summaryrefslogtreecommitdiffstats
path: root/Wrappers/Python/test
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2018-04-03 12:34:10 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2018-04-03 12:34:10 +0100
commit52ed0437bfbf5bb8a6fdafd65628c4460184fd2d (patch)
treed8cd588e7ca8992ec2e87ae3819f11a2ff5fd97e /Wrappers/Python/test
parent3ed9b4129cdab5110e67a4705b3bd52fd9781f8b (diff)
downloadregularization-52ed0437bfbf5bb8a6fdafd65628c4460184fd2d.tar.gz
regularization-52ed0437bfbf5bb8a6fdafd65628c4460184fd2d.tar.bz2
regularization-52ed0437bfbf5bb8a6fdafd65628c4460184fd2d.tar.xz
regularization-52ed0437bfbf5bb8a6fdafd65628c4460184fd2d.zip
cleaning stage, leaving only FGP/ROF and related compilers, demos
Diffstat (limited to 'Wrappers/Python/test')
-rw-r--r--Wrappers/Python/test/astra_test.py85
-rw-r--r--Wrappers/Python/test/create_phantom_projections.py49
-rw-r--r--Wrappers/Python/test/metrics.py20
-rw-r--r--Wrappers/Python/test/readhd5.py42
-rw-r--r--Wrappers/Python/test/simple_astra_test.py25
-rw-r--r--Wrappers/Python/test/test_reconstructor-os_phantom.py480
-rw-r--r--Wrappers/Python/test/test_reconstructor.py359
7 files changed, 20 insertions, 1040 deletions
diff --git a/Wrappers/Python/test/astra_test.py b/Wrappers/Python/test/astra_test.py
deleted file mode 100644
index 42c375a..0000000
--- a/Wrappers/Python/test/astra_test.py
+++ /dev/null
@@ -1,85 +0,0 @@
-import astra
-import numpy
-import filefun
-
-
-# read in the same data as the DemoRD2
-angles = filefun.dlmread("DemoRD2/angles.csv")
-darks_ar = filefun.dlmread("DemoRD2/darks_ar.csv", separator=",")
-flats_ar = filefun.dlmread("DemoRD2/flats_ar.csv", separator=",")
-
-if True:
- Sino3D = numpy.load("DemoRD2/Sino3D.npy")
-else:
- sino = filefun.dlmread("DemoRD2/sino_01.csv", separator=",")
- a = map (lambda x:x, numpy.shape(sino))
- a.append(20)
-
- Sino3D = numpy.zeros(tuple(a), dtype="float")
-
- for i in range(1,numpy.shape(Sino3D)[2]+1):
- print("Read file DemoRD2/sino_%02d.csv" % i)
- sino = filefun.dlmread("DemoRD2/sino_%02d.csv" % i, separator=",")
- Sino3D.T[i-1] = sino.T
-
-Weights3D = numpy.asarray(Sino3D, dtype="float")
-
-##angles_rad = angles*(pi/180); % conversion to radians
-##size_det = size(data_raw3D,1); % detectors dim
-##angSize = size(data_raw3D, 2); % angles dim
-##slices_tot = size(data_raw3D, 3); % no of slices
-##recon_size = 950; % reconstruction size
-
-
-angles_rad = angles * numpy.pi /180.
-size_det, angSize, slices_tot = numpy.shape(Sino3D)
-size_det, angSize, slices_tot = [int(i) for i in numpy.shape(Sino3D)]
-recon_size = 950
-Z_slices = 3;
-det_row_count = Z_slices;
-
-#proj_geom = astra_create_proj_geom('parallel3d', 1, 1,
-# det_row_count, size_det, angles_rad);
-
-detectorSpacingX = 1.0
-detectorSpacingY = detectorSpacingX
-proj_geom = astra.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- size_det,
- angles_rad)
-
-#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
-vol_geom = astra.create_vol_geom(recon_size,recon_size,Z_slices);
-
-sino = numpy.zeros((size_det, angSize, slices_tot), dtype="float")
-
-#weights = ones(size(sino));
-weights = numpy.ones(numpy.shape(sino))
-
-#####################################################################
-## PowerMethod for Lipschitz constant
-
-N = vol_geom['GridColCount']
-x1 = numpy.random.rand(1,N,N)
-#sqweight = sqrt(weights(:,:,1));
-sqweight = numpy.sqrt(weights.T[0]).T
-##proj_geomT = proj_geom;
-proj_geomT = proj_geom.copy()
-##proj_geomT.DetectorRowCount = 1;
-proj_geomT['DetectorRowCount'] = 1
-##vol_geomT = vol_geom;
-vol_geomT = vol_geom.copy()
-##vol_geomT.GridSliceCount = 1;
-vol_geomT['GridSliceCount'] = 1
-
-##[sino_id, y] = astra_create_sino3d_cuda(x1, proj_geomT, vol_geomT);
-
-#sino_id, y = astra.create_sino3d_gpu(x1, proj_geomT, vol_geomT);
-sino_id, y = astra.create_sino(x1, proj_geomT, vol_geomT);
-
-##y = sqweight.*y;
-##astra_mex_data3d('delete', sino_id);
-
-
diff --git a/Wrappers/Python/test/create_phantom_projections.py b/Wrappers/Python/test/create_phantom_projections.py
deleted file mode 100644
index 20a9278..0000000
--- a/Wrappers/Python/test/create_phantom_projections.py
+++ /dev/null
@@ -1,49 +0,0 @@
-from ccpi.reconstruction.AstraDevice import AstraDevice
-from ccpi.reconstruction.DeviceModel import DeviceModel
-import h5py
-import numpy
-import matplotlib.pyplot as plt
-
-nx = h5py.File('phant3D_256.h5', "r")
-phantom = numpy.asarray(nx.get('/dataset1'))
-pX,pY,pZ = numpy.shape(phantom)
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
-nxa = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nxa['/'].keys()]
-print (entries)
-
-angles_rad = numpy.asarray(nxa.get('/angles_rad'), dtype="float32")
-
-
-device = AstraDevice(
- DeviceModel.DeviceType.PARALLEL3D.value,
- [ pX , pY , 1., 1., angles_rad],
- [ pX, pY, pZ ] )
-
-
-proj = device.doForwardProject(phantom)
-stack = [proj[:,i,:] for i in range(len(angles_rad))]
-stack = numpy.asarray(stack)
-
-
-fig = plt.figure()
-a=fig.add_subplot(1,2,1)
-a.set_title('proj')
-imgplot = plt.imshow(proj[:,100,:])
-a=fig.add_subplot(1,2,2)
-a.set_title('stack')
-imgplot = plt.imshow(stack[100])
-plt.show()
-
-pf = h5py.File("phantom3D256_projections.h5" , "w")
-pf.create_dataset("/projections", data=stack)
-pf.create_dataset("/sinogram", data=proj)
-pf.create_dataset("/angles", data=angles_rad)
-pf.create_dataset("/reconstruction_volume" , data=numpy.asarray([pX, pY, pZ]))
-pf.create_dataset("/camera/size" , data=numpy.asarray([pX , pY ]))
-pf.create_dataset("/camera/spacing" , data=numpy.asarray([1.,1.]))
-pf.flush()
-pf.close()
diff --git a/Wrappers/Python/test/metrics.py b/Wrappers/Python/test/metrics.py
new file mode 100644
index 0000000..53f68fb
--- /dev/null
+++ b/Wrappers/Python/test/metrics.py
@@ -0,0 +1,20 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Wed Feb 21 13:34:32 2018
+# quality metrics
+@author: algol
+"""
+import numpy as np
+
+def nrmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im2 - im1) ** 2) / float(a * b))
+ max_val = max(np.max(im1), np.max(im2))
+ min_val = min(np.min(im1), np.min(im2))
+ return 1 - (rmse / (max_val - min_val))
+
+def rmse(im1, im2):
+ a, b = im1.shape
+ rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(a * b))
+ return rmse \ No newline at end of file
diff --git a/Wrappers/Python/test/readhd5.py b/Wrappers/Python/test/readhd5.py
deleted file mode 100644
index eff6c43..0000000
--- a/Wrappers/Python/test/readhd5.py
+++ /dev/null
@@ -1,42 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Aug 23 16:34:49 2017
-
-@author: ofn77899
-"""
-
-import h5py
-import numpy
-
-def getEntry(nx, location):
- for item in nx[location].keys():
- print (item)
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
-nx = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nx['/'].keys()]
-print (entries)
-
-Sino3D = numpy.asarray(nx.get('/Sino3D'))
-Weights3D = numpy.asarray(nx.get('/Weights3D'))
-angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
-angles_rad = numpy.asarray(nx.get('/angles_rad'))
-recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
-size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
-
-slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
-
-#from ccpi.viewer.CILViewer2D import CILViewer2D
-#v = CILViewer2D()
-#v.setInputAsNumpy(Weights3D)
-#v.startRenderLoop()
-
-import matplotlib.pyplot as plt
-fig = plt.figure()
-
-a=fig.add_subplot(1,1,1)
-a.set_title('noise')
-imgplot = plt.imshow(Weights3D[0].T)
-plt.show()
diff --git a/Wrappers/Python/test/simple_astra_test.py b/Wrappers/Python/test/simple_astra_test.py
deleted file mode 100644
index 905eeea..0000000
--- a/Wrappers/Python/test/simple_astra_test.py
+++ /dev/null
@@ -1,25 +0,0 @@
-import astra
-import numpy
-
-detectorSpacingX = 1.0
-detectorSpacingY = 1.0
-det_row_count = 128
-det_col_count = 128
-
-angles_rad = numpy.asarray([i for i in range(360)], dtype=float) / 180. * numpy.pi
-
-proj_geom = astra.creators.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- det_col_count,
- angles_rad)
-
-image_size_x = 64
-image_size_y = 64
-image_size_z = 32
-
-vol_geom = astra.creators.create_vol_geom(image_size_x,image_size_y,image_size_z)
-
-x1 = numpy.random.rand(image_size_z,image_size_y,image_size_x)
-sino_id, y = astra.creators.create_sino3d_gpu(x1, proj_geom, vol_geom)
diff --git a/Wrappers/Python/test/test_reconstructor-os_phantom.py b/Wrappers/Python/test/test_reconstructor-os_phantom.py
deleted file mode 100644
index 01f1354..0000000
--- a/Wrappers/Python/test/test_reconstructor-os_phantom.py
+++ /dev/null
@@ -1,480 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Aug 23 16:34:49 2017
-
-@author: ofn77899
-Based on DemoRD2.m
-"""
-
-import h5py
-import numpy
-
-from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
-import astra
-import matplotlib.pyplot as plt
-from ccpi.imaging.Regularizer import Regularizer
-from ccpi.reconstruction.AstraDevice import AstraDevice
-from ccpi.reconstruction.DeviceModel import DeviceModel
-
-#from ccpi.viewer.CILViewer2D import *
-
-
-def RMSE(signal1, signal2):
- '''RMSE Root Mean Squared Error'''
- if numpy.shape(signal1) == numpy.shape(signal2):
- err = (signal1 - signal2)
- err = numpy.sum( err * err )/numpy.size(signal1); # MSE
- err = sqrt(err); # RMSE
- return err
- else:
- raise Exception('Input signals must have the same shape')
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/src/Python/test/phantom3D256_projections.h5'
-nx = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nx['/'].keys()]
-print (entries)
-
-projections = numpy.asarray(nx.get('/projections'), dtype="float32")
-#Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
-#angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
-angles_rad = numpy.asarray(nx.get('/angles'), dtype="float32")
-angSize = numpy.size(angles_rad)
-image_size_x, image_size_y, image_size_z = \
- numpy.asarray(nx.get('/reconstruction_volume'), dtype=int)
-det_col_count, det_row_count = \
- numpy.asarray(nx.get('/camera/size'))
-#slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
-detectorSpacingX, detectorSpacingY = numpy.asarray(nx.get('/camera/spacing'), dtype=int)
-
-Z_slices = 20
-#det_row_count = image_size_y
-# next definition is just for consistency of naming
-#det_col_count = image_size_x
-
-detectorSpacingX = 1.0
-detectorSpacingY = detectorSpacingX
-
-
-proj_geom = astra.creators.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- det_col_count,
- angles_rad)
-
-#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
-##image_size_x = recon_size
-##image_size_y = recon_size
-##image_size_z = Z_slices
-vol_geom = astra.creators.create_vol_geom( image_size_x,
- image_size_y,
- image_size_z)
-
-## First pass the arguments to the FISTAReconstructor and test the
-## Lipschitz constant
-astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [proj_geom['DetectorRowCount'] ,
- proj_geom['DetectorColCount'] ,
- proj_geom['DetectorSpacingX'] ,
- proj_geom['DetectorSpacingY'] ,
- proj_geom['ProjectionAngles']
- ],
- [
- vol_geom['GridColCount'],
- vol_geom['GridRowCount'],
- vol_geom['GridSliceCount'] ] )
-## create the sinogram
-Sino3D = numpy.transpose(projections, axes=[1,0,2])
-
-fistaRecon = FISTAReconstructor(proj_geom,
- vol_geom,
- Sino3D ,
- #weights=Weights3D,
- device=astradevice)
-
-print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-fistaRecon.setParameter(number_of_iterations = 4)
-#fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
-fistaRecon.setParameter(ring_alpha = 21)
-fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-#fistaRecon.setParameter(ring_lambda_R_L1 = 0)
-subsets = 8
-fistaRecon.setParameter(subsets=subsets)
-
-
-#reg = Regularizer(Regularizer.Algorithm.FGP_TV)
-#reg.setParameter(regularization_parameter=0.005,
-# number_of_iterations=50)
-reg = Regularizer(Regularizer.Algorithm.FGP_TV)
-reg.setParameter(regularization_parameter=5e6,
- tolerance_constant=0.0001,
- number_of_iterations=50)
-
-#fistaRecon.setParameter(regularizer=reg)
-#lc = fistaRecon.getParameter('Lipschitz_constant')
-#reg.setParameter(regularization_parameter=5e6/lc)
-
-## Ordered subset
-if True:
- #subsets = 8
- fistaRecon.setParameter(subsets=subsets)
- fistaRecon.createOrderedSubsets()
-else:
- angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
- #binEdges = numpy.linspace(angles.min(),
- # angles.max(),
- # subsets + 1)
- binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
- # get rearranged subset indices
- IndicesReorg = numpy.zeros((numpy.shape(angles)))
- counterM = 0
- for ii in range(binsDiscr.max()):
- counter = 0
- for jj in range(subsets):
- curr_index = ii + jj + counter
- #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
- if binsDiscr[jj] > ii:
- if (counterM < numpy.size(IndicesReorg)):
- IndicesReorg[counterM] = curr_index
- counterM = counterM + 1
-
- counter = counter + binsDiscr[jj] - 1
-
-
-if True:
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- print ("prepare for iteration")
- fistaRecon.prepareForIteration()
-
-
-
- print("initializing ...")
- if True:
- # if X doesn't exist
- #N = params.vol_geom.GridColCount
- N = vol_geom['GridColCount']
- print ("N " + str(N))
- X = numpy.asarray(numpy.ones((image_size_x,image_size_y,image_size_z)),
- dtype=numpy.float) * 0.001
- X = numpy.asarray(numpy.zeros((image_size_x,image_size_y,image_size_z)),
- dtype=numpy.float)
- else:
- #X = fistaRecon.initialize()
- X = numpy.load("X.npy")
-
- print (numpy.shape(X))
- X_t = X.copy()
- print ("initialized")
- proj_geom , vol_geom, sino , \
- SlicesZ, weights , alpha_ring = fistaRecon.getParameter(
- ['projector_geometry' , 'output_geometry',
- 'input_sinogram', 'SlicesZ' , 'weights', 'ring_alpha'])
- lambdaR_L1 , alpha_ring , weights , L_const= \
- fistaRecon.getParameter(['ring_lambda_R_L1',
- 'ring_alpha' , 'weights',
- 'Lipschitz_constant'])
-
- #fistaRecon.setParameter(number_of_iterations = 3)
- iterFISTA = fistaRecon.getParameter('number_of_iterations')
- # errors vector (if the ground truth is given)
- Resid_error = numpy.zeros((iterFISTA));
- # objective function values vector
- objective = numpy.zeros((iterFISTA));
-
-
- t = 1
-
-
- ## additional for
- proj_geomSUB = proj_geom.copy()
- fistaRecon.residual2 = numpy.zeros(numpy.shape(fistaRecon.pars['input_sinogram']))
- residual2 = fistaRecon.residual2
- sino_updt_FULL = fistaRecon.residual.copy()
- r_x = fistaRecon.r.copy()
-
- results = []
- print ("starting iterations")
-## % Outer FISTA iterations loop
- for i in range(fistaRecon.getParameter('number_of_iterations')):
-## % With OS approach it becomes trickier to correlate independent subsets, hence additional work is required
-## % one solution is to work with a full sinogram at times
-## if ((i >= 3) && (lambdaR_L1 > 0))
-## [sino_id2, sino_updt2] = astra_create_sino3d_cuda(X, proj_geom, vol_geom);
-## astra_mex_data3d('delete', sino_id2);
-## end
- # With OS approach it becomes trickier to correlate independent subsets,
- # hence additional work is required one solution is to work with a full
- # sinogram at times
-
-
- #t_old = t
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(fistaRecon.getParameter('input_sinogram'))
- ## https://github.com/vais-ral/CCPi-FISTA_Reconstruction/issues/4
- r_old = fistaRecon.r.copy()
-
- if (i > 1 and lambdaR_L1 > 0) :
- for kkk in range(anglesNumb):
-
- residual2[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
- ((sino_updt_FULL[:,kkk,:]).squeeze() - \
- (sino[:,kkk,:]).squeeze() -\
- (alpha_ring * r_x)
- )
- #r_old = fistaRecon.r.copy()
- vec = fistaRecon.residual.sum(axis = 1)
- #if SlicesZ > 1:
- # vec = vec[:,1,:] # 1 or 0?
- r_x = fistaRecon.r_x
- # update ring variable
- fistaRecon.r = (r_x - (1./L_const) * vec)
-
- # subset loop
- counterInd = 1
- geometry_type = fistaRecon.getParameter('projector_geometry')['type']
- angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
-
-## if geometry_type == 'parallel' or \
-## geometry_type == 'fanflat' or \
-## geometry_type == 'fanflat_vec' :
-##
-## for kkk in range(SlicesZ):
-## sino_id, sinoT[kkk] = \
-## astra.creators.create_sino3d_gpu(
-## X_t[kkk:kkk+1], proj_geomSUB, vol_geom)
-## sino_updt_Sub[kkk] = sinoT.T.copy()
-##
-## else:
-## sino_id, sino_updt_Sub = \
-## astra.creators.create_sino3d_gpu(X_t, proj_geomSUB, vol_geom)
-##
-## astra.matlab.data3d('delete', sino_id)
-
- for ss in range(fistaRecon.getParameter('subsets')):
- print ("Subset {0}".format(ss))
- X_old = X.copy()
- t_old = t
- print ("X[0][0][0] {0} t {1}".format(X[0][0][0], t))
-
- # the number of projections per subset
- numProjSub = fistaRecon.getParameter('os_bins')[ss]
- CurrSubIndices = fistaRecon.getParameter('os_indices')\
- [counterInd:counterInd+numProjSub]
- shape = list(numpy.shape(fistaRecon.getParameter('input_sinogram')))
- shape[1] = numProjSub
- sino_updt_Sub = numpy.zeros(shape)
-
- #print ("Len CurrSubIndices {0}".format(numProjSub))
- mask = numpy.zeros(numpy.shape(angles), dtype=bool)
- cc = 0
- for j in range(len(CurrSubIndices)):
- mask[int(CurrSubIndices[j])] = True
-
- ## this is a reduced device
- rdev = fistaRecon.getParameter('device_model')\
- .createReducedDevice(proj_par={'angles' : angles[mask]},
- vol_par={})
- proj_geomSUB['ProjectionAngles'] = angles[mask]
-
-
-
- if geometry_type == 'parallel' or \
- geometry_type == 'fanflat' or \
- geometry_type == 'fanflat_vec' :
-
- for kkk in range(SlicesZ):
- sino_id, sinoT = astra.creators.create_sino3d_gpu (
- X_t[kkk:kkk+1] , proj_geomSUB, vol_geom)
- sino_updt_Sub[kkk] = sinoT.T.copy()
- astra.matlab.data3d('delete', sino_id)
- else:
- # for 3D geometry (watch the GPU memory overflow in ASTRA < 1.8)
- sino_id, sino_updt_Sub = \
- astra.creators.create_sino3d_gpu (X_t,
- proj_geomSUB,
- vol_geom)
-
- astra.matlab.data3d('delete', sino_id)
-
-
-
-
- ## RING REMOVAL
- residual = fistaRecon.residual
-
-
- if lambdaR_L1 > 0 :
- print ("ring removal")
- residualSub = numpy.zeros(shape)
- ## for a chosen subset
- ## for kkk = 1:numProjSub
- ## indC = CurrSubIndeces(kkk);
- ## residualSub(:,kkk,:) = squeeze(weights(:,indC,:)).*(squeeze(sino_updt_Sub(:,kkk,:)) - (squeeze(sino(:,indC,:)) - alpha_ring.*r_x));
- ## sino_updt_FULL(:,indC,:) = squeeze(sino_updt_Sub(:,kkk,:)); % filling the full sinogram
- ## end
- for kkk in range(numProjSub):
- #print ("ring removal indC ... {0}".format(kkk))
- indC = int(CurrSubIndices[kkk])
- residualSub[:,kkk,:] = weights[:,indC,:].squeeze() * \
- (sino_updt_Sub[:,kkk,:].squeeze() - \
- sino[:,indC,:].squeeze() - alpha_ring * r_x)
- # filling the full sinogram
- sino_updt_FULL[:,indC,:] = sino_updt_Sub[:,kkk,:].squeeze()
-
- else:
- #PWLS model
- # I guess we need to use mask here instead
- residualSub = weights[:,CurrSubIndices,:] * \
- ( sino_updt_Sub - \
- sino[:,CurrSubIndices,:].squeeze() )
- # it seems that in the original code the following like is not
- # calculated in the case of ring removal
- objective[i] = 0.5 * numpy.linalg.norm(residualSub)
-
- #backprojection
- if geometry_type == 'parallel' or \
- geometry_type == 'fanflat' or \
- geometry_type == 'fanflat_vec' :
- # if geometry is 2D use slice-by-slice projection-backprojection
- # routine
- x_temp = numpy.zeros(numpy.shape(X), dtype=numpy.float32)
- for kkk in range(SlicesZ):
-
- x_id, x_temp[kkk] = \
- astra.creators.create_backprojection3d_gpu(
- residualSub[kkk:kkk+1],
- proj_geomSUB, vol_geom)
- astra.matlab.data3d('delete', x_id)
-
- else:
- x_id, x_temp = \
- astra.creators.create_backprojection3d_gpu(
- residualSub, proj_geomSUB, vol_geom)
-
- astra.matlab.data3d('delete', x_id)
-
- X = X_t - (1/L_const) * x_temp
-
-
-
- ## REGULARIZATION
- ## SKIPPING FOR NOW
- ## Should be simpli
- # regularizer = fistaRecon.getParameter('regularizer')
- # for slices:
- # out = regularizer(input=X)
- print ("regularizer")
- reg = fistaRecon.getParameter('regularizer')
-
- if reg is not None:
- X = reg(input=X,
- output_all=False)
-
- t = (1 + numpy.sqrt(1 + 4 * t **2))/2
- X_t = X + (((t_old -1)/t) * (X-X_old))
- counterInd = counterInd + numProjSub - 1
- if i == 1:
- r_old = fistaRecon.r.copy()
-
- ## FINAL
- print ("final")
- lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
- if lambdaR_L1 > 0:
- fistaRecon.r = numpy.max(
- numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
- numpy.sign(fistaRecon.r)
- # updating r
- r_x = fistaRecon.r + ((t_old-1)/t) * (fistaRecon.r - r_old)
-
-
- if fistaRecon.getParameter('region_of_interest') is None:
- string = 'Iteration Number {0} | Objective {1} \n'
- print (string.format( i, objective[i]))
- else:
- ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
- 'ideal_image')
-
- Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
- string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
- print (string.format(i,Resid_error[i], objective[i]))
-
- results.append(X[10])
- numpy.save("X_out_os.npy", X)
-
-else:
-
-
-
- astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [proj_geom['DetectorRowCount'] ,
- proj_geom['DetectorColCount'] ,
- proj_geom['DetectorSpacingX'] ,
- proj_geom['DetectorSpacingY'] ,
- proj_geom['ProjectionAngles']
- ],
- [
- vol_geom['GridColCount'],
- vol_geom['GridRowCount'],
- vol_geom['GridSliceCount'] ] )
- regul = Regularizer(Regularizer.Algorithm.FGP_TV)
- regul.setParameter(regularization_parameter=5e6,
- number_of_iterations=50,
- tolerance_constant=1e-4,
- TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
-
- fistaRecon = FISTAReconstructor(proj_geom,
- vol_geom,
- Sino3D ,
- weights=Weights3D,
- device=astradevice,
- #regularizer = regul,
- subsets=8)
-
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- fistaRecon.setParameter(number_of_iterations = 1)
- fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
- fistaRecon.setParameter(ring_alpha = 21)
- fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
- #fistaRecon.setParameter(subsets=8)
-
- #lc = fistaRecon.getParameter('Lipschitz_constant')
- #fistaRecon.getParameter('regularizer').setParameter(regularization_parameter=5e6/lc)
-
- fistaRecon.prepareForIteration()
- X = fistaRecon.iterate(numpy.load("X.npy"))
-
-
-# plot
-fig = plt.figure()
-cols = 3
-
-## add the difference
-rd = []
-for i in range(1,len(results)):
- rd.append(results[i-1])
- rd.append(results[i])
- rd.append(results[i] - results[i-1])
-
-rows = (lambda x: int(numpy.floor(x/cols) + 1) if x%cols != 0 else int(x/cols)) \
- (len (rd))
-for i in range(len (results)):
- a=fig.add_subplot(rows,cols,i+1)
- imgplot = plt.imshow(results[i], vmin=0, vmax=1)
- a.text(0.05, 0.95, "iteration {0}".format(i),
- verticalalignment='top')
-## i = i + 1
-## a=fig.add_subplot(rows,cols,i+1)
-## imgplot = plt.imshow(results[i], vmin=0, vmax=10)
-## a.text(0.05, 0.95, "iteration {0}".format(i),
-## verticalalignment='top')
-
-## a=fig.add_subplot(rows,cols,i+2)
-## imgplot = plt.imshow(results[i]-results[i-1], vmin=0, vmax=10)
-## a.text(0.05, 0.95, "difference {0}-{1}".format(i, i-1),
-## verticalalignment='top')
-
-
-
-plt.show()
diff --git a/Wrappers/Python/test/test_reconstructor.py b/Wrappers/Python/test/test_reconstructor.py
deleted file mode 100644
index 40065e7..0000000
--- a/Wrappers/Python/test/test_reconstructor.py
+++ /dev/null
@@ -1,359 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-Created on Wed Aug 23 16:34:49 2017
-
-@author: ofn77899
-Based on DemoRD2.m
-"""
-
-import h5py
-import numpy
-
-from ccpi.reconstruction.FISTAReconstructor import FISTAReconstructor
-import astra
-import matplotlib.pyplot as plt
-from ccpi.imaging.Regularizer import Regularizer
-from ccpi.reconstruction.AstraDevice import AstraDevice
-from ccpi.reconstruction.DeviceModel import DeviceModel
-
-def RMSE(signal1, signal2):
- '''RMSE Root Mean Squared Error'''
- if numpy.shape(signal1) == numpy.shape(signal2):
- err = (signal1 - signal2)
- err = numpy.sum( err * err )/numpy.size(signal1); # MSE
- err = sqrt(err); # RMSE
- return err
- else:
- raise Exception('Input signals must have the same shape')
-
-def createAstraDevice(projector_geometry, output_geometry):
- '''TODO remove'''
-
- device = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [projector_geometry['DetectorRowCount'] ,
- projector_geometry['DetectorColCount'] ,
- projector_geometry['DetectorSpacingX'] ,
- projector_geometry['DetectorSpacingY'] ,
- projector_geometry['ProjectionAngles']
- ],
- [
- output_geometry['GridColCount'],
- output_geometry['GridRowCount'],
- output_geometry['GridSliceCount'] ] )
- return device
-
-filename = r'/home/ofn77899/Reconstruction/CCPi-FISTA_Reconstruction/demos/DendrData.h5'
-nx = h5py.File(filename, "r")
-#getEntry(nx, '/')
-# I have exported the entries as children of /
-entries = [entry for entry in nx['/'].keys()]
-print (entries)
-
-Sino3D = numpy.asarray(nx.get('/Sino3D'), dtype="float32")
-Weights3D = numpy.asarray(nx.get('/Weights3D'), dtype="float32")
-angSize = numpy.asarray(nx.get('/angSize'), dtype=int)[0]
-angles_rad = numpy.asarray(nx.get('/angles_rad'), dtype="float32")
-recon_size = numpy.asarray(nx.get('/recon_size'), dtype=int)[0]
-size_det = numpy.asarray(nx.get('/size_det'), dtype=int)[0]
-slices_tot = numpy.asarray(nx.get('/slices_tot'), dtype=int)[0]
-
-Z_slices = 20
-det_row_count = Z_slices
-# next definition is just for consistency of naming
-det_col_count = size_det
-
-detectorSpacingX = 1.0
-detectorSpacingY = detectorSpacingX
-
-
-proj_geom = astra.creators.create_proj_geom('parallel3d',
- detectorSpacingX,
- detectorSpacingY,
- det_row_count,
- det_col_count,
- angles_rad)
-
-#vol_geom = astra_create_vol_geom(recon_size,recon_size,Z_slices);
-image_size_x = recon_size
-image_size_y = recon_size
-image_size_z = Z_slices
-vol_geom = astra.creators.create_vol_geom( image_size_x,
- image_size_y,
- image_size_z)
-
-## First pass the arguments to the FISTAReconstructor and test the
-## Lipschitz constant
-
-##fistaRecon = FISTAReconstructor(proj_geom,
-## vol_geom,
-## Sino3D ,
-## weights=Weights3D)
-##
-##print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
-##fistaRecon.setParameter(number_of_iterations = 12)
-##fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
-##fistaRecon.setParameter(ring_alpha = 21)
-##fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-##
-##reg = Regularizer(Regularizer.Algorithm.LLT_model)
-##reg.setParameter(regularization_parameter=25,
-## time_step=0.0003,
-## tolerance_constant=0.0001,
-## number_of_iterations=300)
-##fistaRecon.setParameter(regularizer=reg)
-
-## Ordered subset
-if False:
- subsets = 16
- angles = fistaRecon.getParameter('projector_geometry')['ProjectionAngles']
- #binEdges = numpy.linspace(angles.min(),
- # angles.max(),
- # subsets + 1)
- binsDiscr, binEdges = numpy.histogram(angles, bins=subsets)
- # get rearranged subset indices
- IndicesReorg = numpy.zeros((numpy.shape(angles)))
- counterM = 0
- for ii in range(binsDiscr.max()):
- counter = 0
- for jj in range(subsets):
- curr_index = ii + jj + counter
- #print ("{0} {1} {2}".format(binsDiscr[jj] , ii, counterM))
- if binsDiscr[jj] > ii:
- if (counterM < numpy.size(IndicesReorg)):
- IndicesReorg[counterM] = curr_index
- counterM = counterM + 1
-
- counter = counter + binsDiscr[jj] - 1
-
-
-if False:
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- print ("prepare for iteration")
- fistaRecon.prepareForIteration()
-
-
-
- print("initializing ...")
- if False:
- # if X doesn't exist
- #N = params.vol_geom.GridColCount
- N = vol_geom['GridColCount']
- print ("N " + str(N))
- X = numpy.zeros((N,N,SlicesZ), dtype=numpy.float)
- else:
- #X = fistaRecon.initialize()
- X = numpy.load("X.npy")
-
- print (numpy.shape(X))
- X_t = X.copy()
- print ("initialized")
- proj_geom , vol_geom, sino , \
- SlicesZ = fistaRecon.getParameter(['projector_geometry' ,
- 'output_geometry',
- 'input_sinogram',
- 'SlicesZ'])
-
- #fistaRecon.setParameter(number_of_iterations = 3)
- iterFISTA = fistaRecon.getParameter('number_of_iterations')
- # errors vector (if the ground truth is given)
- Resid_error = numpy.zeros((iterFISTA));
- # objective function values vector
- objective = numpy.zeros((iterFISTA));
-
-
- t = 1
-
-
- print ("starting iterations")
-## % Outer FISTA iterations loop
- for i in range(fistaRecon.getParameter('number_of_iterations')):
- X_old = X.copy()
- t_old = t
- r_old = fistaRecon.r.copy()
- if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec' :
- # if the geometry is parallel use slice-by-slice
- # projection-backprojection routine
- #sino_updt = zeros(size(sino),'single');
- proj_geomT = proj_geom.copy()
- proj_geomT['DetectorRowCount'] = 1
- vol_geomT = vol_geom.copy()
- vol_geomT['GridSliceCount'] = 1;
- sino_updt = numpy.zeros(numpy.shape(sino), dtype=numpy.float)
- for kkk in range(SlicesZ):
- sino_id, sino_updt[kkk] = \
- astra.creators.create_sino3d_gpu(
- X_t[kkk:kkk+1], proj_geom, vol_geom)
- astra.matlab.data3d('delete', sino_id)
- else:
- # for divergent 3D geometry (watch the GPU memory overflow in
- # ASTRA versions < 1.8)
- #[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- sino_id, sino_updt = astra.creators.create_sino3d_gpu(
- X_t, proj_geom, vol_geom)
-
- ## RING REMOVAL
- residual = fistaRecon.residual
- lambdaR_L1 , alpha_ring , weights , L_const= \
- fistaRecon.getParameter(['ring_lambda_R_L1',
- 'ring_alpha' , 'weights',
- 'Lipschitz_constant'])
- r_x = fistaRecon.r_x
- SlicesZ, anglesNumb, Detectors = \
- numpy.shape(fistaRecon.getParameter('input_sinogram'))
- if lambdaR_L1 > 0 :
- print ("ring removal")
- for kkk in range(anglesNumb):
-
- residual[:,kkk,:] = (weights[:,kkk,:]).squeeze() * \
- ((sino_updt[:,kkk,:]).squeeze() - \
- (sino[:,kkk,:]).squeeze() -\
- (alpha_ring * r_x)
- )
- vec = residual.sum(axis = 1)
- #if SlicesZ > 1:
- # vec = vec[:,1,:].squeeze()
- fistaRecon.r = (r_x - (1./L_const) * vec).copy()
- objective[i] = (0.5 * (residual ** 2).sum())
-## % the ring removal part (Group-Huber fidelity)
-## for kkk = 1:anglesNumb
-## residual(:,kkk,:) = squeeze(weights(:,kkk,:)).*
-## (squeeze(sino_updt(:,kkk,:)) -
-## (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
-## end
-## vec = sum(residual,2);
-## if (SlicesZ > 1)
-## vec = squeeze(vec(:,1,:));
-## end
-## r = r_x - (1./L_const).*vec;
-## objective(i) = (0.5*sum(residual(:).^2)); % for the objective function output
-
-
-
- # Projection/Backprojection Routine
- if fistaRecon.getParameter('projector_geometry')['type'] == 'parallel' or \
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat' or\
- fistaRecon.getParameter('projector_geometry')['type'] == 'fanflat_vec':
- x_temp = numpy.zeros(numpy.shape(X),dtype=numpy.float32)
- print ("Projection/Backprojection Routine")
- for kkk in range(SlicesZ):
-
- x_id, x_temp[kkk] = \
- astra.creators.create_backprojection3d_gpu(
- residual[kkk:kkk+1],
- proj_geomT, vol_geomT)
- astra.matlab.data3d('delete', x_id)
- else:
- x_id, x_temp = \
- astra.creators.create_backprojection3d_gpu(
- residual, proj_geom, vol_geom)
-
- X = X_t - (1/L_const) * x_temp
- astra.matlab.data3d('delete', sino_id)
- astra.matlab.data3d('delete', x_id)
-
-
- ## REGULARIZATION
- ## SKIPPING FOR NOW
- ## Should be simpli
- # regularizer = fistaRecon.getParameter('regularizer')
- # for slices:
- # out = regularizer(input=X)
- print ("skipping regularizer")
-
-
- ## FINAL
- print ("final")
- lambdaR_L1 = fistaRecon.getParameter('ring_lambda_R_L1')
- if lambdaR_L1 > 0:
- fistaRecon.r = numpy.max(
- numpy.abs(fistaRecon.r) - lambdaR_L1 , 0) * \
- numpy.sign(fistaRecon.r)
- t = (1 + numpy.sqrt(1 + 4 * t**2))/2
- X_t = X + (((t_old -1)/t) * (X - X_old))
-
- if lambdaR_L1 > 0:
- fistaRecon.r_x = fistaRecon.r + \
- (((t_old-1)/t) * (fistaRecon.r - r_old))
-
- if fistaRecon.getParameter('region_of_interest') is None:
- string = 'Iteration Number {0} | Objective {1} \n'
- print (string.format( i, objective[i]))
- else:
- ROI , X_ideal = fistaRecon.getParameter('region_of_interest',
- 'ideal_image')
-
- Resid_error[i] = RMSE(X*ROI, X_ideal*ROI)
- string = 'Iteration Number {0} | RMS Error {1} | Objective {2} \n'
- print (string.format(i,Resid_error[i], objective[i]))
-
-## if (lambdaR_L1 > 0)
-## r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator for ring vector
-## end
-##
-## t = (1 + sqrt(1 + 4*t^2))/2; % updating t
-## X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
-##
-## if (lambdaR_L1 > 0)
-## r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
-## end
-##
-## if (show == 1)
-## figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
-## if (lambdaR_L1 > 0)
-## figure(11); plot(r); title('Rings offset vector')
-## end
-## pause(0.01);
-## end
-## if (strcmp(X_ideal, 'none' ) == 0)
-## Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
-## fprintf('%s %i %s %s %.4f %s %s %f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
-## else
-## fprintf('%s %i %s %s %f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
-## end
-else:
-
- # create a device for forward/backprojection
- #astradevice = createAstraDevice(proj_geom, vol_geom)
-
- astradevice = AstraDevice(DeviceModel.DeviceType.PARALLEL3D.value,
- [proj_geom['DetectorRowCount'] ,
- proj_geom['DetectorColCount'] ,
- proj_geom['DetectorSpacingX'] ,
- proj_geom['DetectorSpacingY'] ,
- proj_geom['ProjectionAngles']
- ],
- [
- vol_geom['GridColCount'],
- vol_geom['GridRowCount'],
- vol_geom['GridSliceCount'] ] )
-
- regul = Regularizer(Regularizer.Algorithm.FGP_TV)
- regul.setParameter(regularization_parameter=5e6,
- number_of_iterations=50,
- tolerance_constant=1e-4,
- TV_penalty=Regularizer.TotalVariationPenalty.isotropic)
-
- fistaRecon = FISTAReconstructor(proj_geom,
- vol_geom,
- Sino3D ,
- device = astradevice,
- weights=Weights3D,
- regularizer = regul
- )
-
- print ("Lipschitz Constant {0}".format(fistaRecon.pars['Lipschitz_constant']))
- fistaRecon.setParameter(number_of_iterations = 18)
- fistaRecon.setParameter(Lipschitz_constant = 767893952.0)
- fistaRecon.setParameter(ring_alpha = 21)
- fistaRecon.setParameter(ring_lambda_R_L1 = 0.002)
-
-
-
- fistaRecon.prepareForIteration()
- X = numpy.load("X.npy")
-
-
- X = fistaRecon.iterate(X)
- #numpy.save("X_out.npy", X)