diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2017-11-01 16:32:08 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2017-11-01 16:32:08 +0000 |
commit | f258fe8548262a127c0ced979ad45c385d6abdd4 (patch) | |
tree | 2a87576e351d42334b39df8863d39eea9beac0fa | |
parent | bbbecc64cf17704084a611dffbea12be420df2fb (diff) | |
download | regularization-f258fe8548262a127c0ced979ad45c385d6abdd4.tar.gz regularization-f258fe8548262a127c0ced979ad45c385d6abdd4.tar.bz2 regularization-f258fe8548262a127c0ced979ad45c385d6abdd4.tar.xz regularization-f258fe8548262a127c0ced979ad45c385d6abdd4.zip |
Initial demo as Demo_RealData3D_Parallel.m
-rw-r--r-- | src/Python/demo/demo_dendrites.py | 138 |
1 files changed, 138 insertions, 0 deletions
diff --git a/src/Python/demo/demo_dendrites.py b/src/Python/demo/demo_dendrites.py new file mode 100644 index 0000000..528702c --- /dev/null +++ b/src/Python/demo/demo_dendrites.py @@ -0,0 +1,138 @@ +# -*- coding: utf-8 -*- +""" +Created on Wed Aug 23 16:34:49 2017 + +@author: ofn77899 +Based on DemoRD2.m +""" + +import h5py +import numpy + +from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor +import astra +import matplotlib.pyplot as plt +from ccpi.imaging.Regularizer import Regularizer +from ccpi.reconstruction.AstraDevice import AstraDevice +from ccpi.reconstruction.DeviceModel import DeviceModel + +def RMSE(signal1, signal2): + '''RMSE Root Mean Squared Error''' + if numpy.shape(signal1) == numpy.shape(signal2): + err = (signal1 - signal2) + err = numpy.sum( err * err )/numpy.size(signal1); # MSE + err = sqrt(err); # RMSE + return err + else: + raise Exception('Input signals must have the same shape') + +filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5' +nx = h5py.File(filename, "r") +#getEntry(nx, '/') +# I have exported the entries as children of / +entries = [entry for entry in nx['/'].keys()] +print (entries) + +Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32") +Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32") +angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0] +angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32") +recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0] +size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0] +slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0] + +Z_slices = 20 +det_row_count = Z_slices +# next definition is just for consistency of naming +det_col_count = size_det + +detectorSpacingX = 1.0 +detectorSpacingY = detectorSpacingX + + +proj_geom = astra.creators.create_proj_geom('parallel3d', + detectorSpacingX, + detectorSpacingY, + det_row_count, + det_col_count, + angles_rad) + +#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices); +image_size_x = recon_size +image_size_y = recon_size +image_size_z = Z_slices +vol_geom = astra.creators.create_vol_geom( image_size_x, + image_size_y, + image_size_z) + + +## Create a Acquisition Device Model +## Must specify some parameters of the acquisition: + +astradevice = AstraDevice( + DeviceModel.DeviceType.PARALLEL3D.value, + [det_row_count , det_col_count , + detectorSpacingX, detectorSpacingY , + angles_rad + ], + [ image_size_x, image_size_y, image_size_z ] ) + +fistaRecon = FISTAReconstructor(proj_geom, + vol_geom, + Sino3D , + weights=Weights3D, + device=astradevice, + Lipschitz_constant = 767893952.0, + subsets = 8) + +print("Reconstruction using FISTA-OS-PWLS without regularization...") +fistaRecon.setParameter(number_of_iterations = 18) + +### adjust the regularization parameter +##lc = fistaRecon.getParameter('Lipschitz_constant') +##fistaRecon.getParameter('regularizer')\ +## .setParameter(regularization_parameter=5e6/lc) +fistaRecon.use_device = True +if False: + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("../test/X.npy")) + numpy.save("FISTA-OS-PWLS.npy",X) + +## setup a regularizer algorithm +regul = Regularizer(Regularizer.Algorithm.FGP_TV) +regul.setParameter(regularization_parameter=5e6, + number_of_iterations=50, + tolerance_constant=1e-4, + TV_penalty=Regularizer.TotalVariationPenalty.isotropic) +if False: + # adjust the regularization parameter + lc = fistaRecon.getParameter('Lipschitz_constant') + regul.setParameter(regularization_parameter=5e6/lc) + fistaRecon.setParameter(regularizer=regul) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("../test/X.npy")) + numpy.save("FISTA-OS-PWLS-TV.npy",X) + +if False: + # adjust the regularization parameter + lc = fistaRecon.getParameter('Lipschitz_constant') + regul.setParameter(regularization_parameter=5e6/lc) + fistaRecon.setParameter(regularizer=regul) + fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("../test/X.npy")) + numpy.save("FISTA-OS-GH-TV.npy",X) + +if True: + # adjust the regularization parameter + lc = fistaRecon.getParameter('Lipschitz_constant') + regul.setParameter( + algorithm=Regularizer.Algorithm.TGV_PD, + regularization_parameter=0.5/lc, + number_of_iterations=5) + fistaRecon.setParameter(regularizer=regul) + fistaRecon.setParameter(ring_lambda_R_L1=0.002, ring_alpha=21) + fistaRecon.prepareForIteration() + X = fistaRecon.iterate(numpy.load("../test/X.npy")) + numpy.save("FISTA-OS-GH-TGV.npy",X) + |