summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/src
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc3@googlemail.com>2018-04-12 12:09:38 +0100
committerGitHub <noreply@github.com>2018-04-12 12:09:38 +0100
commit7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69 (patch)
tree225dcf0db9dc7e0f0fc5fc001a7efb14c19658f8 /Wrappers/Python/src
parentaa99eb8a9bd47ecd6e4d3d1e8c9f0cfbefb4f7bb (diff)
parent22f6e22cbe6db04c6bbe8d259ce761e3748d7102 (diff)
downloadregularization-7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69.tar.gz
regularization-7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69.tar.bz2
regularization-7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69.tar.xz
regularization-7ae26b005c5f3d9ca0181ab1cf06b6ee8df5ed69.zip
Merge pull request #49 from vais-ral/dTV
dTV regulariser (2D/3D CPU/GPU)
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx71
-rw-r--r--Wrappers/Python/src/gpu_regularisers.pyx101
2 files changed, 166 insertions, 6 deletions
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index 0f08f7f..1661375 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -20,6 +20,7 @@ cimport numpy as np
cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ);
cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
+cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
#****************************************************************#
@@ -89,7 +90,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
np.zeros([dims[0],dims[1]], dtype='float32')
- #/* Run ROF iterations for 2D data */
+ #/* Run FGP-TV iterations for 2D data */
TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter,
iterationsNumb,
tolerance_param,
@@ -115,7 +116,7 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
- #/* Run ROF iterations for 3D data */
+ #/* Run FGP-TV iterations for 3D data */
TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter,
iterationsNumb,
tolerance_param,
@@ -124,3 +125,69 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
printM,
dims[2], dims[1], dims[0])
return outputData
+#****************************************************************#
+#**************Directional Total-variation FGP ******************#
+#****************************************************************#
+#******** Directional TV Fast-Gradient-Projection (FGP)*********#
+def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM):
+ if inputData.ndim == 2:
+ return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
+ elif inputData.ndim == 3:
+ return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM)
+
+def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterationsNumb,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ #/* Run FGP-dTV iterations for 2D data */
+ dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter,
+ iterationsNumb,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], 1)
+
+ return outputData
+
+def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterationsNumb,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0], dims[1], dims[2]], dtype='float32')
+
+ #/* Run FGP-dTV iterations for 3D data */
+ dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], regularisation_parameter,
+ iterationsNumb,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[2], dims[1], dims[0])
+ return outputData
diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx
index ea746d3..18efdcd 100644
--- a/Wrappers/Python/src/gpu_regularisers.pyx
+++ b/Wrappers/Python/src/gpu_regularisers.pyx
@@ -20,6 +20,7 @@ cimport numpy as np
cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z);
cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z);
+cdef extern void dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z);
# Total-variation Rudin-Osher-Fatemi (ROF)
def TV_ROF_GPU(inputData,
@@ -61,7 +62,36 @@ def TV_FGP_GPU(inputData,
methodTV,
nonneg,
printM)
-
+# Directional Total-variation Fast-Gradient-Projection (FGP)
+def dTV_FGP_GPU(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM):
+ if inputData.ndim == 2:
+ return FGPdTV2D(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM)
+ elif inputData.ndim == 3:
+ return FGPdTV3D(inputData,
+ refdata,
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM)
#****************************************************************#
#********************** Total-variation ROF *********************#
#****************************************************************#
@@ -157,8 +187,7 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
# Running CUDA code here
- TV_FGP_GPU_main(
- &inputData[0,0,0], &outputData[0,0,0],
+ TV_FGP_GPU_main(&inputData[0,0,0], &outputData[0,0,0],
regularisation_parameter ,
iterations,
tolerance_param,
@@ -167,4 +196,68 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
printM,
dims[2], dims[1], dims[0]);
- return outputData
+ return outputData
+
+#****************************************************************#
+#**************Directional Total-variation FGP ******************#
+#****************************************************************#
+#******** Directional TV Fast-Gradient-Projection (FGP)*********#
+def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=2, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterations,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ # Running CUDA code here
+ dTV_FGP_GPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0],
+ regularisation_parameter,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[0], dims[1], 1);
+
+ return outputData
+
+def FGPdTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
+ np.ndarray[np.float32_t, ndim=3, mode="c"] refdata,
+ float regularisation_parameter,
+ int iterations,
+ float tolerance_param,
+ float eta_const,
+ int methodTV,
+ int nonneg,
+ int printM):
+
+ cdef long dims[3]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+ dims[2] = inputData.shape[2]
+
+ cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1],dims[2]], dtype='float32')
+
+ # Running CUDA code here
+ dTV_FGP_GPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0],
+ regularisation_parameter ,
+ iterations,
+ tolerance_param,
+ eta_const,
+ methodTV,
+ nonneg,
+ printM,
+ dims[2], dims[1], dims[0]);
+ return outputData