diff options
author | algol <dkazanc@hotmail.com> | 2018-03-06 16:51:31 +0000 |
---|---|---|
committer | algol <dkazanc@hotmail.com> | 2018-03-06 16:51:31 +0000 |
commit | 4593040d228fec5ef1f1a301e511708d47f0d55e (patch) | |
tree | 8cd0606abc4b50be33e04a445564eb57d1bff3fb /Wrappers/Python | |
parent | 63ad8306c261a90c572d95084bf1dd8db2b3dce7 (diff) | |
download | regularization-4593040d228fec5ef1f1a301e511708d47f0d55e.tar.gz regularization-4593040d228fec5ef1f1a301e511708d47f0d55e.tar.bz2 regularization-4593040d228fec5ef1f1a301e511708d47f0d55e.tar.xz regularization-4593040d228fec5ef1f1a301e511708d47f0d55e.zip |
demos fixed #40
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/demo/test_cpu_regularizers.py | 21 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularizers.cpp | 289 | ||||
-rw-r--r-- | Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py | 4 | ||||
-rw-r--r-- | Wrappers/Python/test/test_gpu_regularizers.py | 59 |
4 files changed, 63 insertions, 310 deletions
diff --git a/Wrappers/Python/demo/test_cpu_regularizers.py b/Wrappers/Python/demo/test_cpu_regularizers.py index 1d97857..76b9de7 100644 --- a/Wrappers/Python/demo/test_cpu_regularizers.py +++ b/Wrappers/Python/demo/test_cpu_regularizers.py @@ -11,10 +11,8 @@ import numpy as np import os from enum import Enum import timeit -from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV, LLT_model, PatchBased_Regul ,\ - TGV_PD -from ccpi.filters.cpu_regularizers_cython import TV_ROF_CPU, TV_FGP_CPU - +from ccpi.filters.cpu_regularizers_boost import SplitBregman_TV, LLT_model, PatchBased_Regul, TGV_PD +from ccpi.filters.regularizers import ROF_TV, FGP_TV ############################################################################### #https://stackoverflow.com/questions/13875989/comparing-image-in-url-to-image-in-filesystem-in-python/13884956#13884956 #NRMSE a normalization of the root of the mean squared error @@ -127,7 +125,7 @@ imgplot = plt.imshow(splitbregman,\ ###################### FGP_TV ######################################### start_time = timeit.default_timer() -pars = {'algorithm' : TV_FGP_CPU , \ +pars = {'algorithm' : FGP_TV , \ 'input' : u0,\ 'regularization_parameter':0.07, \ 'number_of_iterations' :300 ,\ @@ -137,13 +135,13 @@ pars = {'algorithm' : TV_FGP_CPU , \ 'printingOut': 0 } -fgp = TV_FGP_CPU(pars['input'], +fgp = FGP_TV(pars['input'], pars['regularization_parameter'], pars['number_of_iterations'], pars['tolerance_constant'], pars['methodTV'], pars['nonneg'], - pars['printingOut']) + pars['printingOut'], 'cpu') rms = rmse(Im, fgp) pars['rmse'] = rms @@ -280,18 +278,17 @@ imgplot = plt.imshow(tgv, cmap="gray") start_time = timeit.default_timer() -pars = {'algorithm': TV_ROF_CPU , \ +pars = {'algorithm': ROF_TV , \ 'input' : u0,\ 'regularization_parameter':0.07,\ 'marching_step': 0.0025,\ 'number_of_iterations': 300 } -rof = TV_ROF_CPU(pars['input'], +rof = ROF_TV(pars['input'], pars['regularization_parameter'], pars['number_of_iterations'], - pars['marching_step'] - ) -#tgv = out + pars['marching_step'], 'cpu') + rms = rmse(Im, rof) pars['rmse'] = rms diff --git a/Wrappers/Python/src/cpu_regularizers.cpp b/Wrappers/Python/src/cpu_regularizers.cpp index b8156d5..88b7c3c 100644 --- a/Wrappers/Python/src/cpu_regularizers.cpp +++ b/Wrappers/Python/src/cpu_regularizers.cpp @@ -303,292 +303,6 @@ bp::list SplitBregman_TV(np::ndarray input, double d_mu, int iter, double d_epsi } - - -//bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int methTV) { - - //// the result is in the following list - //bp::list result; - - //int number_of_dims, dimX, dimY, dimZ, ll, j, count; - //float *A, *D = NULL, *D_old = NULL, *P1 = NULL, *P2 = NULL, *P3 = NULL, *P1_old = NULL, *P2_old = NULL, *P3_old = NULL, *R1 = NULL, *R2 = NULL, *R3 = NULL; - //float lambda, tk, tkp1, re, re1, re_old, epsil, funcval; - - ////number_of_dims = mxGetNumberOfDimensions(prhs[0]); - ////dim_array = mxGetDimensions(prhs[0]); - - //number_of_dims = input.get_nd(); - //int dim_array[3]; - - //dim_array[0] = input.shape(0); - //dim_array[1] = input.shape(1); - //if (number_of_dims == 2) { - //dim_array[2] = -1; - //} - //else { - //dim_array[2] = input.shape(2); - //} - //// Parameter handling is be done in Python - /////*Handling Matlab input data*/ - ////if ((nrhs < 2) || (nrhs > 5)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1')"); - - /////*Handling Matlab input data*/ - ////A = (float *)mxGetData(prhs[0]); /*noisy image (2D/3D) */ - //A = reinterpret_cast<float *>(input.get_data()); - - ////mu = (float)mxGetScalar(prhs[1]); /* regularization parameter */ - //lambda = (float)d_mu; - - ////iter = 35; /* default iterations number */ - - ////epsil = 0.0001; /* default tolerance constant */ - //epsil = (float)d_epsil; - ////methTV = 0; /* default isotropic TV penalty */ - ////if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5)) iter = (int)mxGetScalar(prhs[2]); /* iterations number */ - ////if ((nrhs == 4) || (nrhs == 5)) epsil = (float)mxGetScalar(prhs[3]); /* tolerance constant */ - ////if (nrhs == 5) { - //// char *penalty_type; - //// penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - //// if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - //// if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - //// mxFree(penalty_type); - ////} - ////if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } - - ////plhs[1] = mxCreateNumericMatrix(1, 1, mxSINGLE_CLASS, mxREAL); - //bp::tuple shape1 = bp::make_tuple(dim_array[0], dim_array[1]); - //np::dtype dtype = np::dtype::get_builtin<float>(); - //np::ndarray out1 = np::zeros(shape1, dtype); - - ////float *funcvalA = (float *)mxGetData(plhs[1]); - //float * funcvalA = reinterpret_cast<float *>(out1.get_data()); - ////if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) { mexErrMsgTxt("The input image must be in a single precision"); } - - ///*Handling Matlab output data*/ - //dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - //tk = 1.0f; - //tkp1 = 1.0f; - //count = 1; - //re_old = 0.0f; - - //if (number_of_dims == 2) { - //dimZ = 1; /*2D case*/ - ///*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //D_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //P1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //P2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //P1_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //P2_old = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //R1 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - //R2 = (float*)mxGetPr(mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL));*/ - - //bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1]); - //np::dtype dtype = np::dtype::get_builtin<float>(); - - - //np::ndarray npD = np::zeros(shape, dtype); - //np::ndarray npD_old = np::zeros(shape, dtype); - //np::ndarray npP1 = np::zeros(shape, dtype); - //np::ndarray npP2 = np::zeros(shape, dtype); - //np::ndarray npP1_old = np::zeros(shape, dtype); - //np::ndarray npP2_old = np::zeros(shape, dtype); - //np::ndarray npR1 = np::zeros(shape, dtype); - //np::ndarray npR2 = np::zeros(shape, dtype); - - //D = reinterpret_cast<float *>(npD.get_data()); - //D_old = reinterpret_cast<float *>(npD_old.get_data()); - //P1 = reinterpret_cast<float *>(npP1.get_data()); - //P2 = reinterpret_cast<float *>(npP2.get_data()); - //P1_old = reinterpret_cast<float *>(npP1_old.get_data()); - //P2_old = reinterpret_cast<float *>(npP2_old.get_data()); - //R1 = reinterpret_cast<float *>(npR1.get_data()); - //R2 = reinterpret_cast<float *>(npR2.get_data()); - - ///* begin iterations */ - //for (ll = 0; ll<iter; ll++) { - ///* computing the gradient of the objective function */ - //Obj_func2D(A, D, R1, R2, lambda, dimX, dimY); - - ///*Taking a step towards minus of the gradient*/ - //Grad_func2D(P1, P2, D, R1, R2, lambda, dimX, dimY); - - ///* projection step */ - //Proj_func2D(P1, P2, methTV, dimX, dimY); - - ///*updating R and t*/ - //tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - //Rupd_func2D(P1, P1_old, P2, P2_old, R1, R2, tkp1, tk, dimX, dimY); - - ///* calculate norm */ - //re = 0.0f; re1 = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) - //{ - //re += pow(D[j] - D_old[j], 2); - //re1 += pow(D[j], 2); - //} - //re = sqrt(re) / sqrt(re1); - //if (re < epsil) count++; - //if (count > 4) { - //Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); - //funcval = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - ////funcvalA[0] = sqrt(funcval); - //float fv = sqrt(funcval); - //std::memcpy(funcvalA, &fv, sizeof(float)); - //break; - //} - - ///* check that the residual norm is decreasing */ - //if (ll > 2) { - //if (re > re_old) { - //Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); - //funcval = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - ////funcvalA[0] = sqrt(funcval); - //float fv = sqrt(funcval); - //std::memcpy(funcvalA, &fv, sizeof(float)); - //break; - //} - //} - //re_old = re; - ///*printf("%f %i %i \n", re, ll, count); */ - - ///*storing old values*/ - //copyIm(D, D_old, dimX, dimY, dimZ); - //copyIm(P1, P1_old, dimX, dimY, dimZ); - //copyIm(P2, P2_old, dimX, dimY, dimZ); - //tk = tkp1; - - ///* calculating the objective function value */ - //if (ll == (iter - 1)) { - //Obj_func2D(A, D, P1, P2, lambda, dimX, dimY); - //funcval = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - ////funcvalA[0] = sqrt(funcval); - //float fv = sqrt(funcval); - //std::memcpy(funcvalA, &fv, sizeof(float)); - //} - //} - ////printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - //result.append<np::ndarray>(npD); - //result.append<np::ndarray>(out1); - //result.append<int>(ll); - //} - //if (number_of_dims == 3) { - ///*D = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //D_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //P1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //P2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //P3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //P1_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //P2_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //P3_old = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //R1 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //R2 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - //R3 = (float*)mxGetPr(mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL));*/ - //bp::tuple shape = bp::make_tuple(dim_array[0], dim_array[1], dim_array[2]); - //np::dtype dtype = np::dtype::get_builtin<float>(); - - //np::ndarray npD = np::zeros(shape, dtype); - //np::ndarray npD_old = np::zeros(shape, dtype); - //np::ndarray npP1 = np::zeros(shape, dtype); - //np::ndarray npP2 = np::zeros(shape, dtype); - //np::ndarray npP3 = np::zeros(shape, dtype); - //np::ndarray npP1_old = np::zeros(shape, dtype); - //np::ndarray npP2_old = np::zeros(shape, dtype); - //np::ndarray npP3_old = np::zeros(shape, dtype); - //np::ndarray npR1 = np::zeros(shape, dtype); - //np::ndarray npR2 = np::zeros(shape, dtype); - //np::ndarray npR3 = np::zeros(shape, dtype); - - //D = reinterpret_cast<float *>(npD.get_data()); - //D_old = reinterpret_cast<float *>(npD_old.get_data()); - //P1 = reinterpret_cast<float *>(npP1.get_data()); - //P2 = reinterpret_cast<float *>(npP2.get_data()); - //P3 = reinterpret_cast<float *>(npP3.get_data()); - //P1_old = reinterpret_cast<float *>(npP1_old.get_data()); - //P2_old = reinterpret_cast<float *>(npP2_old.get_data()); - //P3_old = reinterpret_cast<float *>(npP3_old.get_data()); - //R1 = reinterpret_cast<float *>(npR1.get_data()); - //R2 = reinterpret_cast<float *>(npR2.get_data()); - //R3 = reinterpret_cast<float *>(npR3.get_data()); - ///* begin iterations */ - //for (ll = 0; ll<iter; ll++) { - ///* computing the gradient of the objective function */ - //Obj_func3D(A, D, R1, R2, R3, lambda, dimX, dimY, dimZ); - ///*Taking a step towards minus of the gradient*/ - //Grad_func3D(P1, P2, P3, D, R1, R2, R3, lambda, dimX, dimY, dimZ); - - ///* projection step */ - //Proj_func3D(P1, P2, P3, dimX, dimY, dimZ); - - ///*updating R and t*/ - //tkp1 = (1.0f + sqrt(1.0f + 4.0f*tk*tk))*0.5f; - //Rupd_func3D(P1, P1_old, P2, P2_old, P3, P3_old, R1, R2, R3, tkp1, tk, dimX, dimY, dimZ); - - ///* calculate norm - stopping rules*/ - //re = 0.0f; re1 = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) - //{ - //re += pow(D[j] - D_old[j], 2); - //re1 += pow(D[j], 2); - //} - //re = sqrt(re) / sqrt(re1); - ///* stop if the norm residual is less than the tolerance EPS */ - //if (re < epsil) count++; - //if (count > 3) { - //Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); - //funcval = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - ////funcvalA[0] = sqrt(funcval); - //float fv = sqrt(funcval); - //std::memcpy(funcvalA, &fv, sizeof(float)); - //break; - //} - - ///* check that the residual norm is decreasing */ - //if (ll > 2) { - //if (re > re_old) { - //Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); - //funcval = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - ////funcvalA[0] = sqrt(funcval); - //float fv = sqrt(funcval); - //std::memcpy(funcvalA, &fv, sizeof(float)); - //break; - //} - //} - - //re_old = re; - ///*printf("%f %i %i \n", re, ll, count); */ - - ///*storing old values*/ - //copyIm(D, D_old, dimX, dimY, dimZ); - //copyIm(P1, P1_old, dimX, dimY, dimZ); - //copyIm(P2, P2_old, dimX, dimY, dimZ); - //copyIm(P3, P3_old, dimX, dimY, dimZ); - //tk = tkp1; - - //if (ll == (iter - 1)) { - //Obj_func3D(A, D, P1, P2, P3, lambda, dimX, dimY, dimZ); - //funcval = 0.0f; - //for (j = 0; j<dimX*dimY*dimZ; j++) funcval += pow(D[j], 2); - ////funcvalA[0] = sqrt(funcval); - //float fv = sqrt(funcval); - //std::memcpy(funcvalA, &fv, sizeof(float)); - //} - - //} - ////printf("FGP-TV iterations stopped at iteration %i with the function value %f \n", ll, funcvalA[0]); - //result.append<np::ndarray>(npD); - //result.append<np::ndarray>(out1); - //result.append<int>(ll); - //} - - //return result; -//} - bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) { // the result is in the following list bp::list result; @@ -1022,9 +736,6 @@ bp::list TGV_PD(np::ndarray input, double d_lambda, double d_alpha1, double d_al result.append<np::ndarray>(npU); } - - - return result; } diff --git a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py index a9d0f31..63be1a0 100644 --- a/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py +++ b/Wrappers/Python/test/test_cpu_vs_gpu_regularizers.py @@ -3,7 +3,7 @@ """ Created on Thu Feb 22 11:39:43 2018 -Testing CPU implementation against GPU one +Testing CPU implementation against the GPU one @author: Daniil Kazantsev """ @@ -12,8 +12,6 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -#from ccpi.filters.cpu_regularizers_cython import TV_ROF_CPU, TV_FGP_CPU -#from ccpi.filters.gpu_regularizers import TV_ROF_GPU, TV_FGP_GPU from ccpi.filters.regularizers import ROF_TV, FGP_TV ############################################################################### diff --git a/Wrappers/Python/test/test_gpu_regularizers.py b/Wrappers/Python/test/test_gpu_regularizers.py index 04aeeb4..640b3f9 100644 --- a/Wrappers/Python/test/test_gpu_regularizers.py +++ b/Wrappers/Python/test/test_gpu_regularizers.py @@ -11,8 +11,8 @@ import numpy as np import os from enum import Enum import timeit -from ccpi.filters.gpu_regularizers import Diff4thHajiaboli, NML, TV_ROF_GPU - +from ccpi.filters.gpu_regularizers import Diff4thHajiaboli, NML +from ccpi.filters.regularizers import ROF_TV, FGP_TV ############################################################################### def printParametersToString(pars): txt = r'' @@ -151,20 +151,19 @@ plt.colorbar(ticks=[0, 0.03], orientation='vertical') ## Rudin-Osher-Fatemi (ROF) TV regularization start_time = timeit.default_timer() - pars = { -'algorithm' : TV_ROF_GPU , \ +'algorithm' : ROF_TV , \ 'input' : u0, 'regularization_parameter': 0.04,\ 'number_of_iterations':300,\ 'time_marching_parameter': 0.0025 } - + rof_tv = TV_ROF_GPU(pars['input'], pars['regularization_parameter'], pars['number_of_iterations'], - pars['time_marching_parameter']) + pars['time_marching_parameter'],'gpu') rms = rmse(Im, rof_tv) pars['rmse'] = rms @@ -190,3 +189,51 @@ a.text(0.05, 0.95, 'rof_tv - u0', transform=a.transAxes, fontsize=14, imgplot = plt.imshow((rof_tv - u0)**2, vmin=0, vmax=0.03, cmap="gray") plt.colorbar(ticks=[0, 0.03], orientation='vertical') plt.show() + +## Fast-Gradient Projection TV regularization +""" +start_time = timeit.default_timer() + +pars = {'algorithm' : FGP_TV, \ + 'input' : u0,\ + 'regularization_parameter':0.04, \ + 'number_of_iterations' :1200 ,\ + 'tolerance_constant':0.00001,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +fgp_gpu = FGP_TV(pars['input'], + pars['regularization_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_gpu) +pars['rmse'] = rms +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(2,4,4) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=12, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_gpu, cmap="gray") + +a=fig.add_subplot(2,4,8) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, 'fgp_gpu - u0', transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow((fgp_gpu - u0)**2, vmin=0, vmax=0.03, cmap="gray") +plt.colorbar(ticks=[0, 0.03], orientation='vertical') +plt.show() +""" |