summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/src
diff options
context:
space:
mode:
authorEdoardo Pasca <edo.paskino@gmail.com>2018-02-21 12:49:59 +0000
committerEdoardo Pasca <edo.paskino@gmail.com>2018-02-21 12:49:59 +0000
commit75917255b4f0b8aae2e6ce9492a75e0f749bfb3e (patch)
tree67ee3abb9dc7a0c8b34a81cee8ecc4a6b0eb68de /Wrappers/Python/src
parentb8e4e8d89432cfaa860835d873b52e4df40d92d5 (diff)
downloadregularization-75917255b4f0b8aae2e6ce9492a75e0f749bfb3e.tar.gz
regularization-75917255b4f0b8aae2e6ce9492a75e0f749bfb3e.tar.bz2
regularization-75917255b4f0b8aae2e6ce9492a75e0f749bfb3e.tar.xz
regularization-75917255b4f0b8aae2e6ce9492a75e0f749bfb3e.zip
added TV_ROF
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r--Wrappers/Python/src/gpu_regularizers.pyx8
1 files changed, 4 insertions, 4 deletions
diff --git a/Wrappers/Python/src/gpu_regularizers.pyx b/Wrappers/Python/src/gpu_regularizers.pyx
index 5a5d274..fcb91cc 100644
--- a/Wrappers/Python/src/gpu_regularizers.pyx
+++ b/Wrappers/Python/src/gpu_regularizers.pyx
@@ -25,7 +25,7 @@ cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec,
int N, int M, int Z, int dimension,
int SearchW, int SimilW,
int SearchW_real, float denh2, float lambdaf);
-cdef extern void TV_ROF_GPU(float* A, float* B, int N, int M, int Z, int iter, float tau, float lambdaf);
+cdef extern void TV_ROF_GPU_kernel(float* A, float* B, int N, int M, int Z, int iter, float tau, float lambdaf);
cdef extern float pad_crop(float *A, float *Ap,
int OldSizeX, int OldSizeY, int OldSizeZ,
int NewSizeX, int NewSizeY, int NewSizeZ,
@@ -67,7 +67,7 @@ def NML(inputData,
h,
lambdaf)
-def ROF_TV_GPU(inputData,
+def GPU_ROF_TV(inputData,
iterations,
time_marching_parameter,
regularization_parameter):
@@ -343,7 +343,7 @@ def ROFTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
np.zeros([dims[0],dims[1]], dtype='float32')
# Running CUDA code here
- TV_ROF_GPU(
+ TV_ROF_GPU_kernel(
&inputData[0,0], &B[0,0],
dims[0], dims[1], 0,
iterations ,
@@ -366,7 +366,7 @@ def ROFTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
# Running CUDA code here
- TV_ROF_GPU(
+ TV_ROF_GPU_kernel(
&inputData[0,0,0], &B[0,0,0],
dims[0], dims[1], dims[2],
iterations ,