diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2018-04-19 13:38:58 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-04-19 13:38:58 +0100 |
commit | 8d7e53224216be05f869fd56fd8a6d8bcd611166 (patch) | |
tree | f3fbf76cfd2350c8794163845dc94c012c04a3a8 /Wrappers/Python/demos | |
parent | cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1 (diff) | |
parent | b1b26855c4cd5a3e2624b280b64adeda6793b4d7 (diff) | |
download | regularization-8d7e53224216be05f869fd56fd8a6d8bcd611166.tar.gz regularization-8d7e53224216be05f869fd56fd8a6d8bcd611166.tar.bz2 regularization-8d7e53224216be05f869fd56fd8a6d8bcd611166.tar.xz regularization-8d7e53224216be05f869fd56fd8a6d8bcd611166.zip |
Merge pull request #52 from vais-ral/NonlDiffusion
Nonlinear diffusion module
Diffstat (limited to 'Wrappers/Python/demos')
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 106 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py | 91 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_gpu_regularisers.py | 114 |
3 files changed, 293 insertions, 18 deletions
diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 7443b83..3567f91 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, TNV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, TNV, NDF from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -190,11 +190,58 @@ plt.title('{}'.format('CPU results')) print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("_____________FGP-dTV (2D)__________________") +print ("________________NDF (2D)___________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot fig = plt.figure(4) +plt.suptitle('Performance of NDF regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : u0,\ + 'regularisation_parameter':0.06, \ + 'edge_parameter':0.04,\ + 'number_of_iterations' :1000 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type':1 + } + +print ("#############NDF CPU################") +start_time = timeit.default_timer() +ndf_cpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'cpu') + +rms = rmse(Im, ndf_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_____________FGP-dTV (2D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(5) plt.suptitle('Performance of FGP-dTV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -247,7 +294,7 @@ print ("__________Total nuclear Variation__________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(5) +fig = plt.figure(6) plt.suptitle('Performance of TNV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -321,7 +368,7 @@ print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(6) +fig = plt.figure(7) plt.suptitle('Performance of ROF-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy 15th slice of a volume') @@ -361,7 +408,7 @@ print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(7) +fig = plt.figure(8) plt.suptitle('Performance of FGP-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -410,7 +457,7 @@ print ("_______________SB-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(8) +fig = plt.figure(9) plt.suptitle('Performance of SB-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -451,13 +498,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(sb_cpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the CPU using SB-TV')) +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("________________NDF (3D)___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(10) +plt.suptitle('Performance of NDF regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy volume') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.06, \ + 'edge_parameter':0.04,\ + 'number_of_iterations' :1000 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("#############NDF CPU################") +start_time = timeit.default_timer() +ndf_cpu3D = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type']) + +rms = rmse(idealVol, ndf_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using NDF iterations')) print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________FGP-dTV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(9) +fig = plt.figure(11) plt.suptitle('Performance of FGP-dTV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py index d8e2da7..05db23e 100644 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -306,11 +306,98 @@ else: print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-dTV bench___________________") +print ("_______________NDF bench___________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot fig = plt.figure(4) +plt.suptitle('Comparison of NDF regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : u0,\ + 'regularisation_parameter':0.06, \ + 'edge_parameter':0.04,\ + 'number_of_iterations' :1000 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("#############NDF CPU####################") +start_time = timeit.default_timer() +ndf_cpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'cpu') + +rms = rmse(Im, ndf_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + +print ("##############NDF GPU##################") +start_time = timeit.default_timer() +ndf_gpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'gpu') + +rms = rmse(Im, ndf_gpu) +pars['rmse'] = rms +pars['algorithm'] = NDF +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(rof_cpu)) +diff_im = abs(ndf_cpu - ndf_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") + + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-dTV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(5) plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations') a=fig.add_subplot(1,4,1) a.set_title('Noisy Image') diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index 25d8d85..b873700 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, NDF from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -50,7 +50,7 @@ u0 = u0.astype('float32') u_ref = u_ref.astype('float32') print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________ROF-TV bench___________________") +print ("____________ROF-TV regulariser_____________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot @@ -92,7 +92,7 @@ plt.title('{}'.format('GPU results')) print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-TV bench___________________") +print ("____________FGP-TV regulariser_____________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot @@ -141,7 +141,7 @@ plt.title('{}'.format('GPU results')) print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________SB-TV bench___________________") +print ("____________SB-TV regulariser______________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot @@ -186,12 +186,60 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(sb_gpu, cmap="gray") plt.title('{}'.format('GPU results')) + print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") -print ("____________FGP-dTV bench___________________") +print ("_______________NDF regulariser_____________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot fig = plt.figure(4) +plt.suptitle('Performance of the NDF regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : u0,\ + 'regularisation_parameter':0.06, \ + 'edge_parameter':0.04,\ + 'number_of_iterations' :1000 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("##############NDF GPU##################") +start_time = timeit.default_timer() +ndf_gpu = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'gpu') + +rms = rmse(Im, ndf_gpu) +pars['rmse'] = rms +pars['algorithm'] = NDF +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-dTV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(5) plt.suptitle('Performance of the FGP-dTV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -266,7 +314,7 @@ print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(5) +fig = plt.figure(6) plt.suptitle('Performance of ROF-TV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy 15th slice of a volume') @@ -306,7 +354,7 @@ print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(6) +fig = plt.figure(7) plt.suptitle('Performance of FGP-TV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -354,7 +402,7 @@ print ("_______________SB-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(7) +fig = plt.figure(8) plt.suptitle('Performance of SB-TV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -395,12 +443,60 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(sb_gpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the GPU using SB-TV')) + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________NDF-TV (3D)_________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(9) +plt.suptitle('Performance of NDF regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : NDF, \ + 'input' : noisyVol,\ + 'regularisation_parameter':0.06, \ + 'edge_parameter':0.04,\ + 'number_of_iterations' :1000 ,\ + 'time_marching_parameter':0.025,\ + 'penalty_type': 1 + } + +print ("#############NDF GPU####################") +start_time = timeit.default_timer() +ndf_gpu3D = NDF(pars['input'], + pars['regularisation_parameter'], + pars['edge_parameter'], + pars['number_of_iterations'], + pars['time_marching_parameter'], + pars['penalty_type'],'gpu') + +rms = rmse(idealVol, ndf_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(ndf_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using NDF')) + + print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("_______________FGP-dTV (3D)________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(8) +fig = plt.figure(10) plt.suptitle('Performance of FGP-dTV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') |