diff options
author | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-25 15:41:36 +0000 |
---|---|---|
committer | Edoardo Pasca <edo.paskino@gmail.com> | 2018-01-30 12:03:59 +0000 |
commit | 886d74aa7bddf2cf5972ab6516ace2dcb764e844 (patch) | |
tree | fb2de1e1464aef8f176e2b495cc8777c06f44169 /Wrappers/Python/src | |
parent | 6cdaf1cfd380b3c40908d6b82e24afb99e005c71 (diff) | |
download | regularization-886d74aa7bddf2cf5972ab6516ace2dcb764e844.tar.gz regularization-886d74aa7bddf2cf5972ab6516ace2dcb764e844.tar.bz2 regularization-886d74aa7bddf2cf5972ab6516ace2dcb764e844.tar.xz regularization-886d74aa7bddf2cf5972ab6516ace2dcb764e844.zip |
added cython wrapper for gpu regularizers
Diffstat (limited to 'Wrappers/Python/src')
-rw-r--r-- | Wrappers/Python/src/fista_module.cpp | 1047 | ||||
-rw-r--r-- | Wrappers/Python/src/fista_module_gpu.pyx | 154 | ||||
-rw-r--r-- | Wrappers/Python/src/multiply.pyx | 49 |
3 files changed, 1250 insertions, 0 deletions
diff --git a/Wrappers/Python/src/fista_module.cpp b/Wrappers/Python/src/fista_module.cpp new file mode 100644 index 0000000..3876cad --- /dev/null +++ b/Wrappers/Python/src/fista_module.cpp @@ -0,0 +1,1047 @@ +/* +This work is part of the Core Imaging Library developed by +Visual Analytics and Imaging System Group of the Science Technology +Facilities Council, STFC + +Copyright 2017 Daniil Kazantsev +Copyright 2017 Srikanth Nagella, Edoardo Pasca + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +*/ + +#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION + +#include <iostream> +#include <cmath> + +#include <boost/python.hpp> +#include <boost/python/numpy.hpp> +#include "boost/tuple/tuple.hpp" + +#include "SplitBregman_TV_core.h" +#include "FGP_TV_core.h" +#include "LLT_model_core.h" +#include "PatchBased_Regul_core.h" +#include "TGV_PD_core.h" +#include "utils.h" + + + +#if defined(_WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(_WIN64) +#include <windows.h> +// this trick only if compiler is MSVC +__if_not_exists(uint8_t) { typedef __int8 uint8_t; } +__if_not_exists(uint16_t) { typedef __int8 uint16_t; } +#endif + +namespace bp = boost::python; +namespace np = boost::python::numpy; + +/*! in the Matlab implementation this is called as +void mexFunction( +int nlhs, mxArray *plhs[], +int nrhs, const mxArray *prhs[]) +where: +prhs Array of pointers to the INPUT mxArrays +nrhs int number of INPUT mxArrays + +nlhs Array of pointers to the OUTPUT mxArrays +plhs int number of OUTPUT mxArrays + +*********************************************************** + +*********************************************************** +double mxGetScalar(const mxArray *pm); +args: pm Pointer to an mxArray; cannot be a cell mxArray, a structure mxArray, or an empty mxArray. +Returns: Pointer to the value of the first real (nonimaginary) element of the mxArray. In C, mxGetScalar returns a double. +*********************************************************** +char *mxArrayToString(const mxArray *array_ptr); +args: array_ptr Pointer to mxCHAR array. +Returns: C-style string. Returns NULL on failure. Possible reasons for failure include out of memory and specifying an array that is not an mxCHAR array. +Description: Call mxArrayToString to copy the character data of an mxCHAR array into a C-style string. +*********************************************************** +mxClassID mxGetClassID(const mxArray *pm); +args: pm Pointer to an mxArray +Returns: Numeric identifier of the class (category) of the mxArray that pm points to.For user-defined types, +mxGetClassId returns a unique value identifying the class of the array contents. +Use mxIsClass to determine whether an array is of a specific user-defined type. + +mxClassID Value MATLAB Type MEX Type C Primitive Type +mxINT8_CLASS int8 int8_T char, byte +mxUINT8_CLASS uint8 uint8_T unsigned char, byte +mxINT16_CLASS int16 int16_T short +mxUINT16_CLASS uint16 uint16_T unsigned short +mxINT32_CLASS int32 int32_T int +mxUINT32_CLASS uint32 uint32_T unsigned int +mxINT64_CLASS int64 int64_T long long +mxUINT64_CLASS uint64 uint64_T unsigned long long +mxSINGLE_CLASS single float float +mxDOUBLE_CLASS double double double + +**************************************************************** +double *mxGetPr(const mxArray *pm); +args: pm Pointer to an mxArray of type double +Returns: Pointer to the first element of the real data. Returns NULL in C (0 in Fortran) if there is no real data. +**************************************************************** +mxArray *mxCreateNumericArray(mwSize ndim, const mwSize *dims, +mxClassID classid, mxComplexity ComplexFlag); +args: ndimNumber of dimensions. If you specify a value for ndim that is less than 2, mxCreateNumericArray automatically sets the number of dimensions to 2. +dims Dimensions array. Each element in the dimensions array contains the size of the array in that dimension. +For example, in C, setting dims[0] to 5 and dims[1] to 7 establishes a 5-by-7 mxArray. Usually there are ndim elements in the dims array. +classid Identifier for the class of the array, which determines the way the numerical data is represented in memory. +For example, specifying mxINT16_CLASS in C causes each piece of numerical data in the mxArray to be represented as a 16-bit signed integer. +ComplexFlag If the mxArray you are creating is to contain imaginary data, set ComplexFlag to mxCOMPLEX in C (1 in Fortran). Otherwise, set ComplexFlag to mxREAL in C (0 in Fortran). +Returns: Pointer to the created mxArray, if successful. If unsuccessful in a standalone (non-MEX file) application, returns NULL in C (0 in Fortran). +If unsuccessful in a MEX file, the MEX file terminates and returns control to the MATLAB prompt. The function is unsuccessful when there is not +enough free heap space to create the mxArray. +*/ + + + +bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { + + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + //const int *dim_array; + float *A, *U = NULL, *U_old = NULL, *Dx = NULL, *Dy = NULL, *Dz = NULL, *Bx = NULL, *By = NULL, *Bz = NULL, lambda, mu, epsil, re, re1, re_old; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + // Parameter handling is be done in Python + ///*Handling Matlab input data*/ + //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + ///*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ + A = reinterpret_cast<float *>(input.get_data()); + + //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ + mu = (float)d_mu; + + //iter = 35; /* default iterations number */ + + //epsil = 0.0001; /* default tolerance constant */ + epsil = (float)d_epsil; + //methTV = 0; /* default isotropic TV penalty */ + //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ + //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ + //if (nrhs == 5) { + // char *penalty_type; + // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + // mxFree(penalty_type); + //} + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + lambda = 2.0f*mu; + count = 1; + re_old = 0.0f; + /*Handling Matlab output data*/ + dimY = dim_array[0]; dimX = dim_array[1]; dimZ = dim_array[2]; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Dx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Dy = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //Bx = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + //By = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npDx = np::zeros(shape, dtype); + np::ndarray npDy = np::zeros(shape, dtype); + np::ndarray npBx = np::zeros(shape, dtype); + np::ndarray npBy = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + Dx = reinterpret_cast<float *>(npDx.get_data()); + Dy = reinterpret_cast<float *>(npDy.get_data()); + Bx = reinterpret_cast<float *>(npBx.get_data()); + By = reinterpret_cast<float *>(npBy.get_data()); + + + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for (ll = 0; ll < iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel2D(U, A, Dx, Dy, Bx, By, dimX, dimY, lambda, mu); + + if (methTV == 1) updDxDy_shrinkAniso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + else updDxDy_shrinkIso2D(U, Dx, Dy, Bx, By, dimX, dimY, lambda); + + updBxBy2D(U, Dx, Dy, Bx, By, dimX, dimY); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j < dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*copyIm(U_old, U, dimX, dimY, dimZ); */ + + } + //printf("SB iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + result.append<int>(ll); + } + if (number_of_dims == 3) { + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dy = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Dz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bx = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + By = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + Bz = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npDx = np::zeros(shape, dtype); + np::ndarray npDy = np::zeros(shape, dtype); + np::ndarray npDz = np::zeros(shape, dtype); + np::ndarray npBx = np::zeros(shape, dtype); + np::ndarray npBy = np::zeros(shape, dtype); + np::ndarray npBz = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + Dx = reinterpret_cast<float *>(npDx.get_data()); + Dy = reinterpret_cast<float *>(npDy.get_data()); + Dz = reinterpret_cast<float *>(npDz.get_data()); + Bx = reinterpret_cast<float *>(npBx.get_data()); + By = reinterpret_cast<float *>(npBy.get_data()); + Bz = reinterpret_cast<float *>(npBz.get_data()); + + copyIm(A, U, dimX, dimY, dimZ); /*initialize */ + + /* begin outer SB iterations */ + for (ll = 0; ll<iter; ll++) { + + /*storing old values*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*GS iteration */ + gauss_seidel3D(U, A, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda, mu); + + if (methTV == 1) updDxDyDz_shrinkAniso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + else updDxDyDz_shrinkIso3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ, lambda); + + updBxByBz3D(U, Dx, Dy, Dz, Bx, By, Bz, dimX, dimY, dimZ); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U[j] - U_old[j], 2); + re1 += pow(U[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + /*printf("%f %i %i \n", re, ll, count); */ + re_old = re; + } + //printf("SB iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + result.append<int>(ll); + } + return result; + + } + + + +bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { + + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL; + float lambda, tk, tkp1, re, re1, re_old, epsil, funcval; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + // Parameter handling is be done in Python + ///*Handling Matlab input data*/ + //if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); + + ///*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ + A = reinterpret_cast<float *>(input.get_data()); + + //mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ + lambda = (float)d_mu; + + //iter = 35; /* default iterations number */ + + //epsil = 0.0001; /* default tolerance constant */ + epsil = (float)d_epsil; + //methTV = 0; /* default isotropic TV penalty */ + //if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ + //if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ + //if (nrhs == 5) { + // char *penalty_type; + // penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + // if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + // if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + // mxFree(penalty_type); + //} + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + //plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); + bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + np::ndarray out1 = np::zeros(shape1, dtype); + + //float *funcvalA = (float *)mxGetData(plhs[1]); + float * funcvalA = reinterpret_cast<float *>(out1.get_data()); + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + + tk = 1.0f; + tkp1 = 1.0f; + count = 1; + re_old = 0.0f; + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npD = np::zeros(shape, dtype); + np::ndarray npD_old = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npP1_old = np::zeros(shape, dtype); + np::ndarray npP2_old = np::zeros(shape, dtype); + np::ndarray npR1 = np::zeros(shape, dtype); + np::ndarray npR2 = np::zeros(shape, dtype); + + D = reinterpret_cast<float *>(npD.get_data()); + D_old = reinterpret_cast<float *>(npD_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + P1_old = reinterpret_cast<float *>(npP1_old.get_data()); + P2_old = reinterpret_cast<float *>(npP2_old.get_data()); + R1 = reinterpret_cast<float *>(npR1.get_data()); + R2 = reinterpret_cast<float *>(npR2.get_data()); + + /* begin iterations */ + for (ll = 0; ll<iter; ll++) { + /* computing the gradient of the objective function */ + Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); + + /*Taking a step towards minus of the gradient*/ + Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); + + + + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); + + /* calculate norm */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j], 2); + re1 += pow(D[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 3) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + } + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + tk = tkp1; + + /* calculating the objective function value */ + if (ll == (iter - 1)) { + Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + } + } + //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + result.append<np::ndarray>(npD); + result.append<np::ndarray>(out1); + result.append<int>(ll); + } + if (number_of_dims == 3) { + /*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npD = np::zeros(shape, dtype); + np::ndarray npD_old = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npP3 = np::zeros(shape, dtype); + np::ndarray npP1_old = np::zeros(shape, dtype); + np::ndarray npP2_old = np::zeros(shape, dtype); + np::ndarray npP3_old = np::zeros(shape, dtype); + np::ndarray npR1 = np::zeros(shape, dtype); + np::ndarray npR2 = np::zeros(shape, dtype); + np::ndarray npR3 = np::zeros(shape, dtype); + + D = reinterpret_cast<float *>(npD.get_data()); + D_old = reinterpret_cast<float *>(npD_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + P3 = reinterpret_cast<float *>(npP3.get_data()); + P1_old = reinterpret_cast<float *>(npP1_old.get_data()); + P2_old = reinterpret_cast<float *>(npP2_old.get_data()); + P3_old = reinterpret_cast<float *>(npP3_old.get_data()); + R1 = reinterpret_cast<float *>(npR1.get_data()); + R2 = reinterpret_cast<float *>(npR2.get_data()); + R3 = reinterpret_cast<float *>(npR3.get_data()); + /* begin iterations */ + for (ll = 0; ll<iter; ll++) { + /* computing the gradient of the objective function */ + Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + /*Taking a step towards minus of the gradient*/ + Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); + + /* projection step */ + Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); + + /*updating R and t*/ + tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; + Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); + + /* calculate norm - stopping rules*/ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(D[j] - D_old[j], 2); + re1 += pow(D[j], 2); + } + re = sqrt(re) / sqrt(re1); + /* stop if the norm residual is less than the tolerance EPS */ + if (re < epsil) count++; + if (count > 3) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + break; + } + } + + re_old = re; + /*printf("%f %i %i \n", re, ll, count); */ + + /*storing old values*/ + copyIm(D, D_old, dimX, dimY, dimZ); + copyIm(P1, P1_old, dimX, dimY, dimZ); + copyIm(P2, P2_old, dimX, dimY, dimZ); + copyIm(P3, P3_old, dimX, dimY, dimZ); + tk = tkp1; + + if (ll == (iter - 1)) { + Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); + funcval = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); + //funcvalA[0] = sqrt(funcval); + float fv = sqrt(funcval); + std::memcpy(funcvalA, &fv, sizeof(float)); + } + + } + //printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); + result.append<np::ndarray>(npD); + result.append<np::ndarray>(out1); + result.append<int>(ll); + } + + return result; +} + +bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) { + // the result is in the following list + bp::list result; + + int number_of_dims, dimX, dimY, dimZ, ll, j, count; + //const int *dim_array; + float *U0, *U = NULL, *U_old = NULL, *D1 = NULL, *D2 = NULL, *D3 = NULL, lambda, tau, re, re1, epsil, re_old; + unsigned short *Map = NULL; + + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + + ///*Handling Matlab input data*/ + //U0 = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ + //tau = (float)mxGetScalar(prhs[2]); /* time-step */ + //iter = (int)mxGetScalar(prhs[3]); /*iterations number*/ + //epsil = (float)mxGetScalar(prhs[4]); /* tolerance constant */ + //switcher = (int)mxGetScalar(prhs[5]); /*switch on (1) restrictive smoothing in Z dimension*/ + + U0 = reinterpret_cast<float *>(input.get_data()); + lambda = (float)d_lambda; + tau = (float)d_tau; + // iter is passed as parameter + epsil = (float)d_epsil; + // switcher is passed as parameter + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = 1; + + if (number_of_dims == 2) { + /*2D case*/ + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npD1 = np::zeros(shape, dtype); + np::ndarray npD2 = np::zeros(shape, dtype); + + //result.append<np::ndarray>(npU); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + D1 = reinterpret_cast<float *>(npD1.get_data()); + D2 = reinterpret_cast<float *>(npD2.get_data()); + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + + for (ll = 0; ll < iter; ll++) { + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der2D(U, D1, D2, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd2D(U0, U, D1, D2, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + // printf("HO iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + + } + else if (number_of_dims == 3) { + /*3D case*/ + dimZ = dim_array[2]; + /*U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + U_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + D3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + if (switcher != 0) { + Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + }*/ + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + np::ndarray npD1 = np::zeros(shape, dtype); + np::ndarray npD2 = np::zeros(shape, dtype); + np::ndarray npD3 = np::zeros(shape, dtype); + np::ndarray npMap = np::zeros(shape, np::dtype::get_builtin<unsigned short>()); + Map = reinterpret_cast<unsigned short *>(npMap.get_data()); + if (switcher != 0) { + //Map = (unsigned short*)mxGetPr(plhs[1] = mxCreateNumericArray(3, dim_array, mxUINT16_CLASS, mxREAL)); + + Map = reinterpret_cast<unsigned short *>(npMap.get_data()); + } + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + D1 = reinterpret_cast<float *>(npD1.get_data()); + D2 = reinterpret_cast<float *>(npD2.get_data()); + D3 = reinterpret_cast<float *>(npD2.get_data()); + + /*Copy U0 to U*/ + copyIm(U0, U, dimX, dimY, dimZ); + + count = 1; + re_old = 0.0f; + + + if (switcher == 1) { + /* apply restrictive smoothing */ + calcMap(U, Map, dimX, dimY, dimZ); + /*clear outliers */ + cleanMap(Map, dimX, dimY, dimZ); + } + for (ll = 0; ll < iter; ll++) { + + copyIm(U, U_old, dimX, dimY, dimZ); + + /*estimate inner derrivatives */ + der3D(U, D1, D2, D3, dimX, dimY, dimZ); + /* calculate div^2 and update */ + div_upd3D(U0, U, D1, D2, D3, Map, switcher, dimX, dimY, dimZ, lambda, tau); + + /* calculate norm to terminate earlier */ + re = 0.0f; re1 = 0.0f; + for (j = 0; j<dimX*dimY*dimZ; j++) + { + re += pow(U_old[j] - U[j], 2); + re1 += pow(U_old[j], 2); + } + re = sqrt(re) / sqrt(re1); + if (re < epsil) count++; + if (count > 4) break; + + /* check that the residual norm is decreasing */ + if (ll > 2) { + if (re > re_old) break; + } + re_old = re; + + } /*end of iterations*/ + //printf("HO iterations stopped at iteration: %i\n", ll); + result.append<np::ndarray>(npU); + if (switcher != 0) result.append<np::ndarray>(npMap); + + } + return result; +} + + +bp::list PatchBased_Regul(np::ndarray input, double d_lambda, int SearchW_real, int SimilW, double d_h) { + // the result is in the following list + bp::list result; + + int N, M, Z, numdims, SearchW, /*SimilW, SearchW_real,*/ padXY, newsizeX, newsizeY, newsizeZ, switchpad_crop; + //const int *dims; + float *A, *B = NULL, *Ap = NULL, *Bp = NULL, h, lambda; + + numdims = input.get_nd(); + int dims[3]; + + dims[0] = input.shape(0); + dims[1] = input.shape(1); + if (numdims == 2) { + dims[2] = -1; + } + else { + dims[2] = input.shape(2); + } + /*numdims = mxGetNumberOfDimensions(prhs[0]); + dims = mxGetDimensions(prhs[0]);*/ + + N = dims[0]; + M = dims[1]; + Z = dims[2]; + + //if ((numdims < 2) || (numdims > 3)) { mexErrMsgTxt("The input should be 2D image or 3D volume"); } + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + + //if (nrhs != 5) mexErrMsgTxt("Five inputs reqired: Image(2D,3D), SearchW, SimilW, Threshold, Regularization parameter"); + + ///*Handling inputs*/ + //A = (float *)mxGetData(prhs[0]); /* the image to regularize/filter */ + A = reinterpret_cast<float *>(input.get_data()); + //SearchW_real = (int)mxGetScalar(prhs[1]); /* the searching window ratio */ + //SimilW = (int)mxGetScalar(prhs[2]); /* the similarity window ratio */ + //h = (float)mxGetScalar(prhs[3]); /* parameter for the PB filtering function */ + //lambda = (float)mxGetScalar(prhs[4]); /* regularization parameter */ + + //if (h <= 0) mexErrMsgTxt("Parmeter for the PB penalty function should be > 0"); + //if (lambda <= 0) mexErrMsgTxt(" Regularization parmeter should be > 0"); + + lambda = (float)d_lambda; + h = (float)d_h; + SearchW = SearchW_real + 2 * SimilW; + + /* SearchW_full = 2*SearchW + 1; */ /* the full searching window size */ + /* SimilW_full = 2*SimilW + 1; */ /* the full similarity window size */ + + + padXY = SearchW + 2 * SimilW; /* padding sizes */ + newsizeX = N + 2 * (padXY); /* the X size of the padded array */ + newsizeY = M + 2 * (padXY); /* the Y size of the padded array */ + newsizeZ = Z + 2 * (padXY); /* the Z size of the padded array */ + int N_dims[] = { newsizeX, newsizeY, newsizeZ }; + /******************************2D case ****************************/ + if (numdims == 2) { + ///*Handling output*/ + //B = (float*)mxGetData(plhs[0] = mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + ///*allocating memory for the padded arrays */ + //Ap = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + //Bp = (float*)mxGetData(mxCreateNumericMatrix(newsizeX, newsizeY, mxSINGLE_CLASS, mxREAL)); + ///**************************************************************************/ + + bp::tuple shape = bp::make_tuple(N, M); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npB = np::zeros(shape, dtype); + + shape = bp::make_tuple(newsizeX, newsizeY); + np::ndarray npAp = np::zeros(shape, dtype); + np::ndarray npBp = np::zeros(shape, dtype); + B = reinterpret_cast<float *>(npB.get_data()); + Ap = reinterpret_cast<float *>(npAp.get_data()); + Bp = reinterpret_cast<float *>(npBp.get_data()); + + /*Perform padding of image A to the size of [newsizeX * newsizeY] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC2D(Ap, Bp, newsizeY, newsizeX, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, 0, newsizeY, newsizeX, 0, padXY, switchpad_crop); + + result.append<np::ndarray>(npB); + } + else + { + /******************************3D case ****************************/ + ///*Handling output*/ + //B = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dims, mxSINGLE_CLASS, mxREAL)); + ///*allocating memory for the padded arrays */ + //Ap = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + //Bp = (float*)mxGetPr(mxCreateNumericArray(3, N_dims, mxSINGLE_CLASS, mxREAL)); + /**************************************************************************/ + bp::tuple shape = bp::make_tuple(dims[0], dims[1], dims[2]); + bp::tuple shape_AB = bp::make_tuple(N_dims[0], N_dims[1], N_dims[2]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npB = np::zeros(shape, dtype); + np::ndarray npAp = np::zeros(shape_AB, dtype); + np::ndarray npBp = np::zeros(shape_AB, dtype); + B = reinterpret_cast<float *>(npB.get_data()); + Ap = reinterpret_cast<float *>(npAp.get_data()); + Bp = reinterpret_cast<float *>(npBp.get_data()); + /*Perform padding of image A to the size of [newsizeX * newsizeY * newsizeZ] */ + switchpad_crop = 0; /*padding*/ + pad_crop(A, Ap, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + /* Do PB regularization with the padded array */ + PB_FUNC3D(Ap, Bp, newsizeY, newsizeX, newsizeZ, padXY, SearchW, SimilW, (float)h, (float)lambda); + + switchpad_crop = 1; /*cropping*/ + pad_crop(Bp, B, M, N, Z, newsizeY, newsizeX, newsizeZ, padXY, switchpad_crop); + + result.append<np::ndarray>(npB); + } /*end else ndims*/ + + return result; +} + +bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_alpha0, int iter) { + // the result is in the following list + bp::list result; + int number_of_dims, /*iter,*/ dimX, dimY, dimZ, ll; + //const int *dim_array; + float *A, *U, *U_old, *P1, *P2, *Q1, *Q2, *Q3, *V1, *V1_old, *V2, *V2_old, lambda, L2, tau, sigma, alpha1, alpha0; + + //number_of_dims = mxGetNumberOfDimensions(prhs[0]); + //dim_array = mxGetDimensions(prhs[0]); + number_of_dims = input.get_nd(); + int dim_array[3]; + + dim_array[0] = input.shape(0); + dim_array[1] = input.shape(1); + if (number_of_dims == 2) { + dim_array[2] = -1; + } + else { + dim_array[2] = input.shape(2); + } + /*Handling Matlab input data*/ + //A = (float *)mxGetData(prhs[0]); /*origanal noise image/volume*/ + //if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input in single precision is required"); } + + A = reinterpret_cast<float *>(input.get_data()); + + //lambda = (float)mxGetScalar(prhs[1]); /*regularization parameter*/ + //alpha1 = (float)mxGetScalar(prhs[2]); /*first-order term*/ + //alpha0 = (float)mxGetScalar(prhs[3]); /*second-order term*/ + //iter = (int)mxGetScalar(prhs[4]); /*iterations number*/ + //if (nrhs != 5) mexErrMsgTxt("Five input parameters is reqired: Image(2D/3D), Regularization parameter, alpha1, alpha0, Iterations"); + lambda = (float)d_lambda; + alpha1 = (float)d_alpha1; + alpha0 = (float)d_alpha0; + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; + + if (number_of_dims == 2) { + /*2D case*/ + dimZ = 1; + bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); + np::dtype dtype = np::dtype::get_builtin<float>(); + + np::ndarray npU = np::zeros(shape, dtype); + np::ndarray npP1 = np::zeros(shape, dtype); + np::ndarray npP2 = np::zeros(shape, dtype); + np::ndarray npQ1 = np::zeros(shape, dtype); + np::ndarray npQ2 = np::zeros(shape, dtype); + np::ndarray npQ3 = np::zeros(shape, dtype); + np::ndarray npV1 = np::zeros(shape, dtype); + np::ndarray npV1_old = np::zeros(shape, dtype); + np::ndarray npV2 = np::zeros(shape, dtype); + np::ndarray npV2_old = np::zeros(shape, dtype); + np::ndarray npU_old = np::zeros(shape, dtype); + + U = reinterpret_cast<float *>(npU.get_data()); + U_old = reinterpret_cast<float *>(npU_old.get_data()); + P1 = reinterpret_cast<float *>(npP1.get_data()); + P2 = reinterpret_cast<float *>(npP2.get_data()); + Q1 = reinterpret_cast<float *>(npQ1.get_data()); + Q2 = reinterpret_cast<float *>(npQ2.get_data()); + Q3 = reinterpret_cast<float *>(npQ3.get_data()); + V1 = reinterpret_cast<float *>(npV1.get_data()); + V1_old = reinterpret_cast<float *>(npV1_old.get_data()); + V2 = reinterpret_cast<float *>(npV2.get_data()); + V2_old = reinterpret_cast<float *>(npV2_old.get_data()); + //U = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + /*dual variables*/ + /*P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + Q1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + Q3 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + U_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + + V1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + V2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ + /*printf("%i \n", i);*/ + L2 = 12.0; /*Lipshitz constant*/ + tau = 1.0 / pow(L2, 0.5); + sigma = 1.0 / pow(L2, 0.5); + + /*Copy A to U*/ + copyIm(A, U, dimX, dimY, dimZ); + /* Here primal-dual iterations begin for 2D */ + for (ll = 0; ll < iter; ll++) { + + /* Calculate Dual Variable P */ + DualP_2D(U, V1, V2, P1, P2, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for P*/ + ProjP_2D(P1, P2, dimX, dimY, dimZ, alpha1); + + /* Calculate Dual Variable Q */ + DualQ_2D(V1, V2, Q1, Q2, Q3, dimX, dimY, dimZ, sigma); + + /*Projection onto convex set for Q*/ + ProjQ_2D(Q1, Q2, Q3, dimX, dimY, dimZ, alpha0); + + /*saving U into U_old*/ + copyIm(U, U_old, dimX, dimY, dimZ); + + /*adjoint operation -> divergence and projection of P*/ + DivProjP_2D(U, A, P1, P2, dimX, dimY, dimZ, lambda, tau); + + /*get updated solution U*/ + newU(U, U_old, dimX, dimY, dimZ); + + /*saving V into V_old*/ + copyIm(V1, V1_old, dimX, dimY, dimZ); + copyIm(V2, V2_old, dimX, dimY, dimZ); + + /* upd V*/ + UpdV_2D(V1, V2, P1, P2, Q1, Q2, Q3, dimX, dimY, dimZ, tau); + + /*get new V*/ + newU(V1, V1_old, dimX, dimY, dimZ); + newU(V2, V2_old, dimX, dimY, dimZ); + } /*end of iterations*/ + + result.append<np::ndarray>(npU); + } + + + + + return result; +} + +BOOST_PYTHON_MODULE(cpu_regularizers) +{ + np::initialize(); + + //To specify that this module is a package + bp::object package = bp::scope(); + package.attr("__path__") = "cpu_regularizers"; + + np::dtype dt1 = np::dtype::get_builtin<uint8_t>(); + np::dtype dt2 = np::dtype::get_builtin<uint16_t>(); + + def("SplitBregman_TV", SplitBregman_TV); + def("FGP_TV", FGP_TV); + def("LLT_model", LLT_model); + def("PatchBased_Regul", PatchBased_Regul); + def("TGV_PD", TGV_PD); +} diff --git a/Wrappers/Python/src/fista_module_gpu.pyx b/Wrappers/Python/src/fista_module_gpu.pyx new file mode 100644 index 0000000..9d5b15a --- /dev/null +++ b/Wrappers/Python/src/fista_module_gpu.pyx @@ -0,0 +1,154 @@ +# distutils: language=c++ +""" +Copyright 2018 CCPi +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. + +Author: Edoardo Pasca +""" + +import cython + +import numpy as np +cimport numpy as np + + +cdef extern void Diff4th_GPU_kernel(float* A, float* B, int N, int M, int Z, + float sigma, int iter, float tau, float lambdaf); +cdef extern void NLM_GPU_kernel(float *A, float* B, float *Eucl_Vec, + int N, int M, int Z, int dimension, + int SearchW, int SimilW, + int SearchW_real, float denh2, float lambdaf); + +def Diff4thHajiaboli(inputData, + regularization_parameter, + iterations, + edge_preserving_parameter): + if inputData.ndims == 2: + return Diff4thHajiaboli2D(inputData, + regularization_parameter, + iterations, + edge_preserving_parameter) + elif inputData.ndims == 3: + return Diff4thHajiaboli3D(inputData, + regularization_parameter, + iterations, + edge_preserving_parameter) + +def Diff4thHajiaboli2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + float regularization_parameter, + int iterations, + float edge_preserving_parameter): + + cdef long dims[2] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + N = dims[0] + 2; + M = dims[1] + 2; + + #time step is sufficiently small for an explicit methods + tau = 0.01 + + #A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + #B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + A_L = np.zeros((N,M), dtype=np.float) + B_L = np.zeros((N,M), dtype=np.float) + B = np.zeros((dims[0],dims[1]), dtype=np.float) + #A = inputData + + # copy A to the bigger A_L with boundaries + #pragma omp parallel for shared(A_L, A) private(i,j) + cdef int i, j; + for i in range(N): + for j in range(M): + if (((i > 0) and (i < N-1)) and ((j > 0) and (j < M-1))): + #A_L[i*M+j] = A[(i-1)*(dims[1])+(j-1)] + A_L[i][j] = inputData[i-1][j-1] + + # Running CUDA code here + #Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda); +# Diff4th_GPU_kernel( +# #<float*> A_L.data, <float*> B_L.data, +# &A_L[0,0], &B_L[0,0], +# N, M, 0, +# edge_preserving_parameter, +# iterations , +# tau, +# regularization_parameter) + # copy the processed B_L to a smaller B + for i in range(N): + for j in range(M): + if (((i > 0) and (i < N-1)) and ((j > 0) and (j < M-1))): + B[i-1][j-1] = B_L[i][j] + ##pragma omp parallel for shared(B_L, B) private(i,j) + #for (i=0; i < N; i++) { + # for (j=0; j < M; j++) { + # if (((i > 0) && (i < N-1)) && ((j > 0) && (j < M-1))) B[(i-1)*(dims[1])+(j-1)] = B_L[i*M+j]; + # }} + + return B + +def Diff4thHajiaboli3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularization_parameter, + int iterations, + float edge_preserving_parameter): + + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + N = dims[0] + 2 + M = dims[1] + 2 + Z = dims[2] + 2 + + # Time Step is small for an explicit methods + tau = 0.0007; + + #A_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + #B_L = (float*)mxGetData(mxCreateNumericMatrix(N, M, mxSINGLE_CLASS, mxREAL)); + A_L = np.zeros((N,M,Z), dtype=np.float) + B_L = np.zeros((N,M,Z), dtype=np.float) + B = np.zeros((dims[0],dims[1],dims[2]), dtype=np.float) + #A = inputData + + # copy A to the bigger A_L with boundaries + #pragma omp parallel for shared(A_L, A) private(i,j) + cdef int i, j, k; + for i in range(N): + for j in range(M): + for k in range(Z): + if (((i > 0) and (i < N-1)) and \ + ((j > 0) and (j < M-1)) and \ + ((k > 0) and (k < Z-1))): + A_L[i][j][k] = inputData[i-1][j-1][k-1]; + + # Running CUDA code here + #Diff4th_GPU_kernel(A_L, B_L, N, M, Z, (float)sigma, iter, (float)tau, lambda); +# Diff4th_GPU_kernel( +# #<float*> A_L.data, <float*> B_L.data, +# &A_L[0,0,0], &B_L[0,0,0], +# N, M, Z, +# edge_preserving_parameter, +# iterations , +# tau, +# regularization_parameter) + # copy the processed B_L to a smaller B + for i in range(N): + for j in range(M): + for k in range(Z): + if (((i > 0) and (i < N-1)) and \ + ((j > 0) and (j < M-1)) and \ + ((k > 0) and (k < Z-1))): + B[i-1][j-1][k-1] = B_L[i][j][k] + + + return B + + diff --git a/Wrappers/Python/src/multiply.pyx b/Wrappers/Python/src/multiply.pyx new file mode 100644 index 0000000..65df1c6 --- /dev/null +++ b/Wrappers/Python/src/multiply.pyx @@ -0,0 +1,49 @@ +""" +multiply.pyx + +simple cython test of accessing a numpy array's data + +the C function: c_multiply multiplies all the values in a 2-d array by a scalar, in place. + +""" + +import cython + +# import both numpy and the Cython declarations for numpy +import numpy as np +cimport numpy as np + +# declare the interface to the C code +cdef extern void c_multiply (double* array, double value, int m, int n) + +@cython.boundscheck(False) +@cython.wraparound(False) +def multiply(np.ndarray[double, ndim=2, mode="c"] input not None, double value): + """ + multiply (arr, value) + + Takes a numpy arry as input, and multiplies each elemetn by value, in place + + param: array -- a 2-d numpy array of np.float64 + param: value -- a number that will be multiplied by each element in the array + + """ + cdef int m, n + + m, n = input.shape[0], input.shape[1] + + c_multiply (&input[0,0], value, m, n) + + return None + +def multiply2(np.ndarray[double, ndim=2, mode="c"] input not None, double value): + """ + this method works fine, but is not as future-proof the nupy API might change, etc. + """ + cdef int m, n + + m, n = input.shape[0], input.shape[1] + + c_multiply (<double*> input.data, value, m, n) + + return None
\ No newline at end of file |