summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2019-02-22 12:41:28 +0000
committerGitHub <noreply@github.com>2019-02-22 12:41:28 +0000
commitc237d292999c93df09ca3679876d225896dd0ff9 (patch)
treecf24793f6d269efbeeb10e96093b619be2a0f13d
parent4505a79103e98adb33bfb4c10391319e56ae7031 (diff)
downloadregularization-c237d292999c93df09ca3679876d225896dd0ff9.tar.gz
regularization-c237d292999c93df09ca3679876d225896dd0ff9.tar.bz2
regularization-c237d292999c93df09ca3679876d225896dd0ff9.tar.xz
regularization-c237d292999c93df09ca3679876d225896dd0ff9.zip
updated readme
-rw-r--r--Readme.md9
1 files changed, 4 insertions, 5 deletions
diff --git a/Readme.md b/Readme.md
index 112d606..187f8ac 100644
--- a/Readme.md
+++ b/Readme.md
@@ -9,15 +9,15 @@
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
<div align="center">
- <img src="docs/images/probl.png" height="225"><br>
+ <img src="demos/images/probl.png" height="225"><br>
</div>
<div align="center">
- <img src="docs/images/reg_penalties.jpg" height="450"><br>
+ <img src="demos/images/reg_penalties.jpg" height="450"><br>
</div>
<div align="center">
- <img src="docs/images/TV_vs_NLTV.jpg" height="300"><br>
+ <img src="demos/images/TV_vs_NLTV.jpg" height="300"><br>
</div>
## Prerequisites:
@@ -183,8 +183,7 @@ addpath(/path/to/library);
### Applications:
-* [Regularised FISTA iterative reconstruction algorithm for X-ray tomographic reconstruction with highly inaccurate measurements (MATLAB/Python code)](https://github.com/dkazanc/FISTA-tomo)
-* [Regularised ADMM iterative reconstruction algorithm for X-ray tomographic reconstruction (MATLAB code)](https://github.com/dkazanc/ADMM-tomo)
+* [A library of tomographic reconstruction methods: direct and model-based iterative (MATLAB/Python code)](https://github.com/dkazanc/TomoRec)
* [Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography (MATLAB code)](https://github.com/dkazanc/multi-channel-X-ray-CT)
### License: