summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-05-01 09:44:07 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-05-01 09:44:07 +0100
commit09eb48ffbb4ad699e2eefd25678e10dc59d6a177 (patch)
tree8cebd50609d4ba4a634a8c91252d205580b56b4c /Readme.md
parent307d0459f6f22ff07e9d0b8d4090a27ba91cddd0 (diff)
downloadregularization-09eb48ffbb4ad699e2eefd25678e10dc59d6a177.tar.gz
regularization-09eb48ffbb4ad699e2eefd25678e10dc59d6a177.tar.bz2
regularization-09eb48ffbb4ad699e2eefd25678e10dc59d6a177.tar.xz
regularization-09eb48ffbb4ad699e2eefd25678e10dc59d6a177.zip
new inpainters
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md27
1 files changed, 17 insertions, 10 deletions
diff --git a/Readme.md b/Readme.md
index e73b4fb..8a67c60 100644
--- a/Readme.md
+++ b/Readme.md
@@ -16,17 +16,22 @@ the toolkit can be used independently to solve image denoising problems. The cor
* C compilers
* nvcc (CUDA SDK) compilers
-## Package modules (regularisers):
+## Package modules:
-### Single-channel
+### Single-channel (denoising):
1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *1*)
2. Fast-Gradient-Projection (FGP) Total Variation **2D/3D CPU/GPU** (Ref. *2*)
-3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *4*)
-4. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *6*)
+3. Split-Bregman (SB) Total Variation **2D/3D CPU/GPU** (Ref. *5*)
+4. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU/GPU** (Ref. *7*)
+
+### Multi-channel (denoising):
+1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,4,2*)
+2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *6*)
+
+### Inpainting:
+1. Linear and nonlinear diffusion (explicit PDE minimisation scheme) **2D/3D CPU** (Ref. *7*)
+2. Iterative nonlocal vertical marching method **2D CPU**
-### Multi-channel
-1. Fast-Gradient-Projection (FGP) Directional Total Variation **2D/3D CPU/GPU** (Ref. *3,2*)
-2. Total Nuclear Variation (TNV) penalty **2D+channels CPU** (Ref. *5*)
## Installation:
@@ -56,11 +61,13 @@ the toolkit can be used independently to solve image denoising problems. The cor
*3. Ehrhardt, M.J. and Betcke, M.M., 2016. Multicontrast MRI reconstruction with structure-guided total variation. SIAM Journal on Imaging Sciences, 9(3), pp.1084-1106.*
-*4. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.*
+*4. Kazantsev, D., Jørgensen, J.S., Andersen, M., Lionheart, W.R., Lee, P.D. and Withers, P.J., 2018. Joint image reconstruction method with correlative multi-channel prior for X-ray spectral computed tomography. Inverse Problems*
+
+*5. Goldstein, T. and Osher, S., 2009. The split Bregman method for L1-regularized problems. SIAM journal on imaging sciences, 2(2), pp.323-343.*
-*5. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.*
+*6. Duran, J., Moeller, M., Sbert, C. and Cremers, D., 2016. Collaborative total variation: a general framework for vectorial TV models. SIAM Journal on Imaging Sciences, 9(1), pp.116-151.*
-*6. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.*
+*7. Black, M.J., Sapiro, G., Marimont, D.H. and Heeger, D., 1998. Robust anisotropic diffusion. IEEE Transactions on image processing, 7(3), pp.421-432.*
### License:
[Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)