summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-01-23 11:26:10 +0000
committerGitHub <noreply@github.com>2019-01-23 11:26:10 +0000
commitb38ac34e763aa442a19dff7c2c22f8892cc0cd3c (patch)
treeb8f3f1235b174a9bb2613eb5e54099f3a1860847 /Readme.md
parent9f186d5978aa4e528ea071d5de0a74edb71916ad (diff)
parent619e972559992684854eef854e60fbc363e93819 (diff)
downloadregularization-b38ac34e763aa442a19dff7c2c22f8892cc0cd3c.tar.gz
regularization-b38ac34e763aa442a19dff7c2c22f8892cc0cd3c.tar.bz2
regularization-b38ac34e763aa442a19dff7c2c22f8892cc0cd3c.tar.xz
regularization-b38ac34e763aa442a19dff7c2c22f8892cc0cd3c.zip
Merge pull request #92 from TomasKulhanek/master
build scripts detects tag and branch
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md4
1 files changed, 3 insertions, 1 deletions
diff --git a/Readme.md b/Readme.md
index 70c9e13..1745b9e 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,4 +1,6 @@
-[![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/)
+| Master | Development |
+|--------|-------------|
+| [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit/) | [![Build Status](https://anvil.softeng-support.ac.uk/jenkins/buildStatus/icon?job=CILsingle/CCPi-Regularisation-Toolkit-dev)](https://anvil.softeng-support.ac.uk/jenkins/job/CILsingle/job/CCPi-Regularisation-Toolkit-dev/) |
# CCPi-Regularisation Toolkit (CCPi-RGL)
**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise the convergence and make the reconstruction problem (inverse problem) more well-posed. The CCPi-RGL software provides 2D/3D and multi-channel regularisation strategies to ensure better performance of IIR methods. The regularisation modules are well-suited to use with [splitting algorithms](https://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers), such as, [ADMM](https://github.com/dkazanc/ADMM-tomo) and [FISTA](https://github.com/dkazanc/FISTA-tomo). Furthermore, the toolkit can be used for simpler inversion tasks, such as, image denoising, inpaiting, deconvolution etc. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**