diff options
author | algol <dkazanc@hotmail.com> | 2018-04-12 11:56:54 +0100 |
---|---|---|
committer | algol <dkazanc@hotmail.com> | 2018-04-12 11:56:54 +0100 |
commit | 22f6e22cbe6db04c6bbe8d259ce761e3748d7102 (patch) | |
tree | 225dcf0db9dc7e0f0fc5fc001a7efb14c19658f8 /Wrappers | |
parent | 58f5ce047b063d53906e38047b6ae744ccdbd4eb (diff) | |
download | regularization-22f6e22cbe6db04c6bbe8d259ce761e3748d7102.tar.gz regularization-22f6e22cbe6db04c6bbe8d259ce761e3748d7102.tar.bz2 regularization-22f6e22cbe6db04c6bbe8d259ce761e3748d7102.tar.xz regularization-22f6e22cbe6db04c6bbe8d259ce761e3748d7102.zip |
dTV some bugs in cython
Diffstat (limited to 'Wrappers')
-rw-r--r-- | Wrappers/Python/ccpi/filters/regularisers.py | 4 | ||||
-rw-r--r-- | Wrappers/Python/conda-recipe/run_test.py.in (renamed from Wrappers/Python/conda-recipe/run_test.py) | 17 | ||||
-rw-r--r-- | Wrappers/Python/conda-recipe/testLena.npy | bin | 0 -> 1048656 bytes | |||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_regularisers.py | 9 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py | 2 | ||||
-rw-r--r-- | Wrappers/Python/demos/demo_gpu_regularisers.py | 8 | ||||
-rw-r--r-- | Wrappers/Python/src/cpu_regularisers.pyx | 2 | ||||
-rw-r--r-- | Wrappers/Python/src/gpu_regularisers.pyx | 7 |
8 files changed, 27 insertions, 22 deletions
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py index c6723fa..376cc9c 100644 --- a/Wrappers/Python/ccpi/filters/regularisers.py +++ b/Wrappers/Python/ccpi/filters/regularisers.py @@ -2,8 +2,8 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU dTV_FGP_CPU -from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU dTV_FGP_GPU +from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU, dTV_FGP_CPU +from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, dTV_FGP_GPU def ROF_TV(inputData, regularisation_parameter, iterations, time_marching_parameter,device='cpu'): diff --git a/Wrappers/Python/conda-recipe/run_test.py b/Wrappers/Python/conda-recipe/run_test.py.in index 04bbd40..9a6f4de 100644 --- a/Wrappers/Python/conda-recipe/run_test.py +++ b/Wrappers/Python/conda-recipe/run_test.py.in @@ -1,8 +1,6 @@ import unittest import numpy as np -import os from ccpi.filters.regularisers import ROF_TV, FGP_TV -import matplotlib.pyplot as plt def rmse(im1, im2): rmse = np.sqrt(np.sum((im1 - im2) ** 2) / float(im1.size)) @@ -14,13 +12,16 @@ class TestRegularisers(unittest.TestCase): pass def test_cpu_regularisers(self): - filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") + #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") + Im = np.load('testLena.npy'); + """ # read noiseless image Im = plt.imread(filename) Im = np.asarray(Im, dtype='float32') Im = Im/255 + """ tolerance = 1e-05 rms_rof_exp = 0.006812507 #expected value for ROF model rms_fgp_exp = 0.019152347 #expected value for FGP model @@ -80,13 +81,11 @@ class TestRegularisers(unittest.TestCase): """ self.assertTrue(res) def test_gpu_regularisers(self): - filename = os.path.join(".." , ".." , ".." , "data" ,"lena_gray_512.tif") + #filename = os.path.join(".." , ".." , ".." , "data" ,"testLena.npy") - # read noiseless image - Im = plt.imread(filename) - Im = np.asarray(Im, dtype='float32') + Im = np.load('testLena.npy'); - Im = Im/255 + #Im = Im/255 tolerance = 1e-05 rms_rof_exp = 0.006812507 #expected value for ROF model rms_fgp_exp = 0.019152347 #expected value for FGP model @@ -146,4 +145,4 @@ class TestRegularisers(unittest.TestCase): """ self.assertTrue(res) if __name__ == '__main__': - unittest.main()
\ No newline at end of file + unittest.main() diff --git a/Wrappers/Python/conda-recipe/testLena.npy b/Wrappers/Python/conda-recipe/testLena.npy Binary files differnew file mode 100644 index 0000000..14bc0e3 --- /dev/null +++ b/Wrappers/Python/conda-recipe/testLena.npy diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index fd3050c..00beb0b 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -22,6 +22,8 @@ def printParametersToString(pars): txt += "{0} = {1}".format(key, value.__name__) elif key == 'input': txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) else: txt += "{0} = {1}".format(key, value) txt += '\n' @@ -196,7 +198,7 @@ plt.title('{}'.format('CPU results')) # Uncomment to test 3D regularisation performance #%% - +""" N = 512 slices = 20 @@ -318,8 +320,8 @@ a.set_title('Noisy Image') imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") # set parameters -pars = {'algorithm' : FGP_dTV, \ - 'input' : noisyVol,\ +pars = {'algorithm' : FGP_dTV,\ + 'input' : noisyVol,\ 'refdata' : noisyRef,\ 'regularisation_parameter':0.04, \ 'number_of_iterations' :300 ,\ @@ -358,4 +360,5 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV')) +""" #%% diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py index aa1f865..310cf75 100644 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -22,6 +22,8 @@ def printParametersToString(pars): txt += "{0} = {1}".format(key, value.__name__) elif key == 'input': txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) else: txt += "{0} = {1}".format(key, value) txt += '\n' diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index 4759cc3..24a3c88 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -22,6 +22,8 @@ def printParametersToString(pars): txt += "{0} = {1}".format(key, value.__name__) elif key == 'input': txt += "{0} = {1}".format(key, np.shape(value)) + elif key == 'refdata': + txt += "{0} = {1}".format(key, np.shape(value)) else: txt += "{0} = {1}".format(key, value) txt += '\n' @@ -192,7 +194,7 @@ plt.title('{}'.format('GPU results')) # Uncomment to test 3D regularisation performance #%% - +""" N = 512 slices = 20 @@ -314,7 +316,7 @@ imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") # set parameters pars = {'algorithm' : FGP_dTV, \ - 'input' : noisyVol,\ + 'input' : noisyVol,\ 'refdata' : noisyRef,\ 'regularisation_parameter':0.04, \ 'number_of_iterations' :300 ,\ @@ -352,5 +354,5 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV')) - +""" #%% diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 8f9185a..1661375 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -156,8 +156,8 @@ def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, tolerance_param, - methodTV, eta_const, + methodTV, nonneg, printM, dims[0], dims[1], 1) diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx index 4a14f69..18efdcd 100644 --- a/Wrappers/Python/src/gpu_regularisers.pyx +++ b/Wrappers/Python/src/gpu_regularisers.pyx @@ -20,7 +20,7 @@ cimport numpy as np cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); -cdef extern void dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); +cdef extern void dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); # Total-variation Rudin-Osher-Fatemi (ROF) def TV_ROF_GPU(inputData, @@ -187,8 +187,7 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, np.zeros([dims[0],dims[1],dims[2]], dtype='float32') # Running CUDA code here - TV_FGP_GPU_main( - &inputData[0,0,0], &outputData[0,0,0], + TV_FGP_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter , iterations, tolerance_param, @@ -204,7 +203,7 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, #****************************************************************# #******** Directional TV Fast-Gradient-Projection (FGP)*********# def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - np.ndarray[np.float32_t, ndim=3, mode="c"] refdata, + np.ndarray[np.float32_t, ndim=2, mode="c"] refdata, float regularisation_parameter, int iterations, float tolerance_param, |