summaryrefslogtreecommitdiffstats
path: root/Wrappers/Matlab/demos
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-04-09 09:43:34 +0100
committerGitHub <noreply@github.com>2018-04-09 09:43:34 +0100
commita5b5872b76bf00023a7e7cee97e028003ccbc45e (patch)
tree733de21b6cc28d89e531bc1259b7113b62007fb1 /Wrappers/Matlab/demos
parentef20eb1e81775a4767b8d9d25ad8081d3870c167 (diff)
downloadregularization-a5b5872b76bf00023a7e7cee97e028003ccbc45e.tar.gz
regularization-a5b5872b76bf00023a7e7cee97e028003ccbc45e.tar.bz2
regularization-a5b5872b76bf00023a7e7cee97e028003ccbc45e.tar.xz
regularization-a5b5872b76bf00023a7e7cee97e028003ccbc45e.zip
Delete demoMatlab_denoise.m~
deleted redundant *m file
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r--Wrappers/Matlab/demos/demoMatlab_denoise.m~31
1 files changed, 0 insertions, 31 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m~ b/Wrappers/Matlab/demos/demoMatlab_denoise.m~
deleted file mode 100644
index 3f4403e..0000000
--- a/Wrappers/Matlab/demos/demoMatlab_denoise.m~
+++ /dev/null
@@ -1,31 +0,0 @@
-% Image (2D) denoising demo using CCPi-RGL
-
-addpath('../mex_compile/installed');
-addpath('../../../data/');
-
-Im = double(imread('lena_gray_256.tif'))/255; % loading image
-u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-figure; imshow(u0, [0 1]); title('Noisy image');
-
-%%
-fprintf('Denoise using ROF-TV model (CPU) \n');
-lambda_rof = 0.02; % regularization parameter
-tau_rof = 0.0025; % time-marching constant
-iter_rof = 2000; % number of ROF iterations
-tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc;
-figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using ROF-TV model (GPU) \n');
-% lambda_rof = 0.02; % regularization parameter
-% tau_rof = 0.0025; % time-marching constant
-% iter_rof = 2000; % number of ROF iterations
-% tic; u_rof = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc;
-% figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (GPU)');
-%%
-fprintf('Denoise using FGP-TV model (CPU) \n');
-lambda_fgp = 0.02; % regularization parameter
-iter_fgp = 2000; % number of FGP iterations
-epsil_tol = 1.0e-05; % tolerance
-tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc;
-figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
-%% \ No newline at end of file