['GridColCount'] + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + # copy by reference + X = Xin + # store the output volume in the parameters + self.setParameter(output_volume=X) + X_t = X.copy() + # convenience variable storage + proj_geom , vol_geom, sino , \ + SlicesZ , ring_lambda_R_L1 , weights = \ + self.getParameter([ 'projector_geometry' , + 'output_geometry', + 'input_sinogram', + 'SlicesZ' , + 'ring_lambda_R_L1', + 'weights']) + + t = 1 + + device = self.getParameter('device_model') + reduced_device = self.getParameter('reduced_device_model') + + for i in range(self.getParameter('number_of_iterations')): + print("iteration", i) + X_old = X.copy() + t_old = t + r_old = self.r.copy() + pg = self.getParameter('projector_geometry')['type'] + if pg == 'parallel' or \ + pg == 'fanflat' or \ + pg == 'fanflat_vec': + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + + if self.use_device : + self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) + + for kkk in range(SlicesZ): + self.sino_updt[kkk] = \ + reduced_device.doForwardProject( X_t[kkk:kkk+1] ) + else: + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + self.sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) + for kkk in range(SlicesZ): + sino_id, self.sino_updt[kkk] = \ + astra.creators.create_sino3d_gpu( + X_t[kkk:kkk+1], proj_geomT, vol_geomT) + astra.matlab.data3d('delete', sino_id) + else: + # for divergent 3D geometry (watch the GPU memory overflow in + # ASTRA versions < 1.8) + #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + + if self.use_device: + self.sino_updt = device.doForwardProject(X_t) + else: + sino_id, self.sino_updt = astra.creators.create_sino3d_gpu( + X_t, proj_geom, vol_geom) + astra.matlab.data3d('delete', sino_id) + + + ## RING REMOVAL + if ring_lambda_R_L1 != 0: + self.ringRemoval(i) + else: + self.residual = weights * (self.sino_updt - sino) + self.objective[i] = 0.5 * numpy.linalg.norm(self.residual) + #objective(i) = 0.5*norm(residual(:)); % for the objective function output + ## Projection/Backprojection Routine + X, X_t = self.projectionBackprojection(X, X_t) + + ## REGULARIZATION + Y = self.regularize(X) + X = Y.copy() + ## Update Loop + X , X_t, t = self.updateLoop(i, X, X_old, r_old, t, t_old) + + print ("t" , t) + print ("X min {0} max {1}".format(X_t.min(),X_t.max())) + self.setParameter(output_volume=X) + return X + ## iterate + + def ringRemoval(self, i): + print ("FISTA Reconstructor: ring removal") + residual = self.residual + lambdaR_L1 , alpha_ring , weights , L_const , sino= \ + self.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant', + 'input_sinogram']) + r_x = self.r_x + sino_updt = self.sino_updt + + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(self.getParameter('input_sinogram')) + if lambdaR_L1 > 0 : + for kkk in range(anglesNumb): + + residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + vec = residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:].squeeze() + self.r = (r_x - (1./L_const) * vec).copy() + self.objective[i] = (0.5 * (residual ** 2).sum()) + + def projectionBackprojection(self, X, X_t): + print ("FISTA Reconstructor: projection-backprojection routine") + + # a few useful variables + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(self.getParameter('input_sinogram')) + residual = self.residual + proj_geom , vol_geom , L_const = \ + self.getParameter(['projector_geometry' , + 'output_geometry', + 'Lipschitz_constant']) + + device, reduced_device = self.getParameter(['device_model', + 'reduced_device_model']) + + if self.getParameter('projector_geometry')['type'] == 'parallel' or \ + self.getParameter('projector_geometry')['type'] == 'fanflat' or \ + self.getParameter('projector_geometry')['type'] == 'fanflat_vec': + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) + + if self.use_device: + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residual[kkk:kkk+1], + proj_geomT, vol_geomT) + astra.matlab.data3d('delete', x_id) + else: + for kkk in range(SliceZ): + x_temp[kkk] = \ + reduced_device.doBackwardProject(residual[kkk:kkk+1]) + else: + if self.use_device: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residual, proj_geom, vol_geom) + astra.matlab.data3d('delete', x_id) + else: + x_temp = \ + device.doBackwardProject(residual) + + + X = X_t - (1/L_const) * x_temp + #astra.matlab.data3d('delete', sino_id) + return (X , X_t) + + + def regularize(self, X , output_all=False): + #print ("FISTA Reconstructor: regularize") + + regularizer = self.getParameter('regularizer') + if regularizer is not None: + return regularizer(input=X, + output_all=output_all) + else: + return X + + def updateLoop(self, i, X, X_old, r_old, t, t_old): + print ("FISTA Reconstructor: update loop") + lambdaR_L1 = self.getParameter('ring_lambda_R_L1') + + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + + if lambdaR_L1 > 0: + self.r = numpy.max( + numpy.abs(self.r) - lambdaR_L1 , 0) * \ + numpy.sign(self.r) + self.r_x = self.r + \ + (((t_old-1)/t) * (self.r - r_old)) + + if self.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, self.objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], self.objective[i])) + return (X , X_t, t) + + def iterateOrderedSubsets(self, Xin=None): + print ("FISTA Reconstructor: Ordered Subsets iterate") + + if Xin is None: + if self.getParameter('initialize'): + X = self.initialize() + else: + N = vol_geom['GridColCount'] + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + # copy by reference + X = Xin + # store the output volume in the parameters + self.setParameter(output_volume=X) + X_t = X.copy() + + # some useful constants + proj_geom , vol_geom, sino , \ + SlicesZ, weights , alpha_ring ,\ + lambdaR_L1 , L_const , iterFISTA = self.getParameter( + ['projector_geometry' , 'output_geometry', 'input_sinogram', + 'SlicesZ' , 'weights', 'ring_alpha' , + 'ring_lambda_R_L1', 'Lipschitz_constant', + 'number_of_iterations']) + + + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + #objective = numpy.zeros((iterFISTA)); + objective = self.objective + + + t = 1 + + ## additional for + proj_geomSUB = proj_geom.copy() + self.residual2 = numpy.zeros(numpy.shape(sino)) + residual2 = self.residual2 + sino_updt_FULL = self.residual.copy() + r_x = self.r.copy() + + print ("starting iterations") + ## % Outer FISTA iterations loop + for i in range(self.getParameter('number_of_iterations')): + # With OS approach it becomes trickier to correlate independent + # subsets, hence additional work is required one solution is to + # work with a full sinogram at times + + r_old = self.r.copy() + t_old = t + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(self.getParameter('input_sinogram')) ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 + if (i > 1 and lambdaR_L1 > 0) : + for kkk in range(anglesNumb): + + residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt_FULL[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + + vec = self.residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:] # 1 or 0? + r_x = self.r_x + # update ring variable + self.r = (r_x - (1./L_const) * vec).copy() + + # subset loop + counterInd = 1 + geometry_type = self.getParameter('projector_geometry')['type'] + angles = self.getParameter('projector_geometry')['ProjectionAngles'] + + for ss in range(self.getParameter('subsets')): + #print ("Subset {0}".format(ss)) + X_old = X.copy() + t_old = t + + # the number of projections per subset + numProjSub = self.getParameter('os_bins')[ss] + CurrSubIndices = self.getParameter('os_indices')\ + [counterInd:counterInd+numProjSub] + #print ("Len CurrSubIndices {0}".format(numProjSub)) + mask = numpy.zeros(numpy.shape(angles), dtype=bool) + #cc = 0 + for j in range(len(CurrSubIndices)): + mask[int(CurrSubIndices[j])] = True + proj_geomSUB['ProjectionAngles'] = angles[mask] + + if self.use_device: + device = self.getParameter('device_model')\ + .createReducedDevice( + proj_par={'angles':angles[mask]}, + vol_par={}) + + shape = list(numpy.shape(self.getParameter('input_sinogram'))) + shape[1] = numProjSub + sino_updt_Sub = numpy.zeros(shape) + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + + for kkk in range(SlicesZ): + if self.use_device: + sinoT = device.doForwardProject(X_t[kkk:kkk+1]) + else: + sino_id, sinoT = astra.creators.create_sino3d_gpu ( + X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) + astra.matlab.data3d('delete', sino_id) + sino_updt_Sub[kkk] = sinoT.T.copy() + + else: + # for 3D geometry (watch the GPU memory overflow in + # ASTRA < 1.8) + if self.use_device: + sino_updt_Sub = device.doForwardProject(X_t) + + else: + sino_id, sino_updt_Sub = \ + astra.creators.create_sino3d_gpu (X_t, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', sino_id) + + #print ("shape(sino_updt_Sub)",numpy.shape(sino_updt_Sub)) + if lambdaR_L1 > 0 : + ## RING REMOVAL + #print ("ring removal") + residualSub , sino_updt_Sub, sino_updt_FULL = \ + self.ringRemovalOrderedSubsets(ss, + counterInd, + sino_updt_Sub, + sino_updt_FULL) + else: + #PWLS model + #print ("PWLS model") + residualSub = weights[:,CurrSubIndices,:] * \ + ( sino_updt_Sub - \ + sino[:,CurrSubIndices,:].squeeze() ) + objective[i] = 0.5 * numpy.linalg.norm(residualSub) + + # projection/backprojection routine + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + # if geometry is 2D use slice-by-slice projection-backprojection + # routine + x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) + for kkk in range(SlicesZ): + if self.use_device: + x_temp[kkk] = device.doBackwardProject( + residualSub[kkk:kkk+1]) + else: + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residualSub[kkk:kkk+1], + proj_geomSUB, vol_geom) + astra.matlab.data3d('delete', x_id) + + else: + if self.use_device: + x_temp = device.doBackwardProject( + residualSub) + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residualSub, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', x_id) + + X = X_t - (1/L_const) * x_temp + + ## REGULARIZATION + X = self.regularize(X) + + ## Update subset Loop + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + # FINAL + ## update iteration loop + if lambdaR_L1 > 0: + self.r = numpy.max( + numpy.abs(self.r) - lambdaR_L1 , 0) * \ + numpy.sign(self.r) + self.r_x = self.r + \ + (((t_old-1)/t) * (self.r - r_old)) + + if self.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, self.objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], self.objective[i])) + print("X min {0} max {1}".format(X.min(),X.max())) + self.setParameter(output_volume=X) + counterInd = counterInd + numProjSub + + return X + + def ringRemovalOrderedSubsets(self, ss,counterInd, + sino_updt_Sub, sino_updt_FULL): + residual = self.residual + r_x = self.r_x + weights , alpha_ring , sino = \ + self.getParameter( ['weights', 'ring_alpha', 'input_sinogram']) + numProjSub = self.getParameter('os_bins')[ss] + CurrSubIndices = self.getParameter('os_indices')\ + [counterInd:counterInd+numProjSub] + + shape = list(numpy.shape(self.getParameter('input_sinogram'))) + shape[1] = numProjSub + + residualSub = numpy.zeros(shape) + + for kkk in range(numProjSub): + #print ("ring removal indC ... {0}".format(kkk)) + indC = int(CurrSubIndices[kkk]) + residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ + (sino_updt_Sub[:,kkk,:].squeeze() - \ + sino[:,indC,:].squeeze() - alpha_ring * r_x) + # filling the full sinogram + sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() + + return (residualSub , sino_updt_Sub, sino_updt_FULL) + + diff --git a/Wrappers/Python/ccpi/reconstruction/Reconstructor.py b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py new file mode 100644 index 0000000..ba67327 --- /dev/null +++ b/Wrappers/Python/ccpi/reconstruction/Reconstructor.py @@ -0,0 +1,598 @@ +# -*- coding: utf-8 -*- +############################################################################### +#This work is part of the Core Imaging Library developed by +#Visual Analytics and Imaging System Group of the Science Technology +#Facilities Council, STFC +# +#Copyright 2017 Edoardo Pasca, Srikanth Nagella +#Copyright 2017 Daniil Kazantsev +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +#http://www.apache.org/licenses/LICENSE-2.0 +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. +############################################################################### + + + +import numpy +import h5py +from ccpi.reconstruction.parallelbeam import alg + +from Regularizer import Regularizer +from enum import Enum + +import astra + + +class Reconstructor: + + class Algorithm(Enum): + CGLS = alg.cgls + CGLS_CONV = alg.cgls_conv + SIRT = alg.sirt + MLEM = alg.mlem + CGLS_TICHONOV = alg.cgls_tikhonov + CGLS_TVREG = alg.cgls_TVreg + FISTA = 'fista' + + def __init__(self, algorithm = None, projection_data = None, + angles = None, center_of_rotation = None , + flat_field = None, dark_field = None, + iterations = None, resolution = None, isLogScale = False, threads = None, + normalized_projection = None): + + self.pars = dict() + self.pars['algorithm'] = algorithm + self.pars['projection_data'] = projection_data + self.pars['normalized_projection'] = normalized_projection + self.pars['angles'] = angles + self.pars['center_of_rotation'] = numpy.double(center_of_rotation) + self.pars['flat_field'] = flat_field + self.pars['iterations'] = iterations + self.pars['dark_field'] = dark_field + self.pars['resolution'] = resolution + self.pars['isLogScale'] = isLogScale + self.pars['threads'] = threads + if (iterations != None): + self.pars['iterationValues'] = numpy.zeros((iterations)) + + if projection_data != None and dark_field != None and flat_field != None: + norm = self.normalize(projection_data, dark_field, flat_field, 0.1) + self.pars['normalized_projection'] = norm + + + def setPars(self, parameters): + keys = ['algorithm','projection_data' ,'normalized_projection', \ + 'angles' , 'center_of_rotation' , 'flat_field', \ + 'iterations','dark_field' , 'resolution', 'isLogScale' , \ + 'threads' , 'iterationValues', 'regularize'] + + for k in keys: + if k not in parameters.keys(): + self.pars[k] = None + else: + self.pars[k] = parameters[k] + + + def sanityCheck(self): + projection_data = self.pars['projection_data'] + dark_field = self.pars['dark_field'] + flat_field = self.pars['flat_field'] + angles = self.pars['angles'] + + if projection_data != None and dark_field != None and \ + angles != None and flat_field != None: + data_shape = numpy.shape(projection_data) + angle_shape = numpy.shape(angles) + + if angle_shape[0] != data_shape[0]: + #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \ + # (angle_shape[0] , data_shape[0]) ) + return (False , 'Projections and angles dimensions do not match: %d vs %d' % \ + (angle_shape[0] , data_shape[0]) ) + + if data_shape[1:] != numpy.shape(flat_field): + #raise Exception('Projection and flat field dimensions do not match') + return (False , 'Projection and flat field dimensions do not match') + if data_shape[1:] != numpy.shape(dark_field): + #raise Exception('Projection and dark field dimensions do not match') + return (False , 'Projection and dark field dimensions do not match') + + return (True , '' ) + elif self.pars['normalized_projection'] != None: + data_shape = numpy.shape(self.pars['normalized_projection']) + angle_shape = numpy.shape(angles) + + if angle_shape[0] != data_shape[0]: + #raise Exception('Projections and angles dimensions do not match: %d vs %d' % \ + # (angle_shape[0] , data_shape[0]) ) + return (False , 'Projections and angles dimensions do not match: %d vs %d' % \ + (angle_shape[0] , data_shape[0]) ) + else: + return (True , '' ) + else: + return (False , 'Not enough data') + + def reconstruct(self, parameters = None): + if parameters != None: + self.setPars(parameters) + + go , reason = self.sanityCheck() + if go: + return self._reconstruct() + else: + raise Exception(reason) + + + def _reconstruct(self, parameters=None): + if parameters!=None: + self.setPars(parameters) + parameters = self.pars + + if parameters['algorithm'] != None and \ + parameters['normalized_projection'] != None and \ + parameters['angles'] != None and \ + parameters['center_of_rotation'] != None and \ + parameters['iterations'] != None and \ + parameters['resolution'] != None and\ + parameters['threads'] != None and\ + parameters['isLogScale'] != None: + + + if parameters['algorithm'] in (Reconstructor.Algorithm.CGLS, + Reconstructor.Algorithm.MLEM, Reconstructor.Algorithm.SIRT): + #store parameters + self.pars = parameters + result = parameters['algorithm']( + parameters['normalized_projection'] , + parameters['angles'], + parameters['center_of_rotation'], + parameters['resolution'], + parameters['iterations'], + parameters['threads'] , + parameters['isLogScale'] + ) + return result + elif parameters['algorithm'] in (Reconstructor.Algorithm.CGLS_CONV, + Reconstructor.Algorithm.CGLS_TICHONOV, + Reconstructor.Algorithm.CGLS_TVREG) : + self.pars = parameters + result = parameters['algorithm']( + parameters['normalized_projection'] , + parameters['angles'], + parameters['center_of_rotation'], + parameters['resolution'], + parameters['iterations'], + parameters['threads'] , + parameters['regularize'], + numpy.zeros((parameters['iterations'])), + parameters['isLogScale'] + ) + + elif parameters['algorithm'] == Reconstructor.Algorithm.FISTA: + pass + + else: + if parameters['projection_data'] != None and \ + parameters['dark_field'] != None and \ + parameters['flat_field'] != None: + norm = self.normalize(parameters['projection_data'], + parameters['dark_field'], + parameters['flat_field'], 0.1) + self.pars['normalized_projection'] = norm + return self._reconstruct(parameters) + + + + def _normalize(self, projection, dark, flat, def_val=0): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0 + return c + + def normalize(self, projections, dark, flat, def_val=0): + norm = [self._normalize(projection, dark, flat, def_val) for projection in projections] + return numpy.asarray (norm, dtype=numpy.float32) + + + +class FISTA(): + '''FISTA-based reconstruction algorithm using ASTRA-toolbox + + ''' + # <<<< FISTA-based reconstruction algorithm using ASTRA-toolbox >>>> + # ___Input___: + # params.[] file: + # - .proj_geom (geometry of the projector) [required] + # - .vol_geom (geometry of the reconstructed object) [required] + # - .sino (vectorized in 2D or 3D sinogram) [required] + # - .iterFISTA (iterations for the main loop, default 40) + # - .L_const (Lipschitz constant, default Power method) ) + # - .X_ideal (ideal image, if given) + # - .weights (statisitcal weights, size of the sinogram) + # - .ROI (Region-of-interest, only if X_ideal is given) + # - .initialize (a 'warm start' using SIRT method from ASTRA) + #----------------Regularization choices------------------------ + # - .Regul_Lambda_FGPTV (FGP-TV regularization parameter) + # - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter) + # - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter) + # - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04) + # - .Regul_Iterations (iterations for the selected penalty, default 25) + # - .Regul_tauLLT (time step parameter for LLT term) + # - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal) + # - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1) + #----------------Visualization parameters------------------------ + # - .show (visualize reconstruction 1/0, (0 default)) + # - .maxvalplot (maximum value to use for imshow[0 maxvalplot]) + # - .slice (for 3D volumes - slice number to imshow) + # ___Output___: + # 1. X - reconstructed image/volume + # 2. output - a structure with + # - .Resid_error - residual error (if X_ideal is given) + # - .objective: value of the objective function + # - .L_const: Lipshitz constant to avoid recalculations + + # References: + # 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse + # Problems" by A. Beck and M Teboulle + # 2. "Ring artifacts correction in compressed sensing..." by P. Paleo + # 3. "A novel tomographic reconstruction method based on the robust + # Student's t function for suppressing data outliers" D. Kazantsev et.al. + # D. Kazantsev, 2016-17 + def __init__(self, projector_geometry, output_geometry, input_sinogram, **kwargs): + self.params = dict() + self.params['projector_geometry'] = projector_geometry + self.params['output_geometry'] = output_geometry + self.params['input_sinogram'] = input_sinogram + detectors, nangles, sliceZ = numpy.shape(input_sinogram) + self.params['detectors'] = detectors + self.params['number_og_angles'] = nangles + self.params['SlicesZ'] = sliceZ + + # Accepted input keywords + kw = ('number_of_iterations', 'Lipschitz_constant' , 'ideal_image' , + 'weights' , 'region_of_interest' , 'initialize' , + 'regularizer' , + 'ring_lambda_R_L1', + 'ring_alpha') + + # handle keyworded parameters + if kwargs is not None: + for key, value in kwargs.items(): + if key in kw: + #print("{0} = {1}".format(key, value)) + self.pars[key] = value + + # set the default values for the parameters if not set + if 'number_of_iterations' in kwargs.keys(): + self.pars['number_of_iterations'] = kwargs['number_of_iterations'] + else: + self.pars['number_of_iterations'] = 40 + if 'weights' in kwargs.keys(): + self.pars['weights'] = kwargs['weights'] + else: + self.pars['weights'] = numpy.ones(numpy.shape(self.params['input_sinogram'])) + if 'Lipschitz_constant' in kwargs.keys(): + self.pars['Lipschitz_constant'] = kwargs['Lipschitz_constant'] + else: + self.pars['Lipschitz_constant'] = self.calculateLipschitzConstantWithPowerMethod() + + if not self.pars['ideal_image'] in kwargs.keys(): + self.pars['ideal_image'] = None + + if not self.pars['region_of_interest'] : + if self.pars['ideal_image'] == None: + pass + else: + self.pars['region_of_interest'] = numpy.nonzero(self.pars['ideal_image']>0.0) + + if not self.pars['regularizer'] : + self.pars['regularizer'] = None + else: + # the regularizer must be a correctly instantiated object + if not self.pars['ring_lambda_R_L1']: + self.pars['ring_lambda_R_L1'] = 0 + if not self.pars['ring_alpha']: + self.pars['ring_alpha'] = 1 + + + + + def calculateLipschitzConstantWithPowerMethod(self): + ''' using Power method (PM) to establish L constant''' + + #N = params.vol_geom.GridColCount + N = self.pars['output_geometry'].GridColCount + proj_geom = self.params['projector_geometry'] + vol_geom = self.params['output_geometry'] + weights = self.pars['weights'] + SlicesZ = self.pars['SlicesZ'] + + if (proj_geom['type'] == 'parallel') or (proj_geom['type'] == 'parallel3d'): + #% for parallel geometry we can do just one slice + #fprintf('%s \n', 'Calculating Lipshitz constant for parallel beam geometry...'); + niter = 15;# % number of iteration for the PM + #N = params.vol_geom.GridColCount; + #x1 = rand(N,N,1); + x1 = numpy.random.rand(1,N,N) + #sqweight = sqrt(weights(:,:,1)); + sqweight = numpy.sqrt(weights.T[0]) + proj_geomT = proj_geom.copy(); + proj_geomT.DetectorRowCount = 1; + vol_geomT = vol_geom.copy(); + vol_geomT['GridSliceCount'] = 1; + + + for i in range(niter): + if i == 0: + #[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geomT, vol_geomT); + y = sqweight * y # element wise multiplication + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id) + + idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, proj_geomT, vol_geomT); + s = numpy.linalg.norm(x1) + ### this line? + x1 = x1/s; + ### this line? + sino_id, y = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + y = sqweight*y; + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx); + #end + del proj_geomT + del vol_geomT + else + #% divergen beam geometry + #fprintf('%s \n', 'Calculating Lipshitz constant for divergen beam geometry...'); + niter = 8; #% number of iteration for PM + x1 = numpy.random.rand(SlicesZ , N , N); + #sqweight = sqrt(weights); + sqweight = numpy.sqrt(weights.T[0]) + + sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom); + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + astra.matlab.data3d('delete', sino_id); + + for i in range(niter): + #[id,x1] = astra_create_backprojection3d_cuda(sqweight.*y, proj_geom, vol_geom); + idx,x1 = astra.creators.create_backprojection3d_gpu(sqweight*y, + proj_geom, + vol_geom) + s = numpy.linalg.norm(x1) + ### this line? + x1 = x1/s; + ### this line? + #[sino_id, y] = astra_create_sino3d_gpu(x1, proj_geom, vol_geom); + sino_id, y = astra.creators.create_sino3d_gpu(x1, + proj_geom, + vol_geom); + + y = sqweight*y; + #astra_mex_data3d('delete', sino_id); + #astra_mex_data3d('delete', id); + astra.matlab.data3d('delete', sino_id); + astra.matlab.data3d('delete', idx); + #end + #clear x1 + del x1 + + return s + + + def setRegularizer(self, regularizer): + if regularizer + self.pars['regularizer'] = regularizer + + + + + +def getEntry(location): + for item in nx[location].keys(): + print (item) + + +print ("Loading Data") + +##fname = "D:\\Documents\\Dataset\\IMAT\\20170419_crabtomo\\crabtomo\\Sample\\IMAT00005153_crabstomo_Sample_000.tif" +####ind = [i * 1049 for i in range(360)] +#### use only 360 images +##images = 200 +##ind = [int(i * 1049 / images) for i in range(images)] +##stack_image = dxchange.reader.read_tiff_stack(fname, ind, digit=None, slc=None) + +#fname = "D:\\Documents\\Dataset\\CGLS\\24737_fd.nxs" +fname = "C:\\Users\\ofn77899\\Documents\\CCPi\\CGLS\\24737_fd_2.nxs" +nx = h5py.File(fname, "r") + +# the data are stored in a particular location in the hdf5 +for item in nx['entry1/tomo_entry/data'].keys(): + print (item) + +data = nx.get('entry1/tomo_entry/data/rotation_angle') +angles = numpy.zeros(data.shape) +data.read_direct(angles) +print (angles) +# angles should be in degrees + +data = nx.get('entry1/tomo_entry/data/data') +stack = numpy.zeros(data.shape) +data.read_direct(stack) +print (data.shape) + +print ("Data Loaded") + + +# Normalize +data = nx.get('entry1/tomo_entry/instrument/detector/image_key') +itype = numpy.zeros(data.shape) +data.read_direct(itype) +# 2 is dark field +darks = [stack[i] for i in range(len(itype)) if itype[i] == 2 ] +dark = darks[0] +for i in range(1, len(darks)): + dark += darks[i] +dark = dark / len(darks) +#dark[0][0] = dark[0][1] + +# 1 is flat field +flats = [stack[i] for i in range(len(itype)) if itype[i] == 1 ] +flat = flats[0] +for i in range(1, len(flats)): + flat += flats[i] +flat = flat / len(flats) +#flat[0][0] = dark[0][1] + + +# 0 is projection data +proj = [stack[i] for i in range(len(itype)) if itype[i] == 0 ] +angle_proj = [angles[i] for i in range(len(itype)) if itype[i] == 0 ] +angle_proj = numpy.asarray (angle_proj) +angle_proj = angle_proj.astype(numpy.float32) + +# normalized data are +# norm = (projection - dark)/(flat-dark) + +def normalize(projection, dark, flat, def_val=0.1): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = def_val # set to not zero if 0/0 + return c + + +norm = [normalize(projection, dark, flat) for projection in proj] +norm = numpy.asarray (norm) +norm = norm.astype(numpy.float32) + +#recon = Reconstructor(algorithm = Algorithm.CGLS, normalized_projection = norm, +# angles = angle_proj, center_of_rotation = 86.2 , +# flat_field = flat, dark_field = dark, +# iterations = 15, resolution = 1, isLogScale = False, threads = 3) + +#recon = Reconstructor(algorithm = Reconstructor.Algorithm.CGLS, projection_data = proj, +# angles = angle_proj, center_of_rotation = 86.2 , +# flat_field = flat, dark_field = dark, +# iterations = 15, resolution = 1, isLogScale = False, threads = 3) +#img_cgls = recon.reconstruct() +# +#pars = dict() +#pars['algorithm'] = Reconstructor.Algorithm.SIRT +#pars['projection_data'] = proj +#pars['angles'] = angle_proj +#pars['center_of_rotation'] = numpy.double(86.2) +#pars['flat_field'] = flat +#pars['iterations'] = 15 +#pars['dark_field'] = dark +#pars['resolution'] = 1 +#pars['isLogScale'] = False +#pars['threads'] = 3 +# +#img_sirt = recon.reconstruct(pars) +# +#recon.pars['algorithm'] = Reconstructor.Algorithm.MLEM +#img_mlem = recon.reconstruct() + +############################################################ +############################################################ +#recon.pars['algorithm'] = Reconstructor.Algorithm.CGLS_CONV +#recon.pars['regularize'] = numpy.double(0.1) +#img_cgls_conv = recon.reconstruct() + +niterations = 15 +threads = 3 + +img_cgls = alg.cgls(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) +img_mlem = alg.mlem(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) +img_sirt = alg.sirt(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, False) + +iteration_values = numpy.zeros((niterations,)) +img_cgls_conv = alg.cgls_conv(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, + iteration_values, False) +print ("iteration values %s" % str(iteration_values)) + +iteration_values = numpy.zeros((niterations,)) +img_cgls_tikhonov = alg.cgls_tikhonov(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, + numpy.double(1e-5), iteration_values , False) +print ("iteration values %s" % str(iteration_values)) +iteration_values = numpy.zeros((niterations,)) +img_cgls_TVreg = alg.cgls_TVreg(norm, angle_proj, numpy.double(86.2), 1 , niterations, threads, + numpy.double(1e-5), iteration_values , False) +print ("iteration values %s" % str(iteration_values)) + + +##numpy.save("cgls_recon.npy", img_data) +import matplotlib.pyplot as plt +fig, ax = plt.subplots(1,6,sharey=True) +ax[0].imshow(img_cgls[80]) +ax[0].axis('off') # clear x- and y-axes +ax[1].imshow(img_sirt[80]) +ax[1].axis('off') # clear x- and y-axes +ax[2].imshow(img_mlem[80]) +ax[2].axis('off') # clear x- and y-axesplt.show() +ax[3].imshow(img_cgls_conv[80]) +ax[3].axis('off') # clear x- and y-axesplt.show() +ax[4].imshow(img_cgls_tikhonov[80]) +ax[4].axis('off') # clear x- and y-axesplt.show() +ax[5].imshow(img_cgls_TVreg[80]) +ax[5].axis('off') # clear x- and y-axesplt.show() + + +plt.show() + +#viewer = edo.CILViewer() +#viewer.setInputAsNumpy(img_cgls2) +#viewer.displaySliceActor(0) +#viewer.startRenderLoop() + +import vtk + +def NumpyToVTKImageData(numpyarray): + if (len(numpy.shape(numpyarray)) == 3): + doubleImg = vtk.vtkImageData() + shape = numpy.shape(numpyarray) + doubleImg.SetDimensions(shape[0], shape[1], shape[2]) + doubleImg.SetOrigin(0,0,0) + doubleImg.SetSpacing(1,1,1) + doubleImg.SetExtent(0, shape[0]-1, 0, shape[1]-1, 0, shape[2]-1) + #self.img3D.SetScalarType(vtk.VTK_UNSIGNED_SHORT, vtk.vtkInformation()) + doubleImg.AllocateScalars(vtk.VTK_DOUBLE,1) + + for i in range(shape[0]): + for j in range(shape[1]): + for k in range(shape[2]): + doubleImg.SetScalarComponentFromDouble( + i,j,k,0, numpyarray[i][j][k]) + #self.setInput3DData( numpy_support.numpy_to_vtk(numpyarray) ) + # rescale to appropriate VTK_UNSIGNED_SHORT + stats = vtk.vtkImageAccumulate() + stats.SetInputData(doubleImg) + stats.Update() + iMin = stats.GetMin()[0] + iMax = stats.GetMax()[0] + scale = vtk.VTK_UNSIGNED_SHORT_MAX / (iMax - iMin) + + shiftScaler = vtk.vtkImageShiftScale () + shiftScaler.SetInputData(doubleImg) + shiftScaler.SetScale(scale) + shiftScaler.SetShift(iMin) + shiftScaler.SetOutputScalarType(vtk.VTK_UNSIGNED_SHORT) + shiftScaler.Update() + return shiftScaler.GetOutput() + +#writer = vtk.vtkMetaImageWriter() +#writer.SetFileName(alg + "_recon.mha") +#writer.SetInputData(NumpyToVTKImageData(img_cgls2)) +#writer.Write() diff --git a/Wrappers/Python/compile-fista.bat.in b/Wrappers/Python/compile-fista.bat.in new file mode 100644 index 0000000..b1db686 --- /dev/null +++ b/Wrappers/Python/compile-fista.bat.in @@ -0,0 +1,7 @@ +set CIL_VERSION=@CIL_VERSION@ + +set PREFIX=@CONDA_ENVIRONMENT_PREFIX@ +set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +REM activate @CONDA_ENVIRONMENT@ +conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge diff --git a/Wrappers/Python/compile-fista.sh.in b/Wrappers/Python/compile-fista.sh.in new file mode 100644 index 0000000..267f014 --- /dev/null +++ b/Wrappers/Python/compile-fista.sh.in @@ -0,0 +1,9 @@ +#!/bin/sh +# compile within the right conda environment +#module load python/anaconda +#source activate @CONDA_ENVIRONMENT@ + +export CIL_VERSION=@CIL_VERSION@ +export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +conda build fista-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi diff --git a/Wrappers/Python/compile.bat.in b/Wrappers/Python/compile.bat.in new file mode 100644 index 0000000..e5342ed --- /dev/null +++ b/Wrappers/Python/compile.bat.in @@ -0,0 +1,7 @@ +set CIL_VERSION=@CIL_VERSION@ + +set PREFIX=@CONDA_ENVIRONMENT_PREFIX@ +set LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +REM activate @CONDA_ENVIRONMENT@ +conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi -c conda-forge
\ No newline at end of file diff --git a/Wrappers/Python/compile.sh.in b/Wrappers/Python/compile.sh.in new file mode 100644 index 0000000..93fdba2 --- /dev/null +++ b/Wrappers/Python/compile.sh.in @@ -0,0 +1,9 @@ +#!/bin/sh +# compile within the right conda environment +#module load python/anaconda +#source activate @CONDA_ENVIRONMENT@ + +export CIL_VERSION=@CIL_VERSION@ +export LIBRARY_INC=@CONDA_ENVIRONMENT_LIBRARY_INC@ + +conda build conda-recipe --python=@PYTHON_VERSION_MAJOR@.@PYTHON_VERSION_MINOR@ --numpy=@NUMPY_VERSION@ -c ccpi diff --git a/Wrappers/Python/conda-recipe/bld.bat b/Wrappers/Python/conda-recipe/bld.bat new file mode 100644 index 0000000..69491de --- /dev/null +++ b/Wrappers/Python/conda-recipe/bld.bat @@ -0,0 +1,14 @@ +IF NOT DEFINED CIL_VERSION ( +ECHO CIL_VERSION Not Defined. +exit 1 +) + +mkdir "%SRC_DIR%\ccpi" +xcopy /e "%RECIPE_DIR%\..\.." "%SRC_DIR%\ccpi" + +cd %SRC_DIR%\ccpi\Python + +%PYTHON% setup.py build_ext +if errorlevel 1 exit 1 +%PYTHON% setup.py install +if errorlevel 1 exit 1 diff --git a/Wrappers/Python/conda-recipe/build.sh b/Wrappers/Python/conda-recipe/build.sh new file mode 100644 index 0000000..855047f --- /dev/null +++ b/Wrappers/Python/conda-recipe/build.sh @@ -0,0 +1,14 @@ + +if [ -z "$CIL_VERSION" ]; then + echo "Need to set CIL_VERSION" + exit 1 +fi +mkdir "$SRC_DIR/ccpi" +cp -r "$RECIPE_DIR/../.." "$SRC_DIR/ccpi" + +cd $SRC_DIR/ccpi/Python + +$PYTHON setup.py build_ext +$PYTHON setup.py install + + diff --git a/Wrappers/Python/conda-recipe/meta.yaml b/Wrappers/Python/conda-recipe/meta.yaml new file mode 100644 index 0000000..7068e9d --- /dev/null +++ b/Wrappers/Python/conda-recipe/meta.yaml @@ -0,0 +1,30 @@ +package: + name: ccpi-regularizers + version: {{ environ['CIL_VERSION'] }} + + +build: + preserve_egg_dir: False + script_env: + - CIL_VERSION +# number: 0 + +requirements: + build: + - python + - numpy + - setuptools + - boost ==1.64 + - boost-cpp ==1.64 + - cython + + run: + - python + - numpy + - boost ==1.64 + + +about: + home: http://www.ccpi.ac.uk + license: BSD license + summary: 'CCPi Core Imaging Library Quantification Toolbox' diff --git a/Wrappers/Python/fista-recipe/bld.bat b/Wrappers/Python/fista-recipe/bld.bat new file mode 100644 index 0000000..69c2afe --- /dev/null +++ b/Wrappers/Python/fista-recipe/bld.bat @@ -0,0 +1,11 @@ +IF NOT DEFINED CIL_VERSION ( +ECHO CIL_VERSION Not Defined. +exit 1 +) + +xcopy /e "%RECIPE_DIR%\.." "%SRC_DIR%" + +%PYTHON% setup.py -q bdist_egg +:: %PYTHON% setup.py install --single-version-externally-managed --record=record.txt +%PYTHON% setup.py install +if errorlevel 1 exit 1 diff --git a/Wrappers/Python/fista-recipe/build.sh b/Wrappers/Python/fista-recipe/build.sh new file mode 100644 index 0000000..e3f3552 --- /dev/null +++ b/Wrappers/Python/fista-recipe/build.sh @@ -0,0 +1,10 @@ +if [ -z "$CIL_VERSION" ]; then + echo "Need to set CIL_VERSION" + exit 1 +fi +mkdir "$SRC_DIR/ccpifista" +cp -r "$RECIPE_DIR/.." "$SRC_DIR/ccpifista" + +cd $SRC_DIR/ccpifista + +$PYTHON setup-fista.py install diff --git a/Wrappers/Python/fista-recipe/meta.yaml b/Wrappers/Python/fista-recipe/meta.yaml new file mode 100644 index 0000000..265541f --- /dev/null +++ b/Wrappers/Python/fista-recipe/meta.yaml @@ -0,0 +1,29 @@ +package: + name: ccpi-fista + version: {{ environ['CIL_VERSION'] }} + + +build: + preserve_egg_dir: False + script_env: + - CIL_VERSION +# number: 0 + +requirements: + build: + - python + - numpy + - setuptools + + run: + - python + - numpy + #- astra-toolbox + - ccpi-regularizers + + + +about: + home: http://www.ccpi.ac.uk + license: Apache v.2.0 license + summary: 'CCPi Core Imaging Library (Viewer)' diff --git a/Wrappers/Python/fista_module.cpp b/Wrappers/Python/fista_module.cpp new file mode 100644 index 0000000..f3add76 --- /dev/null +++ b/Wrappers/Python/fista_module.cpp @@ -0,0 +1,1047 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + +#include <iostream> +#include <cmath> + +#include <boost/python.hpp> +#include <boost/python/numpy.hpp> +#include "boost/tuple/tuple.hpp" + +#include "SplitBregman_TV_core.h" +#include "FGP_TV_core.h" +#include "LLT_model_core.h" +#include "PatchBased_Regul_core.h" +#include "TGV_PD_core.h" +#include "utils.h" + + + +#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64) +#include <windows.h> +// this trick only if compiler is MSVC +__if_not_exists(uint8_t) { typedef __int8 uint8_t; } +__if_not_exists(uint16_t) { typedef __int8 uint16_t; } +#endif + +namespace bp = boost::python; +namespace np = boost::python::numpy; + +/*! in the Matlab implementation this is called as +void mexFunction( +int nlhs, mxArray *plhs[], +int nrhs, const mxArray *prhs[]) +where: +prhs Array of pointers to the INPUT mxArrays +nrhs int number of INPUT mxArrays + +nlhs Array of pointers to the OUTPUT mxArrays +plhs int number of OUTPUT mxArrays + +*********************************************************** + +*********************************************************** +double mxGetScalar(const mxArray *pm); +args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. +Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. +*********************************************************** +char *mxArrayToString(const mxArray *array_ptr); +args: array_ptr Pointer to mxCHAR array. +Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array. +Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string. +*********************************************************** +mxClassID mxGetClassID(const mxArray *pm); +args: pm Pointer to an mxArray +Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types, +mxGetClassId returns a unique value identifying the class of the array contents. +Use mxIsClass to determine whether an array is of a specific user-defined type. + +mxClassID Value MATLAB Type MEX Type C Primitive Type +mxINT8_CLASS int8 int8_T char, byte +mxUINT8_CLASS uint8 uint8_T unsigned char, byte +mxINT16_CLASS int16 int16_T short +mxUINT16_CLASS uint16 uint16_T unsigned short +mxINT32_CLASS int32 int32_T int +mxUINT32_CLASS uint32 uint32_T unsigned int +mxINT64_CLASS int64 int64_T long long +mxUINT64_CLASS uint64 uint64_T unsigned long long +mxSINGLE_CLASS single float float +mxDOUBLE_CLASS double double double + +**************************************************************** +double *mxGetPr(const mxArray *pm); +args: pm Pointer to an mxArray of type double +Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data. +**************************************************************** +mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, +mxClassID classid, mxComplexity ComplexFlag); +args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2. +dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension. +For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array. +classid Identifier for the class of the array, which determines the way the numerical data is represented in memory. +For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer. +ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran). +Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran). +If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not +enough free heap space to create the mxArray. +*/ + + + +bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { + + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + //const int *dim_array; + float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + // Parameter handling is be done in Python + ///*Handling Matlab input data*/ + //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + ///*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ + A = reinterpret_cast<float *>(input.get_data()); + + //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ + mu = (float)d_mu; + + //iter = 35; /* default iterations number */ + + //epsil = 0.0001; /* default tolerance constant */ + epsil = (float)d_epsil; + //methTV = 0; /* default isotropic TV penalty */ + //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ + //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ + //if (nrhs == 5) { + // char *penalty_type; + // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + // mxFree(penalty_type); + //} + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + lambda = 2.0f*mu; + count = 1; + re_old = 0.0f; + /*Handling Matlab output data*/ + dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npDx = np::zeros(shape, dtype); + np::ndarray npDy = np::zeros(shape, dtype); + np::ndarray npBx = np::zeros(shape, dtype); + np::ndarray npBy = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + Dx = reinterpret_cast<float *>(npDx.get_data()); + Dy = reinterpret_cast<float *>(npDy.get_data()); + Bx = reinterpret_cast<float *>(npBx.get_data()); + By = reinterpret_cast<float *>(npBy.get_data()); + + + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for (ll = 0; ll < iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu); + + if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + + updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j < dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*copyIm(U_old, U, dimX, dimY, dimZ); */ + + } + //printf("SB iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + result.append<int>(ll); + } + if (number_of_dims == 3) { + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npDx = np::zeros(shape, dtype); + np::ndarray npDy = np::zeros(shape, dtype); + np::ndarray npDz = np::zeros(shape, dtype); + np::ndarray npBx = np::zeros(shape, dtype); + np::ndarray npBy = np::zeros(shape, dtype); + np::ndarray npBz = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + Dx = reinterpret_cast<float *>(npDx.get_data()); + Dy = reinterpret_cast<float *>(npDy.get_data()); + Dz = reinterpret_cast<float *>(npDz.get_data()); + Bx = reinterpret_cast<float *>(npBx.get_data()); + By = reinterpret_cast<float *>(npBy.get_data()); + Bz = reinterpret_cast<float *>(npBz.get_data()); + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for (ll = 0; ll<iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu); + + if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + + updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U[j] - U_old[j], 2); + re1 += pow(U[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + /*printf("%f %i %i \n", re, ll, count); */ + re_old = re; + } + //printf("SB iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + result.append<int>(ll); + } + return result; + + } + + + +bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { + + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL; + float lambda, tk, tkp1, re, re1, re_old, epsil, funcval; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + // Parameter handling is be done in Python + ///*Handling Matlab input data*/ + //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + ///*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ + A = reinterpret_cast<float *>(input.get_data()); + + //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ + lambda = (float)d_mu; + + //iter = 35; /* default iterations number */ + + //epsil = 0.0001; /* default tolerance constant */ + epsil = (float)d_epsil; + //methTV = 0; /* default isotropic TV penalty */ + //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ + //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ + //if (nrhs == 5) { + // char *penalty_type; + // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + // mxFree(penalty_type); + //} + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + //plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); + bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + np::ndarray out1 = np::zeros(shape1, dtype); + + //float *funcvalA = (float *)mxGetData(plhs[1]); + float * funcvalA = reinterpret_cast<float *>(out1.get_data()); + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + tk = 1.0f; + tkp1 = 1.0f; + count = 1; + re_old = 0.0f; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npD = np::zeros(shape, dtype); + np::ndarray npD_old = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npP1_old = np::zeros(shape, dtype); + np::ndarray npP2_old = np::zeros(shape, dtype); + np::ndarray npR1 = np::zeros(shape, dtype); + np::ndarray npR2 = np::zeros(shape, dtype); + + D = reinterpret_cast<float *>(npD.get_data()); + D_old = reinterpret_cast<float *>(npD_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + P1_old = reinterpret_cast<float *>(npP1_old.get_data()); + P2_old = reinterpret_cast<float *>(npP2_old.get_data()); + R1 = reinterpret_cast<float *>(npR1.get_data()); + R2 = reinterpret_cast<float *>(npR2.get_data()); + + /* begin iterations */ + for (ll = 0; ll<iter; ll++) { + /* computing the gradient of the objective function */ + Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); + + /*Taking a step towards minus of the gradient*/ + Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); + + + + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); + + /* calculate norm */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j], 2); + re1 += pow(D[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 3) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + tk = tkp1; + + /* calculating the objective function value */ + if (ll == (iter - 1)) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + } + } + //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + result.append<np::ndarray>(npD); + result.append<np::ndarray>(out1); + result.append<int>(ll); + } + if (number_of_dims == 3) { + /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npD = np::zeros(shape, dtype); + np::ndarray npD_old = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npP3 = np::zeros(shape, dtype); + np::ndarray npP1_old = np::zeros(shape, dtype); + np::ndarray npP2_old = np::zeros(shape, dtype); + np::ndarray npP3_old = np::zeros(shape, dtype); + np::ndarray npR1 = np::zeros(shape, dtype); + np::ndarray npR2 = np::zeros(shape, dtype); + np::ndarray npR3 = np::zeros(shape, dtype); + + D = reinterpret_cast<float *>(npD.get_data()); + D_old = reinterpret_cast<float *>(npD_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + P3 = reinterpret_cast<float *>(npP3.get_data()); + P1_old = reinterpret_cast<float *>(npP1_old.get_data()); + P2_old = reinterpret_cast<float *>(npP2_old.get_data()); + P3_old = reinterpret_cast<float *>(npP3_old.get_data()); + R1 = reinterpret_cast<float *>(npR1.get_data()); + R2 = reinterpret_cast<float *>(npR2.get_data()); + R3 = reinterpret_cast<float *>(npR3.get_data()); + /* begin iterations */ + for (ll = 0; ll<iter; ll++) { + /* computing the gradient of the objective function */ + Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + /*Taking a step towards minus of the gradient*/ + Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + + /* projection step */ + Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); + + /* calculate norm - stopping rules*/ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j], 2); + re1 += pow(D[j], 2); + } + re = sqrt(re) / sqrt(re1); + /* stop if the norm residual is less than the tolerance EPS */ + if (re < epsil) count++; + if (count > 3) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + } + + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + copyIm(P3, P3_old, dimX, dimY, dimZ); + tk = tkp1; + + if (ll == (iter - 1)) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + } + + } + //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + result.append<np::ndarray>(npD); + result.append<np::ndarray>(out1); + result.append<int>(ll); + } + + return result; +} + +bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) { + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + //const int *dim_array; + float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old; + unsigned short *Map = NULL; + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + ///*Handling Matlab input data*/ + //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ + //tau = (float)mxGetScalar(prhs[2]); /* time-step */ + //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/ + //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */ + //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/ + + U0 = reinterpret_cast<float *>(input.get_data()); + lambda = (float)d_lambda; + tau = (float)d_tau; + // iter is passed as parameter + epsil = (float)d_epsil; + // switcher is passed as parameter + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1; + + if (number_of_dims == 2) { + /*2D case*/ + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npD1 = np::zeros(shape, dtype); + np::ndarray npD2 = np::zeros(shape, dtype); + + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + D1 = reinterpret_cast<float *>(npD1.get_data()); + D2 = reinterpret_cast<float *>(npD2.get_data()); + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + + for (ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der2D(U, D1, D2, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + //printf("HO iterations stopped at iteration: %i\n", ll); + + result.append<np::ndarray>(npU); + } + else if (number_of_dims == 3) { + /*3D case*/ + dimZ = dim_array[2]; + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + if (switcher != 0) { + Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + }*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npD1 = np::zeros(shape, dtype); + np::ndarray npD2 = np::zeros(shape, dtype); + np::ndarray npD3 = np::zeros(shape, dtype); + np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>()); + Map = reinterpret_cast<unsigned short *>(npMap.get_data()); + if (switcher != 0) { + //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + + Map = reinterpret_cast<unsigned short *>(npMap.get_data()); + } + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + D1 = reinterpret_cast<float *>(npD1.get_data()); + D2 = reinterpret_cast<float *>(npD2.get_data()); + D3 = reinterpret_cast<float *>(npD2.get_data()); + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + + + if (switcher == 1) { + /* apply restrictive smoothing */ + calcMap(U, Map, dimX, dimY, dimZ); + /*clear outliers */ + cleanMap(Map, dimX, dimY, dimZ); + } + for (ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der3D(U, D1, D2, D3, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + //printf("HO iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + if (switcher != 0) result.append<np::ndarray>(npMap); + + } + return result; +} + + +bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW, double d_h) { + // the result is in the following list + bp::list result; + + int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop; + //const int *dims; + float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda; + + numdims = input.get_nd(); + int dims[3]; + + dims[0] = input.shape(0); + dims[1] = input.shape(1); + if (numdims == 2) { + dims[2] = -1; + } + else { + dims[2] = input.shape(2); + } + /*numdims = mxGetNumberOfDimensions(prhs[0]); + dims = mxGetDimensions(prhs[0]);*/ + + N = dims[0]; + M = dims[1]; + Z = dims[2]; + + //if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); } + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + + //if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter"); + + ///*Handling inputs*/ + //A = (float *)mxGetData(prhs[0]); /* the image to regularize/filter */ + A = reinterpret_cast<float *>(input.get_data()); + //SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */ + //SimilW = (int)mxGetScalar(prhs[2]); /* the similarity window ratio */ + //h = (float)mxGetScalar(prhs[3]); /* parameter for the PB filtering function */ + //lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */ + + //if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0"); + //if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0"); + + lambda = (float)d_lambda; + h = (float)d_h; + SearchW = SearchW_real + 2 * SimilW; + + /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */ + + + padXY = SearchW + 2 * SimilW; /* padding sizes */ + newsizeX = N + 2 * (padXY); /* the X size of the padded array */ + newsizeY = M + 2 * (padXY); /* the Y size of the padded array */ + newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */ + int N_dims[] = { newsizeX, newsizeY, newsizeZ }; + /******************************2D case ****************************/ + if (numdims == 2) { + ///*Handling output*/ + //B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + ///*allocating memory for the padded arrays */ + //Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + //Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + ///**************************************************************************/ + + bp::tuple shape = bp::make_tuple(N, M); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npB = np::zeros(shape, dtype); + + shape = bp::make_tuple(newsizeX, newsizeY); + np::ndarray npAp = np::zeros(shape, dtype); + np::ndarray npBp = np::zeros(shape, dtype); + B = reinterpret_cast<float *>(npB.get_data()); + Ap = reinterpret_cast<float *>(npAp.get_data()); + Bp = reinterpret_cast<float *>(npBp.get_data()); + + /*Perform padding of image A to the size of [newsizeX * newsizeY] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + result.append<np::ndarray>(npB); + } + else + { + /******************************3D case ****************************/ + ///*Handling output*/ + //B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); + ///*allocating memory for the padded arrays */ + //Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + //Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + /**************************************************************************/ + bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]); + bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npB = np::zeros(shape, dtype); + np::ndarray npAp = np::zeros(shape_AB, dtype); + np::ndarray npBp = np::zeros(shape_AB, dtype); + B = reinterpret_cast<float *>(npB.get_data()); + Ap = reinterpret_cast<float *>(npAp.get_data()); + Bp = reinterpret_cast<float *>(npBp.get_data()); + /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + result.append<np::ndarray>(npB); + } /*end else ndims*/ + + return result; +} + +bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) { + // the result is in the following list + bp::list result; + int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll; + //const int *dim_array; + float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + /*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + + A = reinterpret_cast<float *>(input.get_data()); + + //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ + //alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/ + //alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/ + //iter = (int)mxGetScalar(prhs[4]); /*iterations number*/ + //if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations"); + lambda = (float)d_lambda; + alpha1 = (float)d_alpha1; + alpha0 = (float)d_alpha0; + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; + + if (number_of_dims == 2) { + /*2D case*/ + dimZ = 1; + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npQ1 = np::zeros(shape, dtype); + np::ndarray npQ2 = np::zeros(shape, dtype); + np::ndarray npQ3 = np::zeros(shape, dtype); + np::ndarray npV1 = np::zeros(shape, dtype); + np::ndarray npV1_old = np::zeros(shape, dtype); + np::ndarray npV2 = np::zeros(shape, dtype); + np::ndarray npV2_old = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + Q1 = reinterpret_cast<float *>(npQ1.get_data()); + Q2 = reinterpret_cast<float *>(npQ2.get_data()); + Q3 = reinterpret_cast<float *>(npQ3.get_data()); + V1 = reinterpret_cast<float *>(npV1.get_data()); + V1_old = reinterpret_cast<float *>(npV1_old.get_data()); + V2 = reinterpret_cast<float *>(npV2.get_data()); + V2_old = reinterpret_cast<float *>(npV2_old.get_data()); + //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + /*dual variables*/ + /*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + /*printf("%i \n", i);*/ + L2 = 12.0; /*Lipshitz constant*/ + tau = 1.0 / pow(L2, 0.5); + sigma = 1.0 / pow(L2, 0.5); + + /*Copy A to U*/ + copyIm(A, U, dimX, dimY, dimZ); + /* Here primal-dual iterations begin for 2D */ + for (ll = 0; ll < iter; ll++) { + + /* Calculate Dual Variable P */ + DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for P*/ + ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1); + + /* Calculate Dual Variable Q */ + DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for Q*/ + ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0); + + /*saving U into U_old*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*adjoint operation -> divergence and projection of P*/ + DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau); + + /*get updated solution U*/ + newU(U, U_old, dimX, dimY, dimZ); + + /*saving V into V_old*/ + copyIm(V1, V1_old, dimX, dimY, dimZ); + copyIm(V2, V2_old, dimX, dimY, dimZ); + + /* upd V*/ + UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau); + + /*get new V*/ + newU(V1, V1_old, dimX, dimY, dimZ); + newU(V2, V2_old, dimX, dimY, dimZ); + } /*end of iterations*/ + + result.append<np::ndarray>(npU); + } + + + + + return result; +} + +BOOST_PYTHON_MODULE(cpu_regularizers) +{ + np::initialize(); + + //To specify that this module is a package + bp::object package = bp::scope(); + package.attr("__path__") = "cpu_regularizers"; + + np::dtype dt1 = np::dtype::get_builtin<uint8_t>(); + np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); + + def("SplitBregman_TV", SplitBregman_TV); + def("FGP_TV", FGP_TV); + def("LLT_model", LLT_model); + def("PatchBased_Regul", PatchBased_Regul); + def("TGV_PD", TGV_PD); +} diff --git a/Wrappers/Python/setup-fista.py.in b/Wrappers/Python/setup-fista.py.in new file mode 100644 index 0000000..c5c9f4d --- /dev/null +++ b/Wrappers/Python/setup-fista.py.in @@ -0,0 +1,27 @@ +from distutils.core import setup +#from setuptools import setup, find_packages +import os + +cil_version=os.environ['CIL_VERSION'] +if cil_version == '': + print("Please set the environmental variable CIL_VERSION") + sys.exit(1) + +setup( + name="ccpi-fista", + version=cil_version, + packages=['ccpi','ccpi.reconstruction'], + install_requires=['numpy'], + + zip_safe = False, + + # metadata for upload to PyPI + author="Edoardo Pasca", + author_email="edo.paskino@gmail.com", + description='CCPi Core Imaging Library - FISTA Reconstructor module', + license="Apache v2.0", + keywords="tomography interative reconstruction", + url="http://www.ccpi.ac.uk", # project home page, if any + + # could also include long_description, download_url, classifiers, etc. +) diff --git a/Wrappers/Python/setup.py.in b/Wrappers/Python/setup.py.in new file mode 100644 index 0000000..12e8af1 --- /dev/null +++ b/Wrappers/Python/setup.py.in @@ -0,0 +1,69 @@ +#!/usr/bin/env python + +import setuptools +from distutils.core import setup +from distutils.extension import Extension +from Cython.Distutils import build_ext + +import os +import sys +import numpy +import platform + +cil_version=@CIL_VERSION@ + +library_include_path = "" +library_lib_path = "" +try: + library_include_path = os.environ['LIBRARY_INC'] + library_lib_path = os.environ['LIBRARY_LIB'] +except: + library_include_path = os.environ['PREFIX']+'/include' + pass + +extra_include_dirs = [numpy.get_include(), library_include_path] +extra_library_dirs = [os.path.join(library_include_path, "..", "lib")] +extra_compile_args = ['-fopenmp','-O2', '-funsigned-char', '-Wall', '-std=c++0x'] +extra_libraries = [] +extra_include_dirs += [os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_GPU") , + "@CMAKE_CURRENT_SOURCE_DIR@"] + +if platform.system() == 'Windows': + extra_compile_args[0:] = ['/DWIN32','/EHsc','/DBOOST_ALL_NO_LIB' , '/openmp' ] + + if sys.version_info.major == 3 : + extra_libraries += ['boost_python3-vc140-mt-1_64', 'boost_numpy3-vc140-mt-1_64'] + else: + extra_libraries += ['boost_python-vc90-mt-1_64', 'boost_numpy-vc90-mt-1_64'] +else: + if sys.version_info.major == 3: + extra_libraries += ['boost_python3', 'boost_numpy3','gomp'] + else: + extra_libraries += ['boost_python', 'boost_numpy','gomp'] + +setup( + name='ccpi', + description='CCPi Core Imaging Library - Image Regularizers', + version=cil_version, + cmdclass = {'build_ext': build_ext}, + ext_modules = [Extension("ccpi.imaging.cpu_regularizers", + sources=[os.path.join("@CMAKE_CURRENT_SOURCE_DIR@" , "fista_module.cpp" ), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "FGP_TV_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "SplitBregman_TV_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "LLT_model_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "PatchBased_Regul_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "TGV_PD_core.c"), + os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" , "regularizers_CPU", "utils.c") + ], + include_dirs=extra_include_dirs, + library_dirs=extra_library_dirs, + extra_compile_args=extra_compile_args, + libraries=extra_libraries ), + + ], + zip_safe = False, + packages = {'ccpi','ccpi.imaging'}, +) + + diff --git a/Wrappers/Python/test/astra_test.py b/Wrappers/Python/test/astra_test.py new file mode 100644 index 0000000..42c375a --- /dev/null +++ b/Wrappers/Python/test/astra_test.py @@ -0,0 +1,85 @@ +import astra +import numpy +import filefun + + +# read in the same data as the DemoRD2 +angles = filefun.dlmread("DemoRD2/angles.csv") +darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",") +flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",") + +if True: + Sino3D = numpy.load("DemoRD2/Sino3D.npy") +else: + sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",") + a = map (lambda x:x, numpy.shape(sino)) + a.append(20) + + Sino3D = numpy.zeros(tuple(a), dtype="float") + + for i in range(1,numpy.shape(Sino3D)[2]+1): + print("Read file DemoRD2/sino_%02d.csv" % i) + sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",") + Sino3D.T[i-1] = sino.T + +Weights3D = numpy.asarray(Sino3D, dtype="float") + +##angles_rad = angles*(pi/180); % conversion to radians +##size_det = size(data_raw3D,1); % detectors dim +##angSize = size(data_raw3D, 2); % angles dim +##slices_tot = size(data_raw3D, 3); % no of slices +##recon_size = 950; % reconstruction size + + +angles_rad = angles * numpy.pi /180. +size_det, angSize, slices_tot = numpy.shape(Sino3D) +size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)] +recon_size = 950 +Z_slices = 3; +det_row_count = Z_slices; + +#proj_geom = astra_create_proj_geom('parallel3d', 1, 1, +# det_row_count, size_det, angles_rad); + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX +proj_geom = astra.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + size_det, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices); + +sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float") + +#weights = ones(size(sino)); +weights = numpy.ones(numpy.shape(sino)) + +##################################################################### +## PowerMethod for Lipschitz constant + +N = vol_geom['GridColCount'] +x1 = numpy.random.rand(1,N,N) +#sqweight = sqrt(weights(:,:,1)); +sqweight = numpy.sqrt(weights.T[0]).T +##proj_geomT = proj_geom; +proj_geomT = proj_geom.copy() +##proj_geomT.DetectorRowCount = 1; +proj_geomT['DetectorRowCount'] = 1 +##vol_geomT = vol_geom; +vol_geomT = vol_geom.copy() +##vol_geomT.GridSliceCount = 1; +vol_geomT['GridSliceCount'] = 1 + +##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT); + +#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT); +sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT); + +##y = sqweight.*y; +##astra_mex_data3d('delete', sino_id); + + diff --git a/Wrappers/Python/test/create_phantom_projections.py b/Wrappers/Python/test/create_phantom_projections.py new file mode 100644 index 0000000..20a9278 --- /dev/null +++ b/Wrappers/Python/test/create_phantom_projections.py @@ -0,0 +1,49 @@ +from ccpi.reconstruction.AstraDevice import AstraDevice +from ccpi.reconstruction.DeviceModel import DeviceModel +import h5py +import numpy +import matplotlib.pyplot as plt + +nx = h5py.File('phant3D_256.h5', "r") +phantom = numpy.asarray(nx.get('/dataset1')) +pX,pY,pZ = numpy.shape(phantom) + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nxa = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nxa['/'].keys()] +print (entries) + +angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32") + + +device = AstraDevice( + DeviceModel.DeviceType.PARALLEL3D.value, + [ pX , pY , 1., 1., angles_rad], + [ pX, pY, pZ ] ) + + +proj = device.doForwardProject(phantom) +stack = [proj[:,i,:] for i in range(len(angles_rad))] +stack = numpy.asarray(stack) + + +fig = plt.figure() +a=fig.add_subplot(1,2,1) +a.set_title('proj') +imgplot = plt.imshow(proj[:,100,:]) +a=fig.add_subplot(1,2,2) +a.set_title('stack') +imgplot = plt.imshow(stack[100]) +plt.show() + +pf = h5py.File("phantom3D256_projections.h5" , "w") +pf.create_dataset("/projections", data=stack) +pf.create_dataset("/sinogram", data=proj) +pf.create_dataset("/angles", data=angles_rad) +pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ])) +pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ])) +pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.])) +pf.flush() +pf.close() diff --git a/Wrappers/Python/test/readhd5.py b/Wrappers/Python/test/readhd5.py new file mode 100644 index 0000000..eff6c43 --- /dev/null +++ b/Wrappers/Python/test/readhd5.py @@ -0,0 +1,42 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +""" + +import h5py +import numpy + +def getEntry(nx, location): + for item in nx[location].keys(): + print (item) + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D')) +Weights3D = numpy.asarray(nx.get('/Weights3D')) +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad')) +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] + +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +#from ccpi.viewer.CILViewer2D import CILViewer2D +#v = CILViewer2D() +#v.setInputAsNumpy(Weights3D) +#v.startRenderLoop() + +import matplotlib.pyplot as plt +fig = plt.figure() + +a=fig.add_subplot(1,1,1) +a.set_title('noise') +imgplot = plt.imshow(Weights3D[0].T) +plt.show() diff --git a/Wrappers/Python/test/simple_astra_test.py b/Wrappers/Python/test/simple_astra_test.py new file mode 100644 index 0000000..905eeea --- /dev/null +++ b/Wrappers/Python/test/simple_astra_test.py @@ -0,0 +1,25 @@ +import astra +import numpy + +detectorSpacingX = 1.0 +detectorSpacingY = 1.0 +det_row_count = 128 +det_col_count = 128 + +angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +image_size_x = 64 +image_size_y = 64 +image_size_z = 32 + +vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z) + +x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x) +sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom) diff --git a/Wrappers/Python/test/test_reconstructor-os_phantom.py b/Wrappers/Python/test/test_reconstructor-os_phantom.py new file mode 100644 index 0000000..01f1354 --- /dev/null +++ b/Wrappers/Python/test/test_reconstructor-os_phantom.py @@ -0,0 +1,480 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt +from ccpi.imaging.Regularizer import Regularizer +from ccpi.reconstruction.AstraDevice import AstraDevice +from ccpi.reconstruction.DeviceModel import DeviceModel + +#from ccpi.viewer.CILViewer2D import * + + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +projections = numpy.asarray(nx.get('/projections'), dtype="float32") +#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32") +angSize = numpy.size(angles_rad) +image_size_x, image_size_y, image_size_z = \ + numpy.asarray(nx.get('/reconstruction_volume'), dtype=int) +det_col_count, det_row_count = \ + numpy.asarray(nx.get('/camera/size')) +#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] +detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int) + +Z_slices = 20 +#det_row_count = image_size_y +# next definition is just for consistency of naming +#det_col_count = image_size_x + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +##image_size_x = recon_size +##image_size_y = recon_size +##image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant +astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, + [proj_geom['DetectorRowCount'] , + proj_geom['DetectorColCount'] , + proj_geom['DetectorSpacingX'] , + proj_geom['DetectorSpacingY'] , + proj_geom['ProjectionAngles'] + ], + [ + vol_geom['GridColCount'], + vol_geom['GridRowCount'], + vol_geom['GridSliceCount'] ] ) +## create the sinogram +Sino3D = numpy.transpose(projections, axes=[1,0,2]) + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + #weights=Weights3D, + device=astradevice) + +print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +fistaRecon.setParameter(number_of_iterations = 4) +#fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +fistaRecon.setParameter(ring_alpha = 21) +fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) +#fistaRecon.setParameter(ring_lambda_R_L1 = 0) +subsets = 8 +fistaRecon.setParameter(subsets=subsets) + + +#reg = Regularizer(Regularizer.Algorithm.FGP_TV) +#reg.setParameter(regularization_parameter=0.005, +# number_of_iterations=50) +reg = Regularizer(Regularizer.Algorithm.FGP_TV) +reg.setParameter(regularization_parameter=5e6, + tolerance_constant=0.0001, + number_of_iterations=50) + +#fistaRecon.setParameter(regularizer=reg) +#lc = fistaRecon.getParameter('Lipschitz_constant') +#reg.setParameter(regularization_parameter=5e6/lc) + +## Ordered subset +if True: + #subsets = 8 + fistaRecon.setParameter(subsets=subsets) + fistaRecon.createOrderedSubsets() +else: + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if True: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if True: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)), + dtype=numpy.float) * 0.001 + X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)), + dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ, weights , alpha_ring = fistaRecon.getParameter( + ['projector_geometry' , 'output_geometry', + 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha']) + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + + ## additional for + proj_geomSUB = proj_geom.copy() + fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram'])) + residual2 = fistaRecon.residual2 + sino_updt_FULL = fistaRecon.residual.copy() + r_x = fistaRecon.r.copy() + + results = [] + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): +## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required +## % one solution is to work with a full sinogram at times +## if ((i >= 3) && (lambdaR_L1 > 0)) +## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom); +## astra_mex_data3d('delete', sino_id2); +## end + # With OS approach it becomes trickier to correlate independent subsets, + # hence additional work is required one solution is to work with a full + # sinogram at times + + + #t_old = t + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) + ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4 + r_old = fistaRecon.r.copy() + + if (i > 1 and lambdaR_L1 > 0) : + for kkk in range(anglesNumb): + + residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt_FULL[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + #r_old = fistaRecon.r.copy() + vec = fistaRecon.residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:] # 1 or 0? + r_x = fistaRecon.r_x + # update ring variable + fistaRecon.r = (r_x - (1./L_const) * vec) + + # subset loop + counterInd = 1 + geometry_type = fistaRecon.getParameter('projector_geometry')['type'] + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + +## if geometry_type == 'parallel' or \ +## geometry_type == 'fanflat' or \ +## geometry_type == 'fanflat_vec' : +## +## for kkk in range(SlicesZ): +## sino_id, sinoT[kkk] = \ +## astra.creators.create_sino3d_gpu( +## X_t[kkk:kkk+1], proj_geomSUB, vol_geom) +## sino_updt_Sub[kkk] = sinoT.T.copy() +## +## else: +## sino_id, sino_updt_Sub = \ +## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom) +## +## astra.matlab.data3d('delete', sino_id) + + for ss in range(fistaRecon.getParameter('subsets')): + print ("Subset {0}".format(ss)) + X_old = X.copy() + t_old = t + print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t)) + + # the number of projections per subset + numProjSub = fistaRecon.getParameter('os_bins')[ss] + CurrSubIndices = fistaRecon.getParameter('os_indices')\ + [counterInd:counterInd+numProjSub] + shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram'))) + shape[1] = numProjSub + sino_updt_Sub = numpy.zeros(shape) + + #print ("Len CurrSubIndices {0}".format(numProjSub)) + mask = numpy.zeros(numpy.shape(angles), dtype=bool) + cc = 0 + for j in range(len(CurrSubIndices)): + mask[int(CurrSubIndices[j])] = True + + ## this is a reduced device + rdev = fistaRecon.getParameter('device_model')\ + .createReducedDevice(proj_par={'angles' : angles[mask]}, + vol_par={}) + proj_geomSUB['ProjectionAngles'] = angles[mask] + + + + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + + for kkk in range(SlicesZ): + sino_id, sinoT = astra.creators.create_sino3d_gpu ( + X_t[kkk:kkk+1] , proj_geomSUB, vol_geom) + sino_updt_Sub[kkk] = sinoT.T.copy() + astra.matlab.data3d('delete', sino_id) + else: + # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8) + sino_id, sino_updt_Sub = \ + astra.creators.create_sino3d_gpu (X_t, + proj_geomSUB, + vol_geom) + + astra.matlab.data3d('delete', sino_id) + + + + + ## RING REMOVAL + residual = fistaRecon.residual + + + if lambdaR_L1 > 0 : + print ("ring removal") + residualSub = numpy.zeros(shape) + ## for a chosen subset + ## for kkk = 1:numProjSub + ## indC = CurrSubIndeces(kkk); + ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x)); + ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram + ## end + for kkk in range(numProjSub): + #print ("ring removal indC ... {0}".format(kkk)) + indC = int(CurrSubIndices[kkk]) + residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \ + (sino_updt_Sub[:,kkk,:].squeeze() - \ + sino[:,indC,:].squeeze() - alpha_ring * r_x) + # filling the full sinogram + sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze() + + else: + #PWLS model + # I guess we need to use mask here instead + residualSub = weights[:,CurrSubIndices,:] * \ + ( sino_updt_Sub - \ + sino[:,CurrSubIndices,:].squeeze() ) + # it seems that in the original code the following like is not + # calculated in the case of ring removal + objective[i] = 0.5 * numpy.linalg.norm(residualSub) + + #backprojection + if geometry_type == 'parallel' or \ + geometry_type == 'fanflat' or \ + geometry_type == 'fanflat_vec' : + # if geometry is 2D use slice-by-slice projection-backprojection + # routine + x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32) + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residualSub[kkk:kkk+1], + proj_geomSUB, vol_geom) + astra.matlab.data3d('delete', x_id) + + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residualSub, proj_geomSUB, vol_geom) + + astra.matlab.data3d('delete', x_id) + + X = X_t - (1/L_const) * x_temp + + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("regularizer") + reg = fistaRecon.getParameter('regularizer') + + if reg is not None: + X = reg(input=X, + output_all=False) + + t = (1 + numpy.sqrt(1 + 4 * t **2))/2 + X_t = X + (((t_old -1)/t) * (X-X_old)) + counterInd = counterInd + numProjSub - 1 + if i == 1: + r_old = fistaRecon.r.copy() + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + # updating r + r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old) + + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + + results.append(X[10]) + numpy.save("X_out_os.npy", X) + +else: + + + + astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, + [proj_geom['DetectorRowCount'] , + proj_geom['DetectorColCount'] , + proj_geom['DetectorSpacingX'] , + proj_geom['DetectorSpacingY'] , + proj_geom['ProjectionAngles'] + ], + [ + vol_geom['GridColCount'], + vol_geom['GridRowCount'], + vol_geom['GridSliceCount'] ] ) + regul = Regularizer(Regularizer.Algorithm.FGP_TV) + regul.setParameter(regularization_parameter=5e6, + number_of_iterations=50, + tolerance_constant=1e-4, + TV_penalty=Regularizer.TotalVariationPenalty.isotropic) + + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D, + device=astradevice, + #regularizer = regul, + subsets=8) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 1) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + #fistaRecon.setParameter(subsets=8) + + #lc = fistaRecon.getParameter('Lipschitz_constant') + #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc) + + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("X.npy")) + + +# plot +fig = plt.figure() +cols = 3 + +## add the difference +rd = [] +for i in range(1,len(results)): + rd.append(results[i-1]) + rd.append(results[i]) + rd.append(results[i] - results[i-1]) + +rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \ + (len (rd)) +for i in range(len (results)): + a=fig.add_subplot(rows,cols,i+1) + imgplot = plt.imshow(results[i], vmin=0, vmax=1) + a.text(0.05, 0.95, "iteration {0}".format(i), + verticalalignment='top') +## i = i + 1 +## a=fig.add_subplot(rows,cols,i+1) +## imgplot = plt.imshow(results[i], vmin=0, vmax=10) +## a.text(0.05, 0.95, "iteration {0}".format(i), +## verticalalignment='top') + +## a=fig.add_subplot(rows,cols,i+2) +## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10) +## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1), +## verticalalignment='top') + + + +plt.show() diff --git a/Wrappers/Python/test/test_reconstructor.py b/Wrappers/Python/test/test_reconstructor.py new file mode 100644 index 0000000..40065e7 --- /dev/null +++ b/Wrappers/Python/test/test_reconstructor.py @@ -0,0 +1,359 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt +from ccpi.imaging.Regularizer import Regularizer +from ccpi.reconstruction.AstraDevice import AstraDevice +from ccpi.reconstruction.DeviceModel import DeviceModel + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +def createAstraDevice(projector_geometry, output_geometry): + '''TODO remove''' + + device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, + [projector_geometry['DetectorRowCount'] , + projector_geometry['DetectorColCount'] , + projector_geometry['DetectorSpacingX'] , + projector_geometry['DetectorSpacingY'] , + projector_geometry['ProjectionAngles'] + ], + [ + output_geometry['GridColCount'], + output_geometry['GridRowCount'], + output_geometry['GridSliceCount'] ] ) + return device + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") +Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +Z_slices = 20 +det_row_count = Z_slices +# next definition is just for consistency of naming +det_col_count = size_det + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +image_size_x = recon_size +image_size_y = recon_size +image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + +## First pass the arguments to the FISTAReconstructor and test the +## Lipschitz constant + +##fistaRecon = FISTAReconstructor(proj_geom, +## vol_geom, +## Sino3D , +## weights=Weights3D) +## +##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) +##fistaRecon.setParameter(number_of_iterations = 12) +##fistaRecon.setParameter(Lipschitz_constant = 767893952.0) +##fistaRecon.setParameter(ring_alpha = 21) +##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) +## +##reg = Regularizer(Regularizer.Algorithm.LLT_model) +##reg.setParameter(regularization_parameter=25, +## time_step=0.0003, +## tolerance_constant=0.0001, +## number_of_iterations=300) +##fistaRecon.setParameter(regularizer=reg) + +## Ordered subset +if False: + subsets = 16 + angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles'] + #binEdges = numpy.linspace(angles.min(), + # angles.max(), + # subsets + 1) + binsDiscr, binEdges = numpy.histogram(angles, bins=subsets) + # get rearranged subset indices + IndicesReorg = numpy.zeros((numpy.shape(angles))) + counterM = 0 + for ii in range(binsDiscr.max()): + counter = 0 + for jj in range(subsets): + curr_index = ii + jj + counter + #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM)) + if binsDiscr[jj] > ii: + if (counterM < numpy.size(IndicesReorg)): + IndicesReorg[counterM] = curr_index + counterM = counterM + 1 + + counter = counter + binsDiscr[jj] - 1 + + +if False: + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + print ("prepare for iteration") + fistaRecon.prepareForIteration() + + + + print("initializing ...") + if False: + # if X doesn't exist + #N = params.vol_geom.GridColCount + N = vol_geom['GridColCount'] + print ("N " + str(N)) + X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float) + else: + #X = fistaRecon.initialize() + X = numpy.load("X.npy") + + print (numpy.shape(X)) + X_t = X.copy() + print ("initialized") + proj_geom , vol_geom, sino , \ + SlicesZ = fistaRecon.getParameter(['projector_geometry' , + 'output_geometry', + 'input_sinogram', + 'SlicesZ']) + + #fistaRecon.setParameter(number_of_iterations = 3) + iterFISTA = fistaRecon.getParameter('number_of_iterations') + # errors vector (if the ground truth is given) + Resid_error = numpy.zeros((iterFISTA)); + # objective function values vector + objective = numpy.zeros((iterFISTA)); + + + t = 1 + + + print ("starting iterations") +## % Outer FISTA iterations loop + for i in range(fistaRecon.getParameter('number_of_iterations')): + X_old = X.copy() + t_old = t + r_old = fistaRecon.r.copy() + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' : + # if the geometry is parallel use slice-by-slice + # projection-backprojection routine + #sino_updt = zeros(size(sino),'single'); + proj_geomT = proj_geom.copy() + proj_geomT['DetectorRowCount'] = 1 + vol_geomT = vol_geom.copy() + vol_geomT['GridSliceCount'] = 1; + sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float) + for kkk in range(SlicesZ): + sino_id, sino_updt[kkk] = \ + astra.creators.create_sino3d_gpu( + X_t[kkk:kkk+1], proj_geom, vol_geom) + astra.matlab.data3d('delete', sino_id) + else: + # for divergent 3D geometry (watch the GPU memory overflow in + # ASTRA versions < 1.8) + #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom); + sino_id, sino_updt = astra.creators.create_sino3d_gpu( + X_t, proj_geom, vol_geom) + + ## RING REMOVAL + residual = fistaRecon.residual + lambdaR_L1 , alpha_ring , weights , L_const= \ + fistaRecon.getParameter(['ring_lambda_R_L1', + 'ring_alpha' , 'weights', + 'Lipschitz_constant']) + r_x = fistaRecon.r_x + SlicesZ, anglesNumb, Detectors = \ + numpy.shape(fistaRecon.getParameter('input_sinogram')) + if lambdaR_L1 > 0 : + print ("ring removal") + for kkk in range(anglesNumb): + + residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \ + ((sino_updt[:,kkk,:]).squeeze() - \ + (sino[:,kkk,:]).squeeze() -\ + (alpha_ring * r_x) + ) + vec = residual.sum(axis = 1) + #if SlicesZ > 1: + # vec = vec[:,1,:].squeeze() + fistaRecon.r = (r_x - (1./L_const) * vec).copy() + objective[i] = (0.5 * (residual ** 2).sum()) +## % the ring removal part (Group-Huber fidelity) +## for kkk = 1:anglesNumb +## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).* +## (squeeze(sino_updt(:,kkk,:)) - +## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x)); +## end +## vec = sum(residual,2); +## if (SlicesZ > 1) +## vec = squeeze(vec(:,1,:)); +## end +## r = r_x - (1./L_const).*vec; +## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output + + + + # Projection/Backprojection Routine + if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\ + fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec': + x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32) + print ("Projection/Backprojection Routine") + for kkk in range(SlicesZ): + + x_id, x_temp[kkk] = \ + astra.creators.create_backprojection3d_gpu( + residual[kkk:kkk+1], + proj_geomT, vol_geomT) + astra.matlab.data3d('delete', x_id) + else: + x_id, x_temp = \ + astra.creators.create_backprojection3d_gpu( + residual, proj_geom, vol_geom) + + X = X_t - (1/L_const) * x_temp + astra.matlab.data3d('delete', sino_id) + astra.matlab.data3d('delete', x_id) + + + ## REGULARIZATION + ## SKIPPING FOR NOW + ## Should be simpli + # regularizer = fistaRecon.getParameter('regularizer') + # for slices: + # out = regularizer(input=X) + print ("skipping regularizer") + + + ## FINAL + print ("final") + lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1') + if lambdaR_L1 > 0: + fistaRecon.r = numpy.max( + numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \ + numpy.sign(fistaRecon.r) + t = (1 + numpy.sqrt(1 + 4 * t**2))/2 + X_t = X + (((t_old -1)/t) * (X - X_old)) + + if lambdaR_L1 > 0: + fistaRecon.r_x = fistaRecon.r + \ + (((t_old-1)/t) * (fistaRecon.r - r_old)) + + if fistaRecon.getParameter('region_of_interest') is None: + string = 'Iteration Number {0} | Objective {1} \n' + print (string.format( i, objective[i])) + else: + ROI , X_ideal = fistaRecon.getParameter('region_of_interest', + 'ideal_image') + + Resid_error[i] = RMSE(X*ROI, X_ideal*ROI) + string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n' + print (string.format(i,Resid_error[i], objective[i])) + +## if (lambdaR_L1 > 0) +## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector +## end +## +## t = (1 + sqrt(1 + 4*t^2))/2; % updating t +## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X +## +## if (lambdaR_L1 > 0) +## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r +## end +## +## if (show == 1) +## figure(10); imshow(X(:,:,slice), [0 maxvalplot]); +## if (lambdaR_L1 > 0) +## figure(11); plot(r); title('Rings offset vector') +## end +## pause(0.01); +## end +## if (strcmp(X_ideal, 'none' ) == 0) +## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI)); +## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i)); +## else +## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i)); +## end +else: + + # create a device for forward/backprojection + #astradevice = createAstraDevice(proj_geom, vol_geom) + + astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value, + [proj_geom['DetectorRowCount'] , + proj_geom['DetectorColCount'] , + proj_geom['DetectorSpacingX'] , + proj_geom['DetectorSpacingY'] , + proj_geom['ProjectionAngles'] + ], + [ + vol_geom['GridColCount'], + vol_geom['GridRowCount'], + vol_geom['GridSliceCount'] ] ) + + regul = Regularizer(Regularizer.Algorithm.FGP_TV) + regul.setParameter(regularization_parameter=5e6, + number_of_iterations=50, + tolerance_constant=1e-4, + TV_penalty=Regularizer.TotalVariationPenalty.isotropic) + + fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + device = astradevice, + weights=Weights3D, + regularizer = regul + ) + + print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant'])) + fistaRecon.setParameter(number_of_iterations = 18) + fistaRecon.setParameter(Lipschitz_constant = 767893952.0) + fistaRecon.setParameter(ring_alpha = 21) + fistaRecon.setParameter(ring_lambda_R_L1 = 0.002) + + + + fistaRecon.prepareForIteration() + X = numpy.load("X.npy") + + + X = fistaRecon.iterate(X) + #numpy.save("X_out.npy", X) diff --git a/Wrappers/Python/test/test_regularizers.py b/Wrappers/Python/test/test_regularizers.py new file mode 100644 index 0000000..27e4ed3 --- /dev/null +++ b/Wrappers/Python/test/test_regularizers.py @@ -0,0 +1,412 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 4 11:10:05 2017 + +@author: ofn77899 +""" + +#from ccpi.viewer.CILViewer2D import Converter +#import vtk + +import matplotlib.pyplot as plt +import numpy as np +import os +from enum import Enum +import timeit +#from PIL import Image +#from Regularizer import Regularizer +from ccpi.imaging.Regularizer import Regularizer + +############################################################################### +#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 +#NRMSE a normalization of the root of the mean squared error +#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum +# intensity from the two images being compared, and respectively the same for +# minval. RMSE is given by the square root of MSE: +# sqrt[(sum(A - B) ** 2) / |A|], +# where |A| means the number of elements in A. By doing this, the maximum value +# given by RMSE is maxval. + +def nrmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) +############################################################################### + +############################################################################### +# +# 2D Regularizers +# +############################################################################### +#Example: +# figure; +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + + +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' + +#reader = vtk.vtkTIFFReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + + + + +#imgplot = plt.imshow(Im) +perc = 0.05 +u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +# map the u0 u0->u0>0 +f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = f(u0).astype('float32') + +## plot +fig = plt.figure() +#a=fig.add_subplot(3,3,1) +#a.set_title('Original') +#imgplot = plt.imshow(Im) + +a=fig.add_subplot(2,3,1) +a.set_title('noise') +imgplot = plt.imshow(u0,cmap="gray") + +reg_output = [] +############################################################################## +# Call regularizer + +####################### SplitBregman_TV ##################################### +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + +use_object = True +if use_object: + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + # or + # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + #TV_Penalty=Regularizer.TotalVariationPenalty.l1) + plotme = reg() [0] + pars = reg.pars + textstr = reg.printParametersToString() + + #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + # TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +else: + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + pars = out2[2] + reg_output.append(out2) + plotme = reg_output[-1][0] + textstr = out2[-1] + +a=fig.add_subplot(2,3,2) + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(plotme,cmap="gray") + +###################### FGP_TV ######################################### +# u = FGP_TV(single(u0), 0.05, 100, 1e-04); +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, + number_of_iterations=50) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,3) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + +###################### LLT_model ######################################### +# * u0 = Im + .03*randn(size(Im)); % adding noise +# [Den] = LLT_model(single(u0), 10, 0.1, 1); +#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +#input, regularization_parameter , time_step, number_of_iterations, +# tolerance_constant, restrictive_Z_smoothing=0 +out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,4) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +# ###################### PatchBased_Regul ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); + +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +# ###################### TGV_PD ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,6) + + +textstr = out2[-1] + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + + +plt.show() + +################################################################################ +## +## 3D Regularizers +## +################################################################################ +##Example: +## figure; +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" +# +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +##vtk returns 3D images, let's take just the one slice there is as 2D +#Im = Converter.vtk2numpy(reader.GetOutput()) +#Im = Im.astype('float32') +##imgplot = plt.imshow(Im) +#perc = 0.05 +#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +## map the u0 u0->u0>0 +#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +#u0 = f(u0).astype('float32') +#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), +# reader.GetOutput().GetOrigin()) +#converter.Update() +#writer = vtk.vtkMetaImageWriter() +#writer.SetInputData(converter.GetOutput()) +#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") +##writer.Write() +# +# +### plot +#fig3D = plt.figure() +##a=fig.add_subplot(3,3,1) +##a.set_title('Original') +##imgplot = plt.imshow(Im) +#sliceNo = 32 +# +#a=fig3D.add_subplot(2,3,1) +#a.set_title('noise') +#imgplot = plt.imshow(u0.T[sliceNo]) +# +#reg_output3d = [] +# +############################################################################### +## Call regularizer +# +######################## SplitBregman_TV ##################################### +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) +# +##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, +## #tolerance_constant=1e-4, +## TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +# +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### FGP_TV ######################################### +## u = FGP_TV(single(u0), 0.05, 100, 1e-04); +#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, +# number_of_iterations=200) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### LLT_model ######################################### +## * u0 = Im + .03*randn(size(Im)); % adding noise +## [Den] = LLT_model(single(u0), 10, 0.1, 1); +##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +##input, regularization_parameter , time_step, number_of_iterations, +## tolerance_constant, restrictive_Z_smoothing=0 +#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, +# time_step=0.0003, +# tolerance_constant=0.0001, +# number_of_iterations=300) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### PatchBased_Regul ######################################### +## Quick 2D denoising example in Matlab: +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +# +#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, +# searching_window_ratio=3, +# similarity_window_ratio=1, +# PB_filtering_parameter=0.08) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# + +###################### TGV_PD ######################################### +# Quick 2D denoising example in Matlab: +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, +# first_order_term=1.3, +# second_order_term=1, +# number_of_iterations=550) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) diff --git a/Wrappers/Python/test/test_regularizers_3d.py b/Wrappers/Python/test/test_regularizers_3d.py new file mode 100644 index 0000000..2d11a7e --- /dev/null +++ b/Wrappers/Python/test/test_regularizers_3d.py @@ -0,0 +1,425 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 4 11:10:05 2017 + +@author: ofn77899 +""" + +#from ccpi.viewer.CILViewer2D import Converter +#import vtk + +import matplotlib.pyplot as plt +import numpy as np +import os +from enum import Enum +import timeit +#from PIL import Image +#from Regularizer import Regularizer +from ccpi.imaging.Regularizer import Regularizer + +############################################################################### +#https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 +#NRMSE a normalization of the root of the mean squared error +#NRMSE is simply 1 - [RMSE / (maxval - minval)]. Where maxval is the maximum +# intensity from the two images being compared, and respectively the same for +# minval. RMSE is given by the square root of MSE: +# sqrt[(sum(A - B) ** 2) / |A|], +# where |A| means the number of elements in A. By doing this, the maximum value +# given by RMSE is maxval. + +def nrmse(im1, im2): + a, b = im1.shape + rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b)) + max_val = max(np.max(im1), np.max(im2)) + min_val = min(np.min(im1), np.min(im2)) + return 1 - (rmse / (max_val - min_val)) +############################################################################### + +############################################################################### +# +# 2D Regularizers +# +############################################################################### +#Example: +# figure; +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + + +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +filename = r"/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/data/lena_gray_512.tif" +#filename = r'/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' + +#reader = vtk.vtkTIFFReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + +# create a 3D image by stacking N of this images + + +#imgplot = plt.imshow(Im) +perc = 0.05 +u_n = Im + (perc* np.random.normal(size=np.shape(Im))) +y,z = np.shape(u_n) +u_n = np.reshape(u_n , (1,y,z)) + +u0 = u_n.copy() +for i in range (19): + u_n = Im + (perc* np.random.normal(size=np.shape(Im))) + u_n = np.reshape(u_n , (1,y,z)) + + u0 = np.vstack ( (u0, u_n) ) + +# map the u0 u0->u0>0 +f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +u0 = f(u0).astype('float32') + +print ("Passed image shape {0}".format(np.shape(u0))) + +## plot +fig = plt.figure() +#a=fig.add_subplot(3,3,1) +#a.set_title('Original') +#imgplot = plt.imshow(Im) +sliceno = 10 + +a=fig.add_subplot(2,3,1) +a.set_title('noise') +imgplot = plt.imshow(u0[sliceno],cmap="gray") + +reg_output = [] +############################################################################## +# Call regularizer + +####################### SplitBregman_TV ##################################### +# u = SplitBregman_TV(single(u0), 10, 30, 1e-04); + +use_object = True +if use_object: + reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) + reg.setParameter(input=u0) + reg.setParameter(regularization_parameter=10.) + # or + # reg.setParameter(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + #TV_Penalty=Regularizer.TotalVariationPenalty.l1) + plotme = reg() [0] + pars = reg.pars + textstr = reg.printParametersToString() + + #out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, + #tolerance_constant=1e-4, + # TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) + +else: + out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10. ) + pars = out2[2] + reg_output.append(out2) + plotme = reg_output[-1][0] + textstr = out2[-1] + +a=fig.add_subplot(2,3,2) + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(plotme[sliceno],cmap="gray") + +###################### FGP_TV ######################################### +# u = FGP_TV(single(u0), 0.05, 100, 1e-04); +out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.0005, + number_of_iterations=50) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,3) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + +###################### LLT_model ######################################### +# * u0 = Im + .03*randn(size(Im)); % adding noise +# [Den] = LLT_model(single(u0), 10, 0.1, 1); +#Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +#input, regularization_parameter , time_step, number_of_iterations, +# tolerance_constant, restrictive_Z_smoothing=0 +out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, + time_step=0.0003, + tolerance_constant=0.0001, + number_of_iterations=300) +pars = out2[-2] + +reg_output.append(out2) + +a=fig.add_subplot(2,3,4) + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +# ###################### PatchBased_Regul ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); + +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +# ###################### TGV_PD ######################################### +# # Quick 2D denoising example in Matlab: +# # Im = double(imread('lena_gray_256.tif'))/255; % loading image +# # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,6) + + +textstr = out2[-1] + + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0][sliceno],cmap="gray") + + +plt.show() + +################################################################################ +## +## 3D Regularizers +## +################################################################################ +##Example: +## figure; +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Reconstruction\python\test\reconstruction_example.mha" +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-Simpleflex\data\head.mha" +# +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() +##vtk returns 3D images, let's take just the one slice there is as 2D +#Im = Converter.vtk2numpy(reader.GetOutput()) +#Im = Im.astype('float32') +##imgplot = plt.imshow(Im) +#perc = 0.05 +#u0 = Im + (perc* np.random.normal(size=np.shape(Im))) +## map the u0 u0->u0>0 +#f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) +#u0 = f(u0).astype('float32') +#converter = Converter.numpy2vtkImporter(u0, reader.GetOutput().GetSpacing(), +# reader.GetOutput().GetOrigin()) +#converter.Update() +#writer = vtk.vtkMetaImageWriter() +#writer.SetInputData(converter.GetOutput()) +#writer.SetFileName(r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\noisy_head.mha") +##writer.Write() +# +# +### plot +#fig3D = plt.figure() +##a=fig.add_subplot(3,3,1) +##a.set_title('Original') +##imgplot = plt.imshow(Im) +#sliceNo = 32 +# +#a=fig3D.add_subplot(2,3,1) +#a.set_title('noise') +#imgplot = plt.imshow(u0.T[sliceNo]) +# +#reg_output3d = [] +# +############################################################################### +## Call regularizer +# +######################## SplitBregman_TV ##################################### +## u = SplitBregman_TV(single(u0), 10, 30, 1e-04); +# +##reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) +# +##out = reg(input=u0, regularization_parameter=10., #number_of_iterations=30, +## #tolerance_constant=1e-4, +## TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +#out2 = Regularizer.SplitBregman_TV(input=u0, regularization_parameter=10., number_of_iterations=30, +# tolerance_constant=1e-4, +# TV_Penalty=Regularizer.TotalVariationPenalty.l1) +# +# +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### FGP_TV ######################################### +## u = FGP_TV(single(u0), 0.05, 100, 1e-04); +#out2 = Regularizer.FGP_TV(input=u0, regularization_parameter=0.005, +# number_of_iterations=200) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### LLT_model ######################################### +## * u0 = Im + .03*randn(size(Im)); % adding noise +## [Den] = LLT_model(single(u0), 10, 0.1, 1); +##Den = LLT_model(single(u0), 25, 0.0003, 300, 0.0001, 0); +##input, regularization_parameter , time_step, number_of_iterations, +## tolerance_constant, restrictive_Z_smoothing=0 +#out2 = Regularizer.LLT_model(input=u0, regularization_parameter=25, +# time_step=0.0003, +# tolerance_constant=0.0001, +# number_of_iterations=300) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# +####################### PatchBased_Regul ######################################### +## Quick 2D denoising example in Matlab: +## Im = double(imread('lena_gray_256.tif'))/255; % loading image +## u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +## ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); +# +#out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, +# searching_window_ratio=3, +# similarity_window_ratio=1, +# PB_filtering_parameter=0.08) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) +# + +###################### TGV_PD ######################################### +# Quick 2D denoising example in Matlab: +# Im = double(imread('lena_gray_256.tif'))/255; % loading image +# u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise +# u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); + + +#out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, +# first_order_term=1.3, +# second_order_term=1, +# number_of_iterations=550) +#pars = out2[-2] +#reg_output3d.append(out2) +# +#a=fig3D.add_subplot(2,3,2) +# +# +#textstr = out2[-1] +# +# +## these are matplotlib.patch.Patch properties +#props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +## place a text box in upper left in axes coords +#a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, +# verticalalignment='top', bbox=props) +#imgplot = plt.imshow(reg_output3d[-1][0].T[sliceNo]) diff --git a/Wrappers/Python/test/view_result.py b/Wrappers/Python/test/view_result.py new file mode 100644 index 0000000..f89a90c --- /dev/null +++ b/Wrappers/Python/test/view_result.py @@ -0,0 +1,12 @@ +import numpy +from ccpi.viewer.CILViewer2D import * +import sys +#reader = vtk.vtkMetaImageReader() +#reader.SetFileName("X_out_os_s.mhd") +#reader.Update() + +X = numpy.load(sys.argv[1]) + +v = CILViewer2D() +v.setInputAsNumpy(X) +v.startRenderLoop() |