summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab/demos
diff options
context:
space:
mode:
authorTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-21 02:10:14 -0500
committerTomas Kulhanek <tomas.kulhanek@stfc.ac.uk>2019-02-21 02:10:14 -0500
commit3caa686662f7d937cf7eb852dde437cd66e79a6e (patch)
tree76088f5924ff9278e0a37140fce888cd89b84a7e /Wrappers/Matlab/demos
parent8f2e86726669b9dadb3c788e0ea681d397a2eeb7 (diff)
downloadregularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.gz
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.bz2
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.tar.xz
regularization-3caa686662f7d937cf7eb852dde437cd66e79a6e.zip
restructured sources
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m178
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m189
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_inpaint.m35
3 files changed, 0 insertions, 402 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
deleted file mode 100644
index 0c331a4..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m
+++ /dev/null
@@ -1,178 +0,0 @@
-% Volume (3D) denoising demo using CCPi-RGL
-clear; close all
-Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
-Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
-Path3 = sprintf(['..' filesep 'supp'], 1i);
-addpath(Path1);
-addpath(Path2);
-addpath(Path3);
-
-N = 512;
-slices = 7;
-vol3D = zeros(N,N,slices, 'single');
-Ideal3D = zeros(N,N,slices, 'single');
-Im = double(imread('lena_gray_512.tif'))/255; % loading image
-for i = 1:slices
-vol3D(:,:,i) = Im + .05*randn(size(Im));
-Ideal3D(:,:,i) = Im;
-end
-vol3D(vol3D < 0) = 0;
-figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image');
-
-
-lambda_reg = 0.03; % regularsation parameter for all methods
-%%
-fprintf('Denoise a volume using the ROF-TV model (CPU) \n');
-tau_rof = 0.0025; % time-marching constant
-iter_rof = 300; % number of ROF iterations
-tic; u_rof = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value
-rmse_rof = (RMSE(Ideal3D(:),u_rof(:)));
-fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof);
-figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the ROF-TV model (GPU) \n');
-% tau_rof = 0.0025; % time-marching constant
-% iter_rof = 300; % number of ROF iterations
-% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof); toc;
-% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:)));
-% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG);
-% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using the FGP-TV model (CPU) \n');
-iter_fgp = 300; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-tic; u_fgp = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value
-rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:)));
-fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp);
-figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the FGP-TV model (GPU) \n');
-% iter_fgp = 300; % number of FGP iterations
-% epsil_tol = 1.0e-05; % tolerance
-% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc;
-% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:)));
-% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG);
-% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using the SB-TV model (CPU) \n');
-iter_sb = 150; % number of SB iterations
-epsil_tol = 1.0e-05; % tolerance
-tic; u_sb = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value
-rmse_sb = (RMSE(Ideal3D(:),u_sb(:)));
-fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb);
-figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the SB-TV model (GPU) \n');
-% iter_sb = 150; % number of SB iterations
-% epsil_tol = 1.0e-05; % tolerance
-% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc;
-% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:)));
-% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG);
-% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using the ROF-LLT model (CPU) \n');
-lambda_ROF = lambda_reg; % ROF regularisation parameter
-lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
-iter_LLT = 300; % iterations
-tau_rof_llt = 0.0025; % time-marching constant
-tic; u_rof_llt = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:)));
-fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
-figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n');
-% lambda_ROF = lambda_reg; % ROF regularisation parameter
-% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter
-% iter_LLT = 300; % iterations
-% tau_rof_llt = 0.0025; % time-marching constant
-% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:)));
-% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt);
-% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)');
-%%
-fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 300; % number of diffusion iterations
-lambda_regDiff = 0.025; % regularisation for the diffusivity
-sigmaPar = 0.015; % edge-preserving parameter
-tau_param = 0.025; % time-marching constant
-tic; u_diff = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-rmse_diff = (RMSE(Ideal3D(:),u_diff(:)));
-fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
-figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)');
-%%
-% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n');
-% iter_diff = 300; % number of diffusion iterations
-% lambda_regDiff = 0.025; % regularisation for the diffusivity
-% sigmaPar = 0.015; % edge-preserving parameter
-% tau_param = 0.025; % time-marching constant
-% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:)));
-% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff);
-% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)');
-%%
-fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
-iter_diff = 300; % number of diffusion iterations
-lambda_regDiff = 3.5; % regularisation for the diffusivity
-sigmaPar = 0.02; % edge-preserving parameter
-tau_param = 0.0015; % time-marching constant
-tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:)));
-fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
-figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)');
-%%
-% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
-% iter_diff = 300; % number of diffusion iterations
-% lambda_regDiff = 3.5; % regularisation for the diffusivity
-% sigmaPar = 0.02; % edge-preserving parameter
-% tau_param = 0.0015; % time-marching constant
-% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:)));
-% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4);
-% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)');
-%%
-fprintf('Denoise using the TGV model (CPU) \n');
-lambda_TGV = 0.03; % regularisation parameter
-alpha1 = 1.0; % parameter to control the first-order term
-alpha0 = 2.0; % parameter to control the second-order term
-iter_TGV = 500; % number of Primal-Dual iterations for TGV
-tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
-rmseTGV = RMSE(Ideal3D(:),u_tgv(:));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
-figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)');
-%%
-%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
-fprintf('Denoise a volume using the FGP-dTV model (CPU) \n');
-
-% create another volume (reference) with slightly less amount of noise
-vol3D_ref = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
-end
-vol3D_ref(vol3D_ref < 0) = 0;
-% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-iter_fgp = 300; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)');
-%%
-fprintf('Denoise a volume using the FGP-dTV model (GPU) \n');
-
-% create another volume (reference) with slightly less amount of noise
-vol3D_ref = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D_ref(:,:,i) = Im + .01*randn(size(Im));
-end
-vol3D_ref(vol3D_ref < 0) = 0;
-% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-iter_fgp = 300; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)');
-%%
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m
deleted file mode 100644
index 14d3096..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m
+++ /dev/null
@@ -1,189 +0,0 @@
-% Image (2D) denoising demo using CCPi-RGL
-clear; close all
-fsep = '/';
-
-Path1 = sprintf(['..' fsep 'mex_compile' fsep 'installed'], 1i);
-Path2 = sprintf(['..' fsep '..' fsep '..' fsep 'data' fsep], 1i);
-Path3 = sprintf(['..' fsep 'supp'], 1i);
-addpath(Path1); addpath(Path2); addpath(Path3);
-
-Im = double(imread('lena_gray_512.tif'))/255; % loading image
-u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-figure; imshow(u0, [0 1]); title('Noisy image');
-
-lambda_reg = 0.03; % regularsation parameter for all methods
-%%
-fprintf('Denoise using the ROF-TV model (CPU) \n');
-tau_rof = 0.0025; % time-marching constant
-iter_rof = 750; % number of ROF iterations
-tic; u_rof = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
-rmseROF = (RMSE(u_rof(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
-figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using the ROF-TV model (GPU) \n');
-% tau_rof = 0.0025; % time-marching constant
-% iter_rof = 750; % number of ROF iterations
-% tic; u_rofG = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof); toc;
-% figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the FGP-TV model (CPU) \n');
-iter_fgp = 1000; % number of FGP iterations
-epsil_tol = 1.0e-06; % tolerance
-tic; u_fgp = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
-rmseFGP = (RMSE(u_fgp(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
-figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
-
-%%
-% fprintf('Denoise using the FGP-TV model (GPU) \n');
-% iter_fgp = 1000; % number of FGP iterations
-% epsil_tol = 1.0e-05; % tolerance
-% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the SB-TV model (CPU) \n');
-iter_sb = 150; % number of SB iterations
-epsil_tol = 1.0e-06; % tolerance
-tic; u_sb = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
-rmseSB = (RMSE(u_sb(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
-figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using the SB-TV model (GPU) \n');
-% iter_sb = 150; % number of SB iterations
-% epsil_tol = 1.0e-06; % tolerance
-% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the TGV model (CPU) \n');
-lambda_TGV = 0.045; % regularisation parameter
-alpha1 = 1.0; % parameter to control the first-order term
-alpha0 = 2.0; % parameter to control the second-order term
-iter_TGV = 2000; % number of Primal-Dual iterations for TGV
-tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
-rmseTGV = (RMSE(u_tgv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
-figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
-%%
-% fprintf('Denoise using the TGV model (GPU) \n');
-% lambda_TGV = 0.045; % regularisation parameter
-% alpha1 = 1.0; % parameter to control the first-order term
-% alpha0 = 2.0; % parameter to control the second-order term
-% iter_TGV = 2000; % number of Primal-Dual iterations for TGV
-% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc;
-% rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:)));
-% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu);
-% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
-%%
-fprintf('Denoise using the ROF-LLT model (CPU) \n');
-lambda_ROF = lambda_reg; % ROF regularisation parameter
-lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
-iter_LLT = 1; % iterations
-tau_rof_llt = 0.0025; % time-marching constant
-tic; u_rof_llt = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
-figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
-%%
-% fprintf('Denoise using the ROF-LLT model (GPU) \n');
-% lambda_ROF = lambda_reg; % ROF regularisation parameter
-% lambda_LLT = lambda_reg*0.45; % LLT regularisation parameter
-% iter_LLT = 500; % iterations
-% tau_rof_llt = 0.0025; % time-marching constant
-% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt); toc;
-% rmseROFLLT_g = (RMSE(u_rof_llt_g(:),Im(:)));
-% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT_g);
-% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
-%%
-fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 800; % number of diffusion iterations
-lambda_regDiff = 0.025; % regularisation for the diffusivity
-sigmaPar = 0.015; % edge-preserving parameter
-tau_param = 0.025; % time-marching constant
-tic; u_diff = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-rmseDiffus = (RMSE(u_diff(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
-figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
-%%
-% fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
-% iter_diff = 800; % number of diffusion iterations
-% lambda_regDiff = 0.025; % regularisation for the diffusivity
-% sigmaPar = 0.015; % edge-preserving parameter
-% tau_param = 0.025; % time-marching constant
-% tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-% figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)');
-%%
-fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
-iter_diff = 800; % number of diffusion iterations
-lambda_regDiff = 3.5; % regularisation for the diffusivity
-sigmaPar = 0.02; % edge-preserving parameter
-tau_param = 0.0015; % time-marching constant
-tic; u_diff4 = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
-figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
-%%
-% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
-% iter_diff = 800; % number of diffusion iterations
-% lambda_regDiff = 3.5; % regularisation for the diffusivity
-% sigmaPar = 0.02; % edge-preserving parameter
-% tau_param = 0.0015; % time-marching constant
-% tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-% figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)');
-%%
-fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n');
-SearchingWindow = 7;
-PatchWindow = 2;
-NeighboursNumber = 20; % the number of neibours to include
-h = 0.23; % edge related parameter for NLM
-tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc;
-%%
-fprintf('Denoise using Non-local Total Variation (CPU) \n');
-iter_nltv = 3; % number of nltv iterations
-lambda_nltv = 0.05; % regularisation parameter for nltv
-tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc;
-rmse_nltv = (RMSE(u_nltv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv);
-figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)');
-%%
-%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
-
-fprintf('Denoise using the FGP-dTV model (CPU) \n');
-% create another image (reference) with slightly less amount of noise
-u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
-% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-iter_fgp = 1000; % number of FGP iterations
-epsil_tol = 1.0e-06; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
-figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
-%%
-% fprintf('Denoise using the FGP-dTV model (GPU) \n');
-% % create another image (reference) with slightly less amount of noise
-% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
-% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-%
-% iter_fgp = 1000; % number of FGP iterations
-% epsil_tol = 1.0e-06; % tolerance
-% eta = 0.2; % Reference image gradient smoothing constant
-% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)');
-%%
-fprintf('Denoise using the TNV prior (CPU) \n');
-slices = 5; N = 512;
-vol3D = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D(:,:,i) = Im + .05*randn(size(Im));
-end
-vol3D(vol3D < 0) = 0;
-
-iter_tnv = 200; % number of TNV iterations
-tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc;
-figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)');
diff --git a/Wrappers/Matlab/demos/demoMatlab_inpaint.m b/Wrappers/Matlab/demos/demoMatlab_inpaint.m
deleted file mode 100644
index 66f9c15..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_inpaint.m
+++ /dev/null
@@ -1,35 +0,0 @@
-% Image (2D) inpainting demo using CCPi-RGL
-clear; close all
-Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i);
-Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i);
-addpath(Path1);
-addpath(Path2);
-
-load('SinoInpaint.mat');
-Sinogram = Sinogram./max(Sinogram(:));
-Sino_mask = Sinogram.*(1-single(Mask));
-figure;
-subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram');
-subplot(1,2,2); imshow(Mask, [0 1]); title('Mask');
-%%
-fprintf('Inpaint using Linear-Diffusion model (CPU) \n');
-iter_diff = 5000; % number of diffusion iterations
-lambda_regDiff = 6000; % regularisation for the diffusivity
-sigmaPar = 0.0; % edge-preserving parameter
-tau_param = 0.000075; % time-marching constant
-tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)');
-%%
-fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 1500; % number of diffusion iterations
-lambda_regDiff = 80; % regularisation for the diffusivity
-sigmaPar = 0.00009; % edge-preserving parameter
-tau_param = 0.000008; % time-marching constant
-tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc;
-figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)');
-%%
-fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n');
-Increment = 1; % linear increment for the searching window
-tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc;
-figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)');
-%% \ No newline at end of file