diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2018-05-02 15:59:06 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-05-02 15:59:06 +0100 |
commit | 885c2879cec3aef13b66604e899fd454aa53c65a (patch) | |
tree | a511d59b8ed9fff1faeddba83ad00b0f070806e4 | |
parent | 307d0459f6f22ff07e9d0b8d4090a27ba91cddd0 (diff) | |
parent | 6e285c109938a43b5f8a84b7a48afaeb6b058c90 (diff) | |
download | regularization-885c2879cec3aef13b66604e899fd454aa53c65a.tar.gz regularization-885c2879cec3aef13b66604e899fd454aa53c65a.tar.bz2 regularization-885c2879cec3aef13b66604e899fd454aa53c65a.tar.xz regularization-885c2879cec3aef13b66604e899fd454aa53c65a.zip |
Merge pull request #53 from vais-ral/inpaint_Heat
Inpainting methods added to the toolkit
24 files changed, 1271 insertions, 95 deletions
diff --git a/Core/CMakeLists.txt b/Core/CMakeLists.txt index 61986dc..86d69b2 100644 --- a/Core/CMakeLists.txt +++ b/Core/CMakeLists.txt @@ -24,15 +24,6 @@ if (PYTHONINTERP_FOUND) endif() endif() -#find_package(Boost REQUIRED -# COMPONENTS ${BOOST_PYTHON} ${BOOST_NUMPY}) -# -#if (Boost_FOUND) -# message("Boost version " ${Boost_VERSION}) -# message("Boost include dir " ${Boost_INCLUDE_DIRS}) -# message("Boost library dir " ${Boost_LIBRARY_DIRS}) -# message("Boost libraries " ${Boost_LIBRARIES}) -#endif() find_package(OpenMP) if (OPENMP_FOUND) @@ -93,12 +84,15 @@ add_library(cilreg SHARED ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/FGP_dTV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/TNV_core.c ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/utils.c + ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/Diffusion_Inpaint_core.c + ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/NonlocalMarching_Inpaint_core.c ) target_link_libraries(cilreg ${EXTRA_LIBRARIES} ) include_directories(cilreg PUBLIC ${LIBRARY_INC}/include ${CMAKE_CURRENT_SOURCE_DIR} - ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ ) + ${CMAKE_CURRENT_SOURCE_DIR}/regularisers_CPU/ + ${CMAKE_CURRENT_SOURCE_DIR}/inpainters_CPU/ ) #GENERATE_EXPORT_HEADER( cilreg # BASE_NAME cilreg # EXPORT_MACRO_NAME CCPiCore_EXPORTS @@ -153,8 +147,3 @@ if (CUDA_FOUND) else() message("CUDA NOT FOUND") endif() - - -#add_executable(regulariser_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regulariser.cpp) - -#target_link_libraries (regulariser_test LINK_PUBLIC regularisers_lib) diff --git a/Core/inpainters_CPU/Diffusion_Inpaint_core.c b/Core/inpainters_CPU/Diffusion_Inpaint_core.c new file mode 100644 index 0000000..56e0421 --- /dev/null +++ b/Core/inpainters_CPU/Diffusion_Inpaint_core.c @@ -0,0 +1,322 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "Diffusion_Inpaint_core.h" +#include "utils.h" + +/*sign function*/ +int signNDF_inc(float x) { + return (x > 0) - (x < 0); +} + +/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) + * The minimisation is performed using explicit scheme. + * + * Input Parameters: + * 1. Image/volume to inpaint + * 2. Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) + * 3. lambda - regularization parameter + * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion + * 5. Number of iterations, for explicit scheme >= 150 is recommended + * 6. tau - time-marching step for explicit scheme + * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight + * + * Output: + * [1] Inpainted image/volume + * + * This function is based on the paper by + * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. + * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. + */ + +float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ) +{ + int i,pointsone; + float sigmaPar2; + sigmaPar2 = sigmaPar/sqrt(2.0f); + + /* copy into output */ + copyIm(Input, Output, dimX, dimY, dimZ); + + pointsone = 0; + for (i=0; i<dimY*dimX*dimZ; i++) if (Mask[i] == 1) pointsone++; + + if (pointsone == 0) printf("%s \n", "Nothing to inpaint, zero mask!"); + else { + + if (dimZ == 1) { + /* running 2D diffusion iterations */ + for(i=0; i < iterationsNumb; i++) { + if (sigmaPar == 0.0f) LinearDiff_Inp_2D(Input, Mask, Output, lambdaPar, tau, dimX, dimY); /* linear diffusion (heat equation) */ + else NonLinearDiff_Inp_2D(Input, Mask, Output, lambdaPar, sigmaPar2, tau, penaltytype, dimX, dimY); /* nonlinear diffusion */ + } + } + else { + /* running 3D diffusion iterations */ + for(i=0; i < iterationsNumb; i++) { + if (sigmaPar == 0.0f) LinearDiff_Inp_3D(Input, Mask, Output, lambdaPar, tau, dimX, dimY, dimZ); + else NonLinearDiff_Inp_3D(Input, Mask, Output, lambdaPar, sigmaPar2, tau, penaltytype, dimX, dimY, dimZ); + } + } + } + return *Output; +} +/********************************************************************/ +/***************************2D Functions*****************************/ +/********************************************************************/ +/* linear diffusion (heat equation) */ +float LinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, int dimX, int dimY) +{ + int i,j,i1,i2,j1,j2,index; + float e,w,n,s,e1,w1,n1,s1; + +#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1) + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + index = j*dimX+i; + + if (Mask[index] > 0) { + /*inpainting process*/ + e = Output[j*dimX+i1]; + w = Output[j*dimX+i2]; + n = Output[j1*dimX+i]; + s = Output[j2*dimX+i]; + + e1 = e - Output[index]; + w1 = w - Output[index]; + n1 = n - Output[index]; + s1 = s - Output[index]; + + Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); + } + }} + return *Output; +} + +/* nonlinear diffusion */ +float NonLinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int dimX, int dimY) +{ + int i,j,i1,i2,j1,j2,index; + float e,w,n,s,e1,w1,n1,s1; + +#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1) + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + index = j*dimX+i; + + if (Mask[index] > 0) { + /*inpainting process*/ + e = Output[j*dimX+i1]; + w = Output[j*dimX+i2]; + n = Output[j1*dimX+i]; + s = Output[j2*dimX+i]; + + e1 = e - Output[index]; + w1 = w - Output[index]; + n1 = n - Output[index]; + s1 = s - Output[index]; + + if (penaltytype == 1){ + /* Huber penalty */ + if (fabs(e1) > sigmaPar) e1 = signNDF_inc(e1); + else e1 = e1/sigmaPar; + + if (fabs(w1) > sigmaPar) w1 = signNDF_inc(w1); + else w1 = w1/sigmaPar; + + if (fabs(n1) > sigmaPar) n1 = signNDF_inc(n1); + else n1 = n1/sigmaPar; + + if (fabs(s1) > sigmaPar) s1 = signNDF_inc(s1); + else s1 = s1/sigmaPar; + } + else if (penaltytype == 2) { + /* Perona-Malik */ + e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); + w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); + n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); + s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); + } + else if (penaltytype == 3) { + /* Tukey Biweight */ + if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2); + else e1 = 0.0f; + if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2); + else w1 = 0.0f; + if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2); + else n1 = 0.0f; + if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2); + else s1 = 0.0f; + } + else { + printf("%s \n", "No penalty function selected! Use 1,2 or 3."); + break; + } + Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1) - (Output[index] - Input[index])); + } + }} + return *Output; +} +/********************************************************************/ +/***************************3D Functions*****************************/ +/********************************************************************/ +/* linear diffusion (heat equation) */ +float LinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, int dimX, int dimY, int dimZ) +{ + int i,j,k,i1,i2,j1,j2,k1,k2,index; + float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; + +#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d) +for(k=0; k<dimZ; k++) { + k1 = k+1; if (k1 == dimZ) k1 = k-1; + k2 = k-1; if (k2 < 0) k2 = k+1; + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + index = (dimX*dimY)*k + j*dimX+i; + + if (Mask[index] > 0) { + /*inpainting process*/ + + e = Output[(dimX*dimY)*k + j*dimX+i1]; + w = Output[(dimX*dimY)*k + j*dimX+i2]; + n = Output[(dimX*dimY)*k + j1*dimX+i]; + s = Output[(dimX*dimY)*k + j2*dimX+i]; + u = Output[(dimX*dimY)*k1 + j*dimX+i]; + d = Output[(dimX*dimY)*k2 + j*dimX+i]; + + e1 = e - Output[index]; + w1 = w - Output[index]; + n1 = n - Output[index]; + s1 = s - Output[index]; + u1 = u - Output[index]; + d1 = d - Output[index]; + + Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); + } + }}} + return *Output; +} + +float NonLinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int dimX, int dimY, int dimZ) +{ + int i,j,k,i1,i2,j1,j2,k1,k2,index; + float e,w,n,s,u,d,e1,w1,n1,s1,u1,d1; + +#pragma omp parallel for shared(Input,Mask) private(index,i,j,i1,i2,j1,j2,e,w,n,s,e1,w1,n1,s1,k,k1,k2,u1,d1,u,d) +for(k=0; k<dimZ; k++) { + k1 = k+1; if (k1 == dimZ) k1 = k-1; + k2 = k-1; if (k2 < 0) k2 = k+1; + for(i=0; i<dimX; i++) { + /* symmetric boundary conditions (Neuman) */ + i1 = i+1; if (i1 == dimX) i1 = i-1; + i2 = i-1; if (i2 < 0) i2 = i+1; + for(j=0; j<dimY; j++) { + /* symmetric boundary conditions (Neuman) */ + j1 = j+1; if (j1 == dimY) j1 = j-1; + j2 = j-1; if (j2 < 0) j2 = j+1; + index = (dimX*dimY)*k + j*dimX+i; + + if (Mask[index] > 0) { + /*inpainting process*/ + e = Output[(dimX*dimY)*k + j*dimX+i1]; + w = Output[(dimX*dimY)*k + j*dimX+i2]; + n = Output[(dimX*dimY)*k + j1*dimX+i]; + s = Output[(dimX*dimY)*k + j2*dimX+i]; + u = Output[(dimX*dimY)*k1 + j*dimX+i]; + d = Output[(dimX*dimY)*k2 + j*dimX+i]; + + e1 = e - Output[index]; + w1 = w - Output[index]; + n1 = n - Output[index]; + s1 = s - Output[index]; + u1 = u - Output[index]; + d1 = d - Output[index]; + + if (penaltytype == 1){ + /* Huber penalty */ + if (fabs(e1) > sigmaPar) e1 = signNDF_inc(e1); + else e1 = e1/sigmaPar; + + if (fabs(w1) > sigmaPar) w1 = signNDF_inc(w1); + else w1 = w1/sigmaPar; + + if (fabs(n1) > sigmaPar) n1 = signNDF_inc(n1); + else n1 = n1/sigmaPar; + + if (fabs(s1) > sigmaPar) s1 = signNDF_inc(s1); + else s1 = s1/sigmaPar; + + if (fabs(u1) > sigmaPar) u1 = signNDF_inc(u1); + else u1 = u1/sigmaPar; + + if (fabs(d1) > sigmaPar) d1 = signNDF_inc(d1); + else d1 = d1/sigmaPar; + } + else if (penaltytype == 2) { + /* Perona-Malik */ + e1 = (e1)/(1.0f + powf((e1/sigmaPar),2)); + w1 = (w1)/(1.0f + powf((w1/sigmaPar),2)); + n1 = (n1)/(1.0f + powf((n1/sigmaPar),2)); + s1 = (s1)/(1.0f + powf((s1/sigmaPar),2)); + u1 = (u1)/(1.0f + powf((u1/sigmaPar),2)); + d1 = (d1)/(1.0f + powf((d1/sigmaPar),2)); + } + else if (penaltytype == 3) { + /* Tukey Biweight */ + if (fabs(e1) <= sigmaPar) e1 = e1*powf((1.0f - powf((e1/sigmaPar),2)), 2); + else e1 = 0.0f; + if (fabs(w1) <= sigmaPar) w1 = w1*powf((1.0f - powf((w1/sigmaPar),2)), 2); + else w1 = 0.0f; + if (fabs(n1) <= sigmaPar) n1 = n1*powf((1.0f - powf((n1/sigmaPar),2)), 2); + else n1 = 0.0f; + if (fabs(s1) <= sigmaPar) s1 = s1*powf((1.0f - powf((s1/sigmaPar),2)), 2); + else s1 = 0.0f; + if (fabs(u1) <= sigmaPar) u1 = u1*powf((1.0f - powf((u1/sigmaPar),2)), 2); + else u1 = 0.0f; + if (fabs(d1) <= sigmaPar) d1 = d1*powf((1.0f - powf((d1/sigmaPar),2)), 2); + else d1 = 0.0f; + } + else { + printf("%s \n", "No penalty function selected! Use 1,2 or 3."); + break; + } + + Output[index] += tau*(lambdaPar*(e1 + w1 + n1 + s1 + u1 + d1) - (Output[index] - Input[index])); + } + }}} + return *Output; +} diff --git a/Core/inpainters_CPU/Diffusion_Inpaint_core.h b/Core/inpainters_CPU/Diffusion_Inpaint_core.h new file mode 100644 index 0000000..0fc2608 --- /dev/null +++ b/Core/inpainters_CPU/Diffusion_Inpaint_core.h @@ -0,0 +1,60 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" +#include "CCPiDefines.h" + + +/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) + * The minimisation is performed using explicit scheme. + * + * Input Parameters: + * 1. Image/volume to inpaint + * 2. Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) + * 3. lambda - regularization parameter + * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion + * 5. Number of iterations, for explicit scheme >= 150 is recommended + * 6. tau - time-marching step for explicit scheme + * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight + * + * Output: + * [1] Inpainted image/volume + * + * This function is based on the paper by + * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. + * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. + */ + + +#ifdef __cplusplus +extern "C" { +#endif +CCPI_EXPORT float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); +CCPI_EXPORT float LinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, int dimX, int dimY); +CCPI_EXPORT float NonLinearDiff_Inp_2D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int dimX, int dimY); +CCPI_EXPORT float LinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float tau, int dimX, int dimY, int dimZ); +CCPI_EXPORT float NonLinearDiff_Inp_3D(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, float tau, int penaltytype, int dimX, int dimY, int dimZ); +#ifdef __cplusplus +} +#endif diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c new file mode 100644 index 0000000..66be15c --- /dev/null +++ b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c @@ -0,0 +1,188 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "NonlocalMarching_Inpaint_core.h" +#include "utils.h" + + +/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) + * The method is heuristic but computationally efficent (especially for larger images). + * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms + * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data + * + * Input: + * 1. 2D image or sinogram with horizontal or inclined regions of missing data + * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) + * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice + * + * Output: + * 1. Inpainted image or a sinogram + * 2. updated mask + * + * Reference: TBA + */ + +float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ) +{ + int i, j, i_m, j_m, counter, iter, iterations_number, W_fullsize, switchmask, switchcurr, counterElements; + float *Gauss_weights; + + /* copying M to M_upd */ + copyIm_unchar(M, M_upd, dimX, dimY, 1); + + /* Copying the image */ + copyIm(Input, Output, dimX, dimY, 1); + + /* Find how many inpainting iterations (equal to the number of ones) required based on a mask */ + if (iterationsNumb == 0) { + iterations_number = 0; + for (i=0; i<dimY*dimX; i++) { + if (M[i] == 1) iterations_number++; + } + if ((int)(iterations_number/dimY) > dimX) iterations_number = dimX; + } + else iterations_number = iterationsNumb; + + if (iterations_number == 0) printf("%s \n", "Nothing to inpaint, zero mask!"); + else { + + printf("%s %i \n", "Max iteration number equals to:", iterations_number); + + /* Inpainting iterations run here*/ + int W_halfsize = 1; + for(iter=0; iter < iterations_number; iter++) { + + //if (mod (iter, 2) == 0) {W_halfsize += 1;} + // printf("%i \n", W_halfsize); + + /* pre-calculation of Gaussian distance weights */ + W_fullsize = (int)(2*W_halfsize + 1); /*full size of similarity window */ + Gauss_weights = (float*)calloc(W_fullsize*W_fullsize,sizeof(float )); + counter = 0; + for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) { + for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) { + Gauss_weights[counter] = exp(-(pow((i_m), 2) + pow((j_m), 2))/(2*W_halfsize*W_halfsize)); + counter++; + } + } + + if (trigger == 0) { + /*Matlab*/ +#pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr) + for(j=0; j<dimY; j++) { + switchmask = 0; + for(i=0; i<dimX; i++) { + switchcurr = 0; + if ((M_upd[j*dimX + i] == 1) && (switchmask == 0)) { + /* perform inpainting of the current pixel */ + inpaint_func(Output, M_upd, Gauss_weights, i, j, dimX, dimY, W_halfsize, W_fullsize); + /* add value to the mask*/ + M_upd[j*dimX + i] = 0; + switchmask = 1; switchcurr = 1; + } + if ((M_upd[j*dimX + i] == 0) && (switchmask == 1) && (switchcurr == 0)) { + /* perform inpainting of the previous (i-1) pixel */ + inpaint_func(Output, M_upd, Gauss_weights, i-1, j, dimX, dimY, W_halfsize, W_fullsize); + /* add value to the mask*/ + M_upd[(j)*dimX + i-1] = 0; + switchmask = 0; + } + } + } + } + else { + /*Python*/ + /* find a point in the mask to inpaint */ +#pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr) + for(i=0; i<dimX; i++) { + switchmask = 0; + for(j=0; j<dimY; j++) { + switchcurr = 0; + if ((M_upd[j*dimX + i] == 1) && (switchmask == 0)) { + /* perform inpainting of the current pixel */ + inpaint_func(Output, M_upd, Gauss_weights, i, j, dimX, dimY, W_halfsize, W_fullsize); + /* add value to the mask*/ + M_upd[j*dimX + i] = 0; + switchmask = 1; switchcurr = 1; + } + if ((M_upd[j*dimX + i] == 0) && (switchmask == 1) && (switchcurr == 0)) { + /* perform inpainting of the previous (j-1) pixel */ + inpaint_func(Output, M_upd, Gauss_weights, i, j-1, dimX, dimY, W_halfsize, W_fullsize); + /* add value to the mask*/ + M_upd[(j-1)*dimX + i] = 0; + switchmask = 0; + } + } + } + } + free(Gauss_weights); + + /* check if possible to terminate iterations earlier */ + counterElements = 0; + for(i=0; i<dimX*dimY; i++) if (M_upd[i] == 0) counterElements++; + + if (counterElements == dimX*dimY) { + printf("%s \n", "Padding completed!"); + break; + } + W_halfsize += SW_increment; + } + printf("%s %i \n", "Iterations stopped at:", iter); + } + return *Output; +} + +float inpaint_func(float *U, unsigned char *M_upd, float *Gauss_weights, int i, int j, int dimX, int dimY, int W_halfsize, int W_fullsize) +{ + int i1, j1, i_m, j_m, counter; + float sum_val, sumweight; + + /*method 1: inpainting based on Euclidian weights */ + sumweight = 0.0f; + counter = 0; sum_val = 0.0f; + for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) { + i1 = i+i_m; + for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) { + j1 = j+j_m; + if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { + if (M_upd[j1*dimX + i1] == 0) { + sumweight += Gauss_weights[counter]; + } + } + counter++; + } + } + counter = 0; sum_val = 0.0f; + for(i_m=-W_halfsize; i_m<=W_halfsize; i_m++) { + i1 = i+i_m; + for(j_m=-W_halfsize; j_m<=W_halfsize; j_m++) { + j1 = j+j_m; + if (((i1 >= 0) && (i1 < dimX)) && ((j1 >= 0) && (j1 < dimY))) { + if ((M_upd[j1*dimX + i1] == 0) && (sumweight != 0.0f)) { + /* we have data so add it with Euc weight */ + sum_val += (Gauss_weights[counter]/sumweight)*U[j1*dimX + i1]; + } + } + counter++; + } + } + U[j*dimX + i] = sum_val; + return *U; +} + diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h new file mode 100644 index 0000000..0f99ed4 --- /dev/null +++ b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.h @@ -0,0 +1,54 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#include <math.h> +#include <stdlib.h> +#include <memory.h> +#include <stdio.h> +#include "omp.h" +#include "utils.h" +#include "CCPiDefines.h" + + +/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) + * The method is heuristic but computationally efficent (especially for larger images). + * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms + * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data + * + * Inputs: + * 1. 2D image or sinogram with horizontal or inclined regions of missing data + * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) + * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice + + * Output: + * 1. Inpainted image or a sinogram + * 2. updated mask + * + * Reference: TBA + */ + + +#ifdef __cplusplus +extern "C" { +#endif +CCPI_EXPORT float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ); +CCPI_EXPORT float inpaint_func(float *U, unsigned char *M_upd, float *Gauss_weights, int i, int j, int dimX, int dimY, int W_halfsize, int W_fullsize); +#ifdef __cplusplus +} +#endif diff --git a/Core/regularisers_CPU/TNV_core.c b/Core/regularisers_CPU/TNV_core.c index 8e61869..c51d6cd 100755 --- a/Core/regularisers_CPU/TNV_core.c +++ b/Core/regularisers_CPU/TNV_core.c @@ -251,18 +251,19 @@ float gradient(float *u_upd, float *gradx_upd, float *grady_upd, int dimX, int d // Compute discrete gradient using forward differences #pragma omp parallel for shared(gradx_upd,grady_upd,u_upd) private(i, j, k, l) for(k = 0; k < dimZ; k++) { - for(j = 0; j < dimX; j++) { - l = j * dimY; - for(i = 0; i < dimY; i++) { + for(j = 0; j < dimY; j++) { + l = j * dimX; + for(i = 0; i < dimX; i++) { // Derivatives in the x-direction - if(i != dimY-1) + if(i != dimX-1) gradx_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+1+l] - u_upd[(dimX*dimY)*k + i+l]; else gradx_upd[(dimX*dimY)*k + i+l] = 0.0f; // Derivatives in the y-direction - if(j != dimX-1) - grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+dimY+l] -u_upd[(dimX*dimY)*k + i+l]; + if(j != dimY-1) + //grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+dimY+l] -u_upd[(dimX*dimY)*k + i+l]; + grady_upd[(dimX*dimY)*k + i+l] = u_upd[(dimX*dimY)*k + i+(j+1)*dimX] -u_upd[(dimX*dimY)*k + i+l]; else grady_upd[(dimX*dimY)*k + i+l] = 0.0f; }}} @@ -301,8 +302,8 @@ float proxF(float *gx, float *gy, float *vx, float *vy, float sigma, int p, int for(k = 0; k < dimZ; k++) { - valuex = vx[(dimX*dimY)*k + (i)*dimY + (j)]; - valuey = vy[(dimX*dimY)*k + (i)*dimY + (j)]; + valuex = vx[(dimX*dimY)*k + (j)*dimX + (i)]; + valuey = vy[(dimX*dimY)*k + (j)*dimX + (i)]; M1 += (valuex * valuex); M2 += (valuex * valuey); @@ -412,9 +413,9 @@ float proxF(float *gx, float *gy, float *vx, float *vy, float sigma, int p, int for(k = 0; k < dimZ; k++) { - gx[(dimX*dimY)*k + (i)*dimY + (j)] = vx[(dimX*dimY)*k + (i)*dimY + (j)] * t1 + vy[(dimX*dimY)*k + (i)*dimY + (j)] * t2; - gy[(dimX*dimY)*k + (i)*dimY + (j)] = vx[(dimX*dimY)*k + (i)*dimY + (j)] * t2 + vy[(dimX*dimY)*k + (i)*dimY + (j)] * t3; - } + gx[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t1 + vy[(dimX*dimY)*k + j*dimX + i] * t2; + gy[(dimX*dimY)*k + j*dimX + i] = vx[(dimX*dimY)*k + j*dimX + i] * t2 + vy[(dimX*dimY)*k + j*dimX + i] * t3; + } // Delete allocated memory free(proj); @@ -428,20 +429,21 @@ float divergence(float *qx_upd, float *qy_upd, float *div_upd, int dimX, int dim int i, j, k, l; #pragma omp parallel for shared(qx_upd,qy_upd,div_upd) private(i, j, k, l) for(k = 0; k < dimZ; k++) { - for(j = 0; j < dimX; j++) { - l = j * dimY; - for(i = 0; i < dimY; i++) { - if(i != dimY-1) + for(j = 0; j < dimY; j++) { + l = j * dimX; + for(i = 0; i < dimX; i++) { + if(i != dimX-1) { // ux[k][i+l] = u[k][i+1+l] - u[k][i+l] div_upd[(dimX*dimY)*k + i+1+l] -= qx_upd[(dimX*dimY)*k + i+l]; div_upd[(dimX*dimY)*k + i+l] += qx_upd[(dimX*dimY)*k + i+l]; } - if(j != dimX-1) + if(j != dimY-1) { // uy[k][i+l] = u[k][i+width+l] - u[k][i+l] - div_upd[(dimX*dimY)*k + i+dimY+l] -= qy_upd[(dimX*dimY)*k + i+l]; + //div_upd[(dimX*dimY)*k + i+dimY+l] -= qy_upd[(dimX*dimY)*k + i+l]; + div_upd[(dimX*dimY)*k + i+(j+1)*dimX] -= qy_upd[(dimX*dimY)*k + i+l]; div_upd[(dimX*dimY)*k + i+l] += qy_upd[(dimX*dimY)*k + i+l]; } } diff --git a/Core/regularisers_CPU/utils.c b/Core/regularisers_CPU/utils.c index ca5c59a..3eebdaa 100644 --- a/Core/regularisers_CPU/utils.c +++ b/Core/regularisers_CPU/utils.c @@ -20,7 +20,7 @@ limitations under the License. #include "utils.h" #include <math.h> -/* Copy Image */ +/* Copy Image (float) */ float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) { int j; @@ -29,12 +29,33 @@ float copyIm(float *A, float *U, int dimX, int dimY, int dimZ) return *U; } -/*static inline int8_t SIGN(int val) { - if (val < 0) return -1; - if (val==0) return 0; - return 1; +/* Copy Image */ +unsigned char copyIm_unchar(unsigned char *A, unsigned char *U, int dimX, int dimY, int dimZ) +{ + int j; +#pragma omp parallel for shared(A, U) private(j) + for (j = 0; j<dimX*dimY*dimZ; j++) U[j] = A[j]; + return *U; +} + +/*Roll image symmetrically from top to bottom*/ +float copyIm_roll(float *A, float *U, int dimX, int dimY, int roll_value, int switcher) +{ + int i, j; +#pragma omp parallel for shared(U, A) private(i,j) + for (i=0; i<dimX; i++) { + for (j=0; j<dimY; j++) { + if (switcher == 0) { + if (j < (dimY - roll_value)) U[j*dimX + i] = A[(j+roll_value)*dimX + i]; + else U[j*dimX + i] = A[(j - (dimY - roll_value))*dimX + i]; + } + else { + if (j < roll_value) U[j*dimX + i] = A[(j+(dimY - roll_value))*dimX + i]; + else U[j*dimX + i] = A[(j - roll_value)*dimX + i]; + } + }} + return *U; } -*/ /* function that calculates TV energy * type - 1: 2*lambda*min||\nabla u|| + ||u -u0||^2 diff --git a/Core/regularisers_CPU/utils.h b/Core/regularisers_CPU/utils.h index 866bc01..7ad83ab 100644 --- a/Core/regularisers_CPU/utils.h +++ b/Core/regularisers_CPU/utils.h @@ -17,17 +17,16 @@ See the License for the specific language governing permissions and limitations under the License. */ -//#include <matrix.h> -//#include <math.h> #include <stdlib.h> #include <memory.h> #include "CCPiDefines.h" -//#include <stdio.h> #include "omp.h" #ifdef __cplusplus extern "C" { #endif CCPI_EXPORT float copyIm(float *A, float *U, int dimX, int dimY, int dimZ); +CCPI_EXPORT unsigned char copyIm_unchar(unsigned char *A, unsigned char *U, int dimX, int dimY, int dimZ); +CCPI_EXPORT float copyIm_roll(float *A, float *U, int dimX, int dimY, int roll_value, int switcher); CCPI_EXPORT float TV_energy2D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY); CCPI_EXPORT float TV_energy3D(float *U, float *U0, float *E_val, float lambda, int type, int dimX, int dimY, int dimZ); #ifdef __cplusplus @@ -16,17 +16,22 @@ the toolkit can be used independently to solve image denoising problems. The cor * C compilers * nvcc (CUDA SDK) compilers -## Package modules (regularisers): +## Package modules: -### Single-channel +### Single-channel (denoising): 1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*) 2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*) -3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *4*) -4. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *6*) +3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*) +4. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *7*) + +### Multi-channel (denoising): +1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,4,2*) +2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *6*) + +### Inpainting: +1. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU** (Ref. *7*) +2. Iterative nonlocal vertical marching method **2D CPU** -### Multi-channel -1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,2*) -2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *5*) ## Installation: @@ -56,11 +61,13 @@ the toolkit can be used independently to solve image denoising problems. The cor *3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.* -*4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.* +*4. Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems* + +*5. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.* -*5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.* +*6. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.* -*6. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.* +*7. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.* ### License: [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index 5a54d18..c087433 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -1,8 +1,9 @@ % Volume (3D) denoising demo using CCPi-RGL -clear -close all -addpath('../mex_compile/installed'); -addpath('../../../data/'); +clear; close all +Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); +Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); +addpath(Path1); +addpath(Path2); N = 512; slices = 30; diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 151a604..d93f477 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -1,8 +1,9 @@ % Image (2D) denoising demo using CCPi-RGL -clear -close all -addpath('../mex_compile/installed'); -addpath('../../../data/'); +clear; close all +Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); +Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); +addpath(Path1); +addpath(Path2); Im = double(imread('lena_gray_512.tif'))/255; % loading image u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; diff --git a/Wrappers/Matlab/demos/demoMatlab_inpaint.m b/Wrappers/Matlab/demos/demoMatlab_inpaint.m new file mode 100644 index 0000000..66f9c15 --- /dev/null +++ b/Wrappers/Matlab/demos/demoMatlab_inpaint.m @@ -0,0 +1,35 @@ +% Image (2D) inpainting demo using CCPi-RGL +clear; close all +Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); +Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); +addpath(Path1); +addpath(Path2); + +load('SinoInpaint.mat'); +Sinogram = Sinogram./max(Sinogram(:)); +Sino_mask = Sinogram.*(1-single(Mask)); +figure; +subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram'); +subplot(1,2,2); imshow(Mask, [0 1]); title('Mask'); +%% +fprintf('Inpaint using Linear-Diffusion model (CPU) \n'); +iter_diff = 5000; % number of diffusion iterations +lambda_regDiff = 6000; % regularisation for the diffusivity +sigmaPar = 0.0; % edge-preserving parameter +tau_param = 0.000075; % time-marching constant +tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)'); +%% +fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 1500; % number of diffusion iterations +lambda_regDiff = 80; % regularisation for the diffusivity +sigmaPar = 0.00009; % edge-preserving parameter +tau_param = 0.000008; % time-marching constant +tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)'); +%% +fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n'); +Increment = 1; % linear increment for the searching window +tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc; +figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)'); +%%
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m index ee0d99e..b232f33 100644 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m @@ -2,9 +2,11 @@ pathcopyFrom = sprintf(['..' filesep '..' filesep '..' filesep 'Core' filesep 'regularisers_CPU'], 1i); pathcopyFrom1 = sprintf(['..' filesep '..' filesep '..' filesep 'Core' filesep 'CCPiDefines.h'], 1i); +pathcopyFrom2 = sprintf(['..' filesep '..' filesep '..' filesep 'Core' filesep 'inpainters_CPU'], 1i); copyfile(pathcopyFrom, 'regularisers_CPU'); copyfile(pathcopyFrom1, 'regularisers_CPU'); +copyfile(pathcopyFrom2, 'regularisers_CPU'); cd regularisers_CPU @@ -32,9 +34,17 @@ movefile('NonlDiff.mex*',Pathmove); mex TV_energy.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile('TV_energy.mex*',Pathmove); +%############Inpainters##############% +mex NonlDiff_Inp.c Diffusion_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile('NonlDiff_Inp.mex*',Pathmove); + +mex NonlocalMarching_Inpaint.c NonlocalMarching_Inpaint_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile('NonlocalMarching_Inpaint.mex*',Pathmove); + delete SB_TV_core* ROF_TV_core* FGP_TV_core* FGP_dTV_core* TNV_core* utils* Diffusion_core* CCPiDefines.h -fprintf('%s \n', 'All successfully compiled!'); +delete Diffusion_Inpaint_core* NonlocalMarching_Inpaint_core* +fprintf('%s \n', 'Regularisers successfully compiled!'); -pathA = sprintf(['..' filesep '..' filesep], 1i); -cd(pathA); +pathA2 = sprintf(['..' filesep '..' filesep], 1i); +cd(pathA2); cd demos diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c new file mode 100644 index 0000000..eaab4a7 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlDiff_Inp.c @@ -0,0 +1,101 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "Diffusion_Inpaint_core.h" + +/* C-OMP implementation of linear and nonlinear diffusion [1,2] for inpainting task (2D/3D case) + * The minimisation is performed using explicit scheme. + * + * Input Parameters: + * 1. Image/volume to inpaint + * 2. Inpainting Mask of the same size as (1) in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) + * 3. lambda - regularization parameter + * 4. Edge-preserving parameter (sigma), when sigma equals to zero nonlinear diffusion -> linear diffusion + * 5. Number of iterations, for explicit scheme >= 150 is recommended + * 6. tau - time-marching step for explicit scheme + * 7. Penalty type: 1 - Huber, 2 - Perona-Malik, 3 - Tukey Biweight + * + * Output: + * [1] Inpainted image/volume + * + * This function is based on the paper by + * [1] Perona, P. and Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), pp.629-639. + * [2] Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432. + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter_numb, dimX, dimY, dimZ, penaltytype, i, inpaint_elements; + const int *dim_array; + const int *dim_array2; + float *Input, *Output=NULL, lambda, tau, sigma; + unsigned char *Mask; + + dim_array = mxGetDimensions(prhs[0]); + dim_array2 = mxGetDimensions(prhs[1]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + Input = (float *) mxGetData(prhs[0]); + Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */ + lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ + sigma = (float) mxGetScalar(prhs[3]); /* Edge-preserving parameter */ + iter_numb = 300; /* iterations number */ + tau = 0.025; /* marching step parameter */ + penaltytype = 1; /* Huber penalty by default */ + + if ((nrhs < 4) || (nrhs > 7)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Regularisation parameter, Edge-preserving parameter, iterations number, time-marching constant, penalty type - Huber, PM or Tukey"); + if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7)) iter_numb = (int) mxGetScalar(prhs[4]); /* iterations number */ + if ((nrhs == 6) || (nrhs == 7)) tau = (float) mxGetScalar(prhs[5]); /* marching step parameter */ + if (nrhs == 7) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[6]); /* Huber, PM or Tukey 'Huber' is the default */ + if ((strcmp(penalty_type, "Huber") != 0) && (strcmp(penalty_type, "PM") != 0) && (strcmp(penalty_type, "Tukey") != 0)) mexErrMsgTxt("Choose penalty: 'Huber', 'PM' or 'Tukey',"); + if (strcmp(penalty_type, "Huber") == 0) penaltytype = 1; /* enable 'Huber' penalty */ + if (strcmp(penalty_type, "PM") == 0) penaltytype = 2; /* enable Perona-Malik penalty */ + if (strcmp(penalty_type, "Tukey") == 0) penaltytype = 3; /* enable Tikey Biweight penalty */ + mxFree(penalty_type); + } + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");} + + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + /* output arrays*/ + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /* output image/volume */ + if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) { + if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + } + + inpaint_elements = 0; + for (i=0; i<dimY*dimX*dimZ; i++) if (Mask[i] == 1) inpaint_elements++; + if (inpaint_elements == 0) mexErrMsgTxt("The mask is full of zeros, nothing to inpaint"); + Diffusion_Inpaint_CPU_main(Input, Mask, Output, lambda, sigma, iter_numb, tau, penaltytype, dimX, dimY, dimZ); +}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c new file mode 100644 index 0000000..36cf05c --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/NonlocalMarching_Inpaint.c @@ -0,0 +1,82 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "NonlocalMarching_Inpaint_core.h" + +/* C-OMP implementation of Nonlocal Vertical Marching inpainting method (2D case) + * The method is heuristic but computationally efficent (especially for larger images). + * It developed specifically to smoothly inpaint horizontal or inclined missing data regions in sinograms + * The method WILL not work satisfactory if you have lengthy vertical stripes of missing data + * + * Input: + * 1. 2D image or sinogram [REQUIRED] + * 2. Mask of the same size as A in 'unsigned char' format (ones mark the region to inpaint, zeros belong to the data) [REQUIRED] + * 3. Linear increment to increase searching window size in iterations, values from 1-3 is a good choice [OPTIONAL, default 1] + * 4. Number of iterations [OPTIONAL, default - calculate based on the mask] + * + * Output: + * 1. Inpainted sinogram + * 2. updated mask + * Reference: TBA + */ + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, dimX, dimY, dimZ, iterations, SW_increment; + const int *dim_array; + const int *dim_array2; + float *Input, *Output=NULL; + unsigned char *Mask, *Mask_upd=NULL; + + dim_array = mxGetDimensions(prhs[0]); + dim_array2 = mxGetDimensions(prhs[1]); + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + + /*Handling Matlab input data*/ + Input = (float *) mxGetData(prhs[0]); + Mask = (unsigned char *) mxGetData(prhs[1]); /* MASK */ + SW_increment = 1; + iterations = 0; + + if ((nrhs < 2) || (nrhs > 4)) mexErrMsgTxt("At least 4 parameters is required, all parameters are: Image(2D/3D), Mask(2D/3D), Linear increment, Iterations number"); + if ((nrhs == 3) || (nrhs == 4)) SW_increment = (int) mxGetScalar(prhs[2]); /* linear increment */ + if ((nrhs == 4)) iterations = (int) mxGetScalar(prhs[3]); /* iterations number */ + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if (mxGetClassID(prhs[1]) != mxUINT8_CLASS) {mexErrMsgTxt("The mask must be in uint8 precision");} + + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + /* output arrays*/ + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /* output image/volume */ + if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("Input image and the provided mask are of different dimensions!"); + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Mask_upd = (unsigned char*)mxGetPr(plhs[1] = mxCreateNumericArray(2, dim_array, mxUINT8_CLASS, mxREAL)); + } + if (number_of_dims == 3) { + mexErrMsgTxt("Currently 2D supported only"); + } + NonlocalMarching_Inpaint_main(Input, Mask, Output, Mask_upd, SW_increment, iterations, 0, dimX, dimY, dimZ); +}
\ No newline at end of file diff --git a/Wrappers/Python/CMakeLists.txt b/Wrappers/Python/CMakeLists.txt index fb00706..7833b54 100644 --- a/Wrappers/Python/CMakeLists.txt +++ b/Wrappers/Python/CMakeLists.txt @@ -81,8 +81,3 @@ else() endif() configure_file("setup-regularisers.py.in" "setup-regularisers.py") - - -#add_executable(regulariser_test ${CMAKE_CURRENT_SOURCE_DIR}/test/test_regulariser.cpp) - -#target_link_libraries (regulariser_test LINK_PUBLIC regularisers_lib) diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py index eec8c4d..a07b39a 100644 --- a/Wrappers/Python/ccpi/filters/regularisers.py +++ b/Wrappers/Python/ccpi/filters/regularisers.py @@ -2,7 +2,7 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU +from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, NDF_INPAINT_CPU, NVM_INPAINT_CPU from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU def ROF_TV(inputData, regularisation_parameter, iterations, @@ -110,3 +110,10 @@ def NDF(inputData, regularisation_parameter, edge_parameter, iterations, else: raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) +def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations, + time_marching_parameter, penalty_type): + return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, + edge_parameter, iterations, time_marching_parameter, penalty_type) + +def NVM_INP(inputData, maskData, SW_increment, iterations): + return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations) diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py new file mode 100644 index 0000000..3b4191b --- /dev/null +++ b/Wrappers/Python/demos/demo_cpu_inpainters.py @@ -0,0 +1,192 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Demonstration of CPU inpainters +@authors: Daniil Kazantsev, Edoardo Pasca +""" + +import matplotlib.pyplot as plt +import numpy as np +import os +import timeit +from scipy import io +from ccpi.filters.regularisers import NDF_INP, NVM_INP +from qualitymetrics import rmse +############################################################################### +def printParametersToString(pars): + txt = r'' + for key, value in pars.items(): + if key== 'algorithm' : + txt += "{0} = {1}".format(key, value.__name__) + elif key == 'input': + txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'maskData': + txt += "{0} = {1}".format(key, np.shape(value)) + else: + txt += "{0} = {1}".format(key, value) + txt += '\n' + return txt +############################################################################### + +# read sinogram and the mask +filename = os.path.join(".." , ".." , ".." , "data" ,"SinoInpaint.mat") +sino = io.loadmat(filename) +sino_full = sino.get('Sinogram') +Mask = sino.get('Mask') +[angles_dim,detectors_dim] = sino_full.shape +sino_full = sino_full/np.max(sino_full) +#apply mask to sinogram +sino_cut = sino_full*(1-Mask) +#sino_cut_new = np.zeros((angles_dim,detectors_dim),'float32') +#sino_cut_new = sino_cut.copy(order='c') +#sino_cut_new[:] = sino_cut[:] +sino_cut_new = np.ascontiguousarray(sino_cut, dtype=np.float32); +#mask = np.zeros((angles_dim,detectors_dim),'uint8') +#mask =Mask.copy(order='c') +#mask[:] = Mask[:] +mask = np.ascontiguousarray(Mask, dtype=np.uint8); + +plt.figure(1) +plt.subplot(121) +plt.imshow(sino_cut_new,vmin=0.0, vmax=1) +plt.title('Missing Data sinogram') +plt.subplot(122) +plt.imshow(mask) +plt.title('Mask') +plt.show() +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("___Inpainting using linear diffusion (2D)__") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(2) +plt.suptitle('Performance of linear inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut_new,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'regularisation_parameter':5000,\ + 'edge_parameter':0,\ + 'number_of_iterations' :5000 ,\ + 'time_marching_parameter':0.000075,\ + 'penalty_type':0 + } + +start_time = timeit.default_timer() +ndf_inp_linear = NDF_INP(pars['input'], + pars['maskData'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(sino_full, ndf_inp_linear) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_inp_linear, cmap="gray") +plt.title('{}'.format('Linear diffusion inpainting results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_Inpainting using nonlinear diffusion (2D)_") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut_new,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'regularisation_parameter':80,\ + 'edge_parameter':0.00009,\ + 'number_of_iterations' :1500 ,\ + 'time_marching_parameter':0.000008,\ + 'penalty_type':1 + } + +start_time = timeit.default_timer() +ndf_inp_nonlinear = NDF_INP(pars['input'], + pars['maskData'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(sino_full, ndf_inp_nonlinear) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray") +plt.title('{}'.format('Nonlinear diffusion inpainting results')) +#%% +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("Inpainting using nonlocal vertical marching") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(4) +plt.suptitle('Performance of NVM inpainting using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Missing data sinogram') +imgplot = plt.imshow(sino_cut,cmap="gray") + +# set parameters +pars = {'algorithm' : NVM_INP, \ + 'input' : sino_cut_new,\ + 'maskData' : mask,\ + 'SW_increment': 1,\ + 'number_of_iterations' : 150 + } + +start_time = timeit.default_timer() +(nvm_inp, mask_upd) = NVM_INP(pars['input'], + pars['maskData'], + pars['SW_increment'], + pars['number_of_iterations']) + +rms = rmse(sino_full, nvm_inp) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(nvm_inp, cmap="gray") +plt.title('{}'.format('Nonlocal Vertical Marching inpainting results')) +#%% diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 3567f91..986e3e9 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -44,13 +44,31 @@ u0 = Im + np.random.normal(loc = 0 , u_ref = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) - +(N,M) = np.shape(u0) # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') u_ref = u_ref.astype('float32') - +# change dims to check that modules work with non-squared images +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" +#%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________ROF-TV (2D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -288,7 +306,6 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") plt.title('{}'.format('CPU results')) - print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("__________Total nuclear Variation__________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -301,9 +318,8 @@ a.set_title('Noisy Image') imgplot = plt.imshow(u0,cmap="gray") channelsNo = 5 -N = 512 -noisyVol = np.zeros((channelsNo,N,N),dtype='float32') -idealVol = np.zeros((channelsNo,N,N),dtype='float32') +noisyVol = np.zeros((channelsNo,N,M),dtype='float32') +idealVol = np.zeros((channelsNo,N,M),dtype='float32') for i in range (channelsNo): noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) @@ -344,25 +360,19 @@ plt.title('{}'.format('CPU results')) # Uncomment to test 3D regularisation performance #%% """ -N = 512 slices = 20 - -filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") -Im = plt.imread(filename) -Im = np.asarray(Im, dtype='float32') - -Im = Im/255 perc = 0.05 -noisyVol = np.zeros((slices,N,N),dtype='float32') -noisyRef = np.zeros((slices,N,N),dtype='float32') -idealVol = np.zeros((slices,N,N),dtype='float32') +noisyVol = np.zeros((slices,N,M),dtype='float32') +noisyRef = np.zeros((slices,N,M),dtype='float32') +idealVol = np.zeros((slices,N,M),dtype='float32') for i in range (slices): noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) idealVol[i,:,:] = Im + print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -403,6 +413,7 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(rof_cpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the CPU using ROF-TV')) + print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index b873700..f3ed50c 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -44,10 +44,28 @@ u0 = Im + np.random.normal(loc = 0 , u_ref = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) +(N,M) = np.shape(u0) # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') u_ref = u_ref.astype('float32') +""" +M = M-100 +u_ref2 = np.zeros([N,M],dtype='float32') +u_ref2[:,0:M] = u_ref[:,0:M] +u_ref = u_ref2 +del u_ref2 + +u02 = np.zeros([N,M],dtype='float32') +u02[:,0:M] = u0[:,0:M] +u0 = u02 +del u02 + +Im2 = np.zeros([N,M],dtype='float32') +Im2[:,0:M] = Im[:,0:M] +Im = Im2 +del Im2 +""" print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("____________ROF-TV regulariser_____________") diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in index b900efe..f55c6fe 100644 --- a/Wrappers/Python/setup-regularisers.py.in +++ b/Wrappers/Python/setup-regularisers.py.in @@ -34,6 +34,7 @@ extra_libraries = ['cilreg'] extra_include_dirs += [os.path.join(".." , ".." , "Core"), os.path.join(".." , ".." , "Core", "regularisers_CPU"), + os.path.join(".." , ".." , "Core", "inpainters_CPU"), os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) , os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) , os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_SB" ) , @@ -52,7 +53,7 @@ setup( description='CCPi Core Imaging Library - Image regularisers', version=cil_version, cmdclass = {'build_ext': build_ext}, - ext_modules = [Extension("ccpi.filters.cpu_regularisers_cython", + ext_modules = [Extension("ccpi.filters.cpu_regularisers", sources=[os.path.join("." , "src", "cpu_regularisers.pyx" ) ], include_dirs=extra_include_dirs, library_dirs=extra_library_dirs, diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 7ed8fa1..c934f1d 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -25,6 +25,8 @@ cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPa cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); +cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); +cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int trigger, int dimX, int dimY, int dimZ); #****************************************************************# #********************** Total-variation ROF *********************# #****************************************************************# @@ -46,7 +48,7 @@ def TV_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, np.zeros([dims[0],dims[1]], dtype='float32') # Run ROF iterations for 2D data - TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[0], dims[1], 1) + TV_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, marching_step_parameter, dims[1], dims[0], 1) return outputData @@ -99,7 +101,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, methodTV, nonneg, printM, - dims[0], dims[1], 1) + dims[1],dims[0],1) return outputData @@ -158,7 +160,7 @@ def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, tolerance_param, methodTV, printM, - dims[0], dims[1], 1) + dims[1],dims[0],1) return outputData @@ -219,7 +221,7 @@ def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, methodTV, nonneg, printM, - dims[0], dims[1], 1) + dims[1], dims[0], 1) return outputData @@ -298,7 +300,7 @@ def NDF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, np.zeros([dims[0],dims[1]], dtype='float32') # Run Nonlinear Diffusion iterations for 2D data - Diffusion_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[0], dims[1], 1) + Diffusion_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1) return outputData def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, @@ -319,3 +321,81 @@ def NDF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, Diffusion_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0]) return outputData + +#*********************Inpainting WITH****************************# +#***************Nonlinear (Isotropic) Diffusion******************# +#****************************************************************# +def NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type): + if inputData.ndim == 2: + return NDF_INP_2D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type) + elif inputData.ndim == 3: + return NDF_INP_3D(inputData, maskData, regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type) + +def NDF_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, + float regularisation_parameter, + float edge_parameter, + int iterationsNumb, + float time_marching_parameter, + int penalty_type): + + cdef long dims[2] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + + + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ + np.zeros([dims[0],dims[1]], dtype='float32') + + # Run Inpaiting by Diffusion iterations for 2D data + Diffusion_Inpaint_CPU_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1) + return outputData + +def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + np.ndarray[np.uint8_t, ndim=3, mode="c"] maskData, + float regularisation_parameter, + float edge_parameter, + int iterationsNumb, + float time_marching_parameter, + int penalty_type): + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0],dims[1],dims[2]], dtype='float32') + + # Run Inpaiting by Diffusion iterations for 3D data + Diffusion_Inpaint_CPU_main(&inputData[0,0,0], &maskData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0]) + + return outputData +#*********************Inpainting WITH****************************# +#***************Nonlocal Vertical Marching method****************# +#****************************************************************# +def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterationsNumb): + if inputData.ndim == 2: + return NVM_INP_2D(inputData, maskData, SW_increment, iterationsNumb) + elif inputData.ndim == 3: + return + +def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData, + int SW_increment, + int iterationsNumb): + cdef long dims[2] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ + np.zeros([dims[0],dims[1]], dtype='float32') + + cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData_upd = \ + np.zeros([dims[0],dims[1]], dtype='uint8') + + # Run Inpaiting by Nonlocal vertical marching method for 2D data + NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], + &maskData_upd[0,0], + SW_increment, iterationsNumb, 1, dims[1], dims[0], 1) + + return (outputData, maskData_upd) diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx index b0775054..7eab5d5 100644 --- a/Wrappers/Python/src/gpu_regularisers.pyx +++ b/Wrappers/Python/src/gpu_regularisers.pyx @@ -157,7 +157,7 @@ def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, regularisation_parameter, iterations , time_marching_parameter, - dims[0], dims[1], 1); + dims[1], dims[0], 1); return outputData @@ -210,7 +210,7 @@ def FGPTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, methodTV, nonneg, printM, - dims[0], dims[1], 1); + dims[1], dims[0], 1); return outputData @@ -266,7 +266,7 @@ def SBTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, tolerance_param, methodTV, printM, - dims[0], dims[1], 1); + dims[1], dims[0], 1); return outputData @@ -325,7 +325,7 @@ def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, methodTV, nonneg, printM, - dims[0], dims[1], 1); + dims[1], dims[0], 1); return outputData @@ -381,7 +381,7 @@ def NDF_GPU_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, # Run Nonlinear Diffusion iterations for 2D data # Running CUDA code here - NonlDiff_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[0], dims[1], 1) + NonlDiff_GPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[1], dims[0], 1) return outputData def NDF_GPU_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, diff --git a/data/SinoInpaint.mat b/data/SinoInpaint.mat Binary files differnew file mode 100644 index 0000000..d748fb4 --- /dev/null +++ b/data/SinoInpaint.mat |