diff options
author | dkazanc <dkazanc@hotmail.com> | 2018-03-07 10:26:56 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-03-07 10:26:56 +0000 |
commit | 3ed9b4129cdab5110e67a4705b3bd52fd9781f8b (patch) | |
tree | 2c158b86dff89d8b7f5622cbdce8d5600eaaab5e /Wrappers/Matlab | |
parent | b8e4e8d89432cfaa860835d873b52e4df40d92d5 (diff) | |
parent | fbb7a12f7714978c251f02bf84ab9a66c762f428 (diff) | |
download | regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.tar.gz regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.tar.bz2 regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.tar.xz regularization-3ed9b4129cdab5110e67a4705b3bd52fd9781f8b.zip |
Merge pull request #40 from vais-ral/GPU_test
ROF/FGP updated via Cython
Diffstat (limited to 'Wrappers/Matlab')
-rw-r--r-- | Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c | 142 |
1 files changed, 10 insertions, 132 deletions
diff --git a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c index 30cea1a..7cc861a 100644 --- a/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c +++ b/Wrappers/Matlab/mex_compile/regularizers_CPU/FGP_TV.c @@ -53,9 +53,9 @@ void mexFunction( int nrhs, const mxArray *prhs[]) { - int number_of_dims, iter, dimX, dimY, dimZ, ll, j, count, methTV; + int number_of_dims, iter, dimX, dimY, dimZ, methTV; const int *dim_array; - float *A, *D=NULL, *D_old=NULL, *P1=NULL, *P2=NULL, *P3=NULL, *P1_old=NULL, *P2_old=NULL, *P3_old=NULL, *R1=NULL, *R2=NULL, *R3=NULL, lambda, tk, tkp1, re, re1, re_old, epsil; + float *Input, *Output, lambda, epsil; number_of_dims = mxGetNumberOfDimensions(prhs[0]); dim_array = mxGetDimensions(prhs[0]); @@ -63,9 +63,9 @@ void mexFunction( /*Handling Matlab input data*/ if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); - A = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 50; /* default iterations number */ + iter = 300; /* default iterations number */ epsil = 0.0001; /* default tolerance constant */ methTV = 0; /* default isotropic TV penalty */ @@ -78,139 +78,17 @@ void mexFunction( if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ mxFree(penalty_type); } - /*output function value (last iteration) */ - plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); - float *funcvalA = (float *) mxGetData(plhs[1]); if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - tk = 1.0f; - tkp1=1.0f; - count = 0; - re_old = 0.0f; + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; if (number_of_dims == 2) { dimZ = 1; /*2D case*/ - D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* begin iterations */ - for(ll=0; ll<iter; ll++) { - - /* computing the gradient of the objective function */ - Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); - - /*Taking a step towards minus of the gradient*/ - Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); - - /* projection step */ - Proj_func2D(P1, P2, methTV, dimX, dimY); - - /*updating R and t*/ - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); - - /* calculate norm */ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(D[j] - D_old[j],2); - re1 += pow(D[j],2); - } - re = sqrt(re)/sqrt(re1); - if (re < epsil) count++; - if (count > 4) { - Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); - break; } - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) { - Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); - break; }} - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*storing old values*/ - copyIm(D, D_old, dimX, dimY, dimZ); - copyIm(P1, P1_old, dimX, dimY, dimZ); - copyIm(P2, P2_old, dimX, dimY, dimZ); - tk = tkp1; - - /* calculating the objective function value */ - if (ll == (iter-1)) Obj_func_CALC2D(A, D, funcvalA, lambda, dimX, dimY); - } - printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - } - if (number_of_dims == 3) { - D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - /* begin iterations */ - for(ll=0; ll<iter; ll++) { - - /* computing the gradient of the objective function */ - Obj_func3D(A, D, R1, R2, R3,lambda, dimX, dimY, dimZ); - - /*Taking a step towards minus of the gradient*/ - Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); - - /* projection step */ - Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); - - /*updating R and t*/ - tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); - - /* calculate norm - stopping rules*/ - re = 0.0f; re1 = 0.0f; - for(j=0; j<dimX*dimY*dimZ; j++) - { - re += pow(D[j] - D_old[j],2); - re1 += pow(D[j],2); - } - re = sqrt(re)/sqrt(re1); - /* stop if the norm residual is less than the tolerance EPS */ - if (re < epsil) count++; - if (count > 3) { - Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); - break;} - - /* check that the residual norm is decreasing */ - if (ll > 2) { - if (re > re_old) { - Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); - }} - re_old = re; - /*printf("%f %i %i \n", re, ll, count); */ - - /*storing old values*/ - copyIm(D, D_old, dimX, dimY, dimZ); - copyIm(P1, P1_old, dimX, dimY, dimZ); - copyIm(P2, P2_old, dimX, dimY, dimZ); - copyIm(P3, P3_old, dimX, dimY, dimZ); - tk = tkp1; - - if (ll == (iter-1)) Obj_func_CALC3D(A, D, funcvalA, lambda, dimX, dimY, dimZ); - } - printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - } + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, 0, 0, dimX, dimY, dimZ); + } + if (number_of_dims == 3) { + } } |