diff options
author | Daniil Kazantsev <dkazanc3@googlemail.com> | 2018-04-17 13:18:49 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-04-17 13:18:49 +0100 |
commit | cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1 (patch) | |
tree | 530f73d52c3142b023673f2041ac451bfcab576b /Wrappers/Python | |
parent | 7e556922a60e052d24c1e467df13423904729357 (diff) | |
parent | ec9b5742e243c60f2f7d31f38cd3d561c3ae3394 (diff) | |
download | regularization-cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1.tar.gz regularization-cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1.tar.bz2 regularization-cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1.tar.xz regularization-cbe38cf8874ca3b74e25ce64d61bbb2edeb3a9c1.zip |
Merge pull request #51 from vais-ral/TNV
Total Nuclear Variation (TNV) module
Diffstat (limited to 'Wrappers/Python')
-rw-r--r-- | Wrappers/Python/ccpi/filters/regularisers.py | 7 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 61 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularisers.pyx | 26 |
3 files changed, 88 insertions, 6 deletions
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py index 50c4374..e6814e8 100644 --- a/Wrappers/Python/ccpi/filters/regularisers.py +++ b/Wrappers/Python/ccpi/filters/regularisers.py @@ -2,7 +2,7 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU +from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU def ROF_TV(inputData, regularisation_parameter, iterations, @@ -86,3 +86,8 @@ def FGP_dTV(inputData, refdata, regularisation_parameter, iterations, else: raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) +def TNV(inputData, regularisation_parameter, iterations, tolerance_param): + return TNV_CPU(inputData, + regularisation_parameter, + iterations, + tolerance_param) diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 0e4355b..7443b83 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, SB_TV, FGP_dTV, TNV from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -242,6 +242,57 @@ imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") plt.title('{}'.format('CPU results')) +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("__________Total nuclear Variation__________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(5) +plt.suptitle('Performance of TNV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +channelsNo = 5 +N = 512 +noisyVol = np.zeros((channelsNo,N,N),dtype='float32') +idealVol = np.zeros((channelsNo,N,N),dtype='float32') + +for i in range (channelsNo): + noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + idealVol[i,:,:] = Im + +# set parameters +pars = {'algorithm' : TNV, \ + 'input' : noisyVol,\ + 'regularisation_parameter': 0.04, \ + 'number_of_iterations' : 200 ,\ + 'tolerance_constant':1e-05 + } + +print ("#############TNV CPU#################") +start_time = timeit.default_timer() +tnv_cpu = TNV(pars['input'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant']) + +rms = rmse(idealVol, tnv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(tnv_cpu[3,:,:], cmap="gray") +plt.title('{}'.format('CPU results')) + # Uncomment to test 3D regularisation performance #%% @@ -270,7 +321,7 @@ print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(5) +fig = plt.figure(6) plt.suptitle('Performance of ROF-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy 15th slice of a volume') @@ -310,7 +361,7 @@ print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(6) +fig = plt.figure(7) plt.suptitle('Performance of FGP-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -359,7 +410,7 @@ print ("_______________SB-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(7) +fig = plt.figure(8) plt.suptitle('Performance of SB-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -406,7 +457,7 @@ print ("_______________FGP-dTV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(8) +fig = plt.figure(9) plt.suptitle('Performance of FGP-dTV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 417670d..abbf3b0 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -21,6 +21,7 @@ cimport numpy as np cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); +cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxIter, float tol, int dimX, int dimY, int dimZ); cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); @@ -249,3 +250,28 @@ def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, printM, dims[2], dims[1], dims[0]) return outputData + +#****************************************************************# +#*********************Total Nuclear Variation********************# +#****************************************************************# +def TNV_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param): + if inputData.ndim == 2: + return + elif inputData.ndim == 3: + return TNV_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param) + +def TNV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularisation_parameter, + int iterationsNumb, + float tolerance_param): + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0],dims[1],dims[2]], dtype='float32') + + # Run TNV iterations for 3D (X,Y,Channels) data + TNV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, dims[2], dims[1], dims[0]) + return outputData |