summaryrefslogtreecommitdiffstats
path: root/Readme.md
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-04-09 09:41:31 +0100
committerGitHub <noreply@github.com>2018-04-09 09:41:31 +0100
commitef20eb1e81775a4767b8d9d25ad8081d3870c167 (patch)
tree8b2ee60f2e5d3a1d7bfd05b2f7b6c24bc5715249 /Readme.md
parent2e9d7e5df33c3c042b2a55ae4c9fe23b15f95019 (diff)
parentbb86cf3cb44fa66a2def258d346ebb68fe14ed61 (diff)
downloadregularization-ef20eb1e81775a4767b8d9d25ad8081d3870c167.tar.gz
regularization-ef20eb1e81775a4767b8d9d25ad8081d3870c167.tar.bz2
regularization-ef20eb1e81775a4767b8d9d25ad8081d3870c167.tar.xz
regularization-ef20eb1e81775a4767b8d9d25ad8081d3870c167.zip
Merge pull request #46 from vais-ral/demostests
fixes a memory leak in FGP-TV(CPU)#43, matlab CPU/GPU wrappers and demos
Diffstat (limited to 'Readme.md')
-rw-r--r--Readme.md30
1 files changed, 19 insertions, 11 deletions
diff --git a/Readme.md b/Readme.md
index d91e420..3ec20dc 100644
--- a/Readme.md
+++ b/Readme.md
@@ -1,24 +1,27 @@
-# CCPi-Regularisation Toolkit (CCPi-RGL)
+# CCPi-Regularization Toolkit (CCPi-RGL)
-**Iterative image reconstruction (IIR) methods normally require regularisation to stabilise convergence and make the reconstruction problem more well-posed.
-CCPi-RGL software consist of 2D/3D regularisation modules which frequently used for IIR.
-The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
+**Iterative image reconstruction (IIR) methods normally require regularization to stabilize the convergence and make the reconstruction problem more well-posed.
+CCPi-RGL software consist of 2D/3D regularization modules for single-channel and multi-channel reconstruction problems. The modules especially suited for IIR, however,
+can also be used as image denoising iterative filters. The core modules are written in C-OMP and CUDA languages and wrappers for Matlab and Python are provided.**
## Prerequisites:
- * MATLAB (www.mathworks.com/products/matlab/)
- * Python (ver. 3.5); Cython
+ * MATLAB (www.mathworks.com/products/matlab/) OR
+ * Python (tested ver. 3.5); Cython
* C compilers
* nvcc (CUDA SDK) compilers
## Package modules (regularisers):
-1. Rudin-Osher-Fatemi Total Variation (explicit PDE minimisation scheme) [2D/3D GPU/CPU]
-2. Fast-Gradient-Projection Total Variation [2D/3D GPU/CPU]
+### Single-channel
+1. Rudin-Osher-Fatemi (ROF) Total Variation (explicit PDE minimisation scheme) [2D/3D GPU/CPU]; (Ref. 1)
+2. Fast-Gradient-Projection (FGP) Total Variation [2D/3D GPU/CPU]; (Ref. 2)
-### Installation:
+### Multi-channel
-#### Python (conda-build)
+## Installation:
+
+### Python (conda-build)
```
export CIL_VERSION=0.9.2
conda build recipes/regularizers --numpy 1.12 --python 3.5
@@ -29,7 +32,12 @@ The core modules are written in C-OMP and CUDA languages and wrappers for Matlab
cd test/
python test_cpu_vs_gpu_regularizers.py
```
-#### Matlab
+### Matlab
+```
+ cd /Wrappers/Matlab/mex_compile
+ compileCPU_mex.m % to compile CPU modules
+ compileGPU_mex.m % to compile GPU modules (see instructions in the file)
+```
### References:
1. Rudin, L.I., Osher, S. and Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4), pp.259-268.