diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-12 10:25:21 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2018-04-12 10:25:21 +0100 |
commit | 58f5ce047b063d53906e38047b6ae744ccdbd4eb (patch) | |
tree | 611d46727147c2473f81c35174a6c105e830e94c /Wrappers | |
parent | aa99eb8a9bd47ecd6e4d3d1e8c9f0cfbefb4f7bb (diff) | |
download | regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.tar.gz regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.tar.bz2 regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.tar.xz regularization-58f5ce047b063d53906e38047b6ae744ccdbd4eb.zip |
dTV method added
Diffstat (limited to 'Wrappers')
17 files changed, 834 insertions, 126 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index 71082e7..dc49d9c 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -1,5 +1,6 @@ % Volume (3D) denoising demo using CCPi-RGL - +clear +close all addpath('../mex_compile/installed'); addpath('../../../data/'); @@ -14,31 +15,65 @@ vol3D(vol3D < 0) = 0; figure; imshow(vol3D(:,:,15), [0 1]); title('Noisy image'); %% -fprintf('Denoise using ROF-TV model (CPU) \n'); +fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 300; % number of ROF iterations tic; u_rof = ROF_TV(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; figure; imshow(u_rof(:,:,15), [0 1]); title('ROF-TV denoised volume (CPU)'); %% -% fprintf('Denoise using ROF-TV model (GPU) \n'); +% fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); % lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 300; % number of ROF iterations % tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_rof, iter_rof, tau_rof); toc; % figure; imshow(u_rofG(:,:,15), [0 1]); title('ROF-TV denoised volume (GPU)'); %% -fprintf('Denoise using FGP-TV model (CPU) \n'); +fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); lambda_fgp = 0.03; % regularisation parameter iter_fgp = 300; % number of FGP iterations epsil_tol = 1.0e-05; % tolerance tic; u_fgp = FGP_TV(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp(:,:,15), [0 1]); title('FGP-TV denoised volume (CPU)'); %% -% fprintf('Denoise using FGP-TV model (GPU) \n'); +% fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); % lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 300; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance % tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_fgp, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG(:,:,15), [0 1]); title('FGP-TV denoised volume (GPU)'); %% +fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); + +% create another volume (reference) with slightly less amount of noise +vol3D_ref = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); +end +vol3D_ref(vol3D_ref < 0) = 0; +% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +lambda_fgp = 0.03; % regularisation parameter +iter_fgp = 300; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv(:,:,15), [0 1]); title('FGP-dTV denoised volume (CPU)'); +%% +fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); + +% create another volume (reference) with slightly less amount of noise +vol3D_ref = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); +end +vol3D_ref(vol3D_ref < 0) = 0; +% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +lambda_fgp = 0.03; % regularisation parameter +iter_fgp = 300; % number of FGP iterations +epsil_tol = 1.0e-05; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv_g(:,:,15), [0 1]); title('FGP-dTV denoised volume (GPU)'); +%%
\ No newline at end of file diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 7f87fbb..145f2ff 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -1,5 +1,6 @@ % Image (2D) denoising demo using CCPi-RGL - +clear +close all addpath('../mex_compile/installed'); addpath('../../../data/'); @@ -8,31 +9,55 @@ u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; figure; imshow(u0, [0 1]); title('Noisy image'); %% -fprintf('Denoise using ROF-TV model (CPU) \n'); +fprintf('Denoise using the ROF-TV model (CPU) \n'); lambda_rof = 0.03; % regularisation parameter tau_rof = 0.0025; % time-marching constant iter_rof = 2000; % number of ROF iterations tic; u_rof = ROF_TV(single(u0), lambda_rof, iter_rof, tau_rof); toc; figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); %% -% fprintf('Denoise using ROF-TV model (GPU) \n'); +% fprintf('Denoise using the ROF-TV model (GPU) \n'); % lambda_rof = 0.03; % regularisation parameter % tau_rof = 0.0025; % time-marching constant % iter_rof = 2000; % number of ROF iterations % tic; u_rofG = ROF_TV_GPU(single(u0), lambda_rof, iter_rof, tau_rof); toc; % figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); %% -fprintf('Denoise using FGP-TV model (CPU) \n'); +fprintf('Denoise using the FGP-TV model (CPU) \n'); lambda_fgp = 0.03; % regularisation parameter iter_fgp = 1000; % number of FGP iterations -epsil_tol = 1.0e-05; % tolerance +epsil_tol = 1.0e-06; % tolerance tic; u_fgp = FGP_TV(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); %% -% fprintf('Denoise using FGP-TV model (GPU) \n'); +% fprintf('Denoise using the FGP-TV model (GPU) \n'); % lambda_fgp = 0.03; % regularisation parameter % iter_fgp = 1000; % number of FGP iterations % epsil_tol = 1.0e-05; % tolerance % tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_fgp, iter_fgp, epsil_tol); toc; % figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); %% +fprintf('Denoise using the FGP-dTV model (CPU) \n'); +% create another image (reference) with slightly less amount of noise +u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; +% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +lambda_fgp = 0.03; % regularisation parameter +iter_fgp = 1000; % number of FGP iterations +epsil_tol = 1.0e-06; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv = FGP_dTV(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); +%% +% fprintf('Denoise using the FGP-dTV model (GPU) \n'); +% % create another image (reference) with slightly less amount of noise +% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; +% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) +% +% lambda_fgp = 0.03; % regularisation parameter +% iter_fgp = 1000; % number of FGP iterations +% epsil_tol = 1.0e-06; % tolerance +% eta = 0.2; % Reference image gradient smoothing constant +% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_fgp, iter_fgp, epsil_tol, eta); toc; +% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); +%% diff --git a/Wrappers/Matlab/mex_compile/compileCPU_mex.m b/Wrappers/Matlab/mex_compile/compileCPU_mex.m index 8da81ad..71f345a 100644 --- a/Wrappers/Matlab/mex_compile/compileCPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileCPU_mex.m @@ -11,7 +11,10 @@ movefile ROF_TV.mex* ../installed/ mex FGP_TV.c FGP_TV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" movefile FGP_TV.mex* ../installed/ -delete ROF_TV_core* FGP_TV_core* utils.c utils.h CCPiDefines.h +mex FGP_dTV.c FGP_dTV_core.c utils.c CFLAGS="\$CFLAGS -fopenmp -Wall -std=c99" LDFLAGS="\$LDFLAGS -fopenmp" +movefile FGP_dTV.mex* ../installed/ + +delete ROF_TV_core* FGP_TV_core* FGP_dTV_core* utils* CCPiDefines.h fprintf('%s \n', 'All successfully compiled!'); diff --git a/Wrappers/Matlab/mex_compile/compileGPU_mex.m b/Wrappers/Matlab/mex_compile/compileGPU_mex.m index 45236fa..f58e9bc 100644 --- a/Wrappers/Matlab/mex_compile/compileGPU_mex.m +++ b/Wrappers/Matlab/mex_compile/compileGPU_mex.m @@ -23,7 +23,11 @@ movefile ROF_TV_GPU.mex* ../installed/ mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_TV_GPU.cpp TV_FGP_GPU_core.o movefile FGP_TV_GPU.mex* ../installed/ -delete TV_ROF_GPU_core* TV_FGP_GPU_core* CCPiDefines.h +!/usr/local/cuda/bin/nvcc -O0 -c dTV_FGP_GPU_core.cu -Xcompiler -fPIC -I~/SOFT/MATLAB9/extern/include/ +mex -g -I/usr/local/cuda-7.5/include -L/usr/local/cuda-7.5/lib64 -lcudart -lcufft -lmwgpu FGP_dTV_GPU.cpp dTV_FGP_GPU_core.o +movefile FGP_dTV_GPU.mex* ../installed/ + +delete TV_ROF_GPU_core* TV_FGP_GPU_core* dTV_FGP_GPU_core* CCPiDefines.h fprintf('%s \n', 'All successfully compiled!'); cd ../../ diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c index ba06cc7..aae1cb7 100644 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c @@ -52,7 +52,7 @@ void mexFunction( dim_array = mxGetDimensions(prhs[0]); /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); + if ((nrhs < 2) || (nrhs > 7)) mexErrMsgTxt("At least 2 parameters is required, all parameters are: Image(2D/3D), Regularization parameter, Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~ deleted file mode 100644 index 30d61cd..0000000 --- a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_TV.c~ +++ /dev/null @@ -1,91 +0,0 @@ -/* - * This work is part of the Core Imaging Library developed by - * Visual Analytics and Imaging System Group of the Science Technology - * Facilities Council, STFC - * - * Copyright 2017 Daniil Kazantsev - * Copyright 2017 Srikanth Nagella, Edoardo Pasca - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * http://www.apache.org/licenses/LICENSE-2.0 - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "matrix.h" -#include "mex.h" -#include "FGP_TV_core.h" - -/* C-OMP implementation of FGP-TV [1] denoising/regularization model (2D/3D case) - * - * Input Parameters: - * 1. Noisy image/volume - * 2. lambdaPar - regularization parameter - * 3. Number of iterations - * 4. eplsilon: tolerance constant - * 5. TV-type: methodTV - 'iso' (0) or 'l1' (1) - * 6. nonneg: 'nonnegativity (0 is OFF by default) - * 7. print information: 0 (off) or 1 (on) - * - * Output: - * [1] Filtered/regularized image - * - * This function is based on the Matlab's code and paper by - * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" - */ - - -void mexFunction( - int nlhs, mxArray *plhs[], - int nrhs, const mxArray *prhs[]) - -{ - int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch; - const int *dim_array; - float *Input, *Output, lambda, epsil; - - number_of_dims = mxGetNumberOfDimensions(prhs[0]); - dim_array = mxGetDimensions(prhs[0]); - - /*Handling Matlab input data*/ - if ((nrhs < 2) || (nrhs > 6)) mexErrMsgTxt("At least 2 parameters is required: Image(2D/3D), Regularization parameter. The full list of parameters: Image(2D/3D), Regularization parameter, iterations number, tolerance, penalty type ('iso' or 'l1'), print switch"); - - Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ - lambda = (float) mxGetScalar(prhs[1]); /* regularization parameter */ - iter = 300; /* default iterations number */ - epsil = 0.0001; /* default tolerance constant */ - methTV = 0; /* default isotropic TV penalty */ - printswitch = 0; /*default print is switched off - 0 */ - - if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } - - if ((nrhs == 3) || (nrhs == 4) || (nrhs == 5) || (nrhs == 6)) iter = (int) mxGetScalar(prhs[2]); /* iterations number */ - if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6)) epsil = (float) mxGetScalar(prhs[3]); /* tolerance constant */ - if ((nrhs == 5) || (nrhs == 6)) { - char *penalty_type; - penalty_type = mxArrayToString(prhs[4]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ - if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); - if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ - mxFree(penalty_type); - } - if (nrhs == 6) { - printswitch = (int) mxGetScalar(prhs[5]); - if ((printswitch != 0) || (printswitch != 1)) {mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); } - } - - /*Handling Matlab output data*/ - dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; - - if (number_of_dims == 2) { - dimZ = 1; /*2D case*/ - Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); - } - if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); - - - TV_FGP_CPU_main(Input, Output, lambda, iter, epsil, methTV, nonneg, printswitch, dimX, dimY, dimZ) -} diff --git a/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c new file mode 100644 index 0000000..bb868c7 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_CPU/FGP_dTV.c @@ -0,0 +1,113 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "FGP_dTV_core.h" + +/* C-OMP implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) + * which employs structural similarity of the level sets of two images/volumes, see [1,2] + * The current implementation updates image 1 while image 2 is being fixed. + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] + * 3. lambdaPar - regularization parameter [REQUIRED] + * 4. Number of iterations [OPTIONAL] + * 5. eplsilon: tolerance constant [OPTIONAL] + * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * + * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] + * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] + * 9. print information: 0 (off) or 1 (on) [OPTIONAL] + * + * Output: + * [1] Filtered/regularized image/volume + * + * This function is based on the Matlab's codes and papers by + * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" + * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 + */ + + +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg; + const int *dim_array; + const int *dim_array2; + float *Input, *InputRef, *Output=NULL, lambda, epsil, eta; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + dim_array2 = mxGetDimensions(prhs[1]); + + /*Handling Matlab input data*/ + if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); + + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */ + lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ + iter = 300; /* default iterations number */ + epsil = 0.0001; /* default tolerance constant */ + eta = 0.01; /* default smoothing constant */ + methTV = 0; /* default isotropic TV penalty */ + nonneg = 0; /* default nonnegativity switch, off - 0 */ + printswitch = 0; /*default print is switched, off - 0 */ + + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");} + if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");} + + + if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */ + if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ + if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { + eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */ + } + if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + mxFree(penalty_type); + } + if ((nrhs == 8) || (nrhs == 9)) { + nonneg = (int) mxGetScalar(prhs[7]); + if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); + } + if (nrhs == 9) { + printswitch = (int) mxGetScalar(prhs[8]); + if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); + } + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* running the function */ + dTV_FGP_CPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ); +}
\ No newline at end of file diff --git a/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp new file mode 100644 index 0000000..5b80616 --- /dev/null +++ b/Wrappers/Matlab/mex_compile/regularisers_GPU/FGP_dTV_GPU.cpp @@ -0,0 +1,111 @@ +/* + * This work is part of the Core Imaging Library developed by + * Visual Analytics and Imaging System Group of the Science Technology + * Facilities Council, STFC + * + * Copyright 2017 Daniil Kazantsev + * Copyright 2017 Srikanth Nagella, Edoardo Pasca + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * http://www.apache.org/licenses/LICENSE-2.0 + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "matrix.h" +#include "mex.h" +#include "dTV_FGP_GPU_core.h" + +/* CUDA implementation of FGP-dTV [1,2] denoising/regularization model (2D/3D case) + * which employs structural similarity of the level sets of two images/volumes, see [1,2] + * The current implementation updates image 1 while image 2 is being fixed. + * + * Input Parameters: + * 1. Noisy image/volume [REQUIRED] + * 2. Additional reference image/volume of the same dimensions as (1) [REQUIRED] + * 3. lambdaPar - regularization parameter [REQUIRED] + * 4. Number of iterations [OPTIONAL] + * 5. eplsilon: tolerance constant [OPTIONAL] + * 6. eta: smoothing constant to calculate gradient of the reference [OPTIONAL] * + * 7. TV-type: methodTV - 'iso' (0) or 'l1' (1) [OPTIONAL] + * 8. nonneg: 'nonnegativity (0 is OFF by default) [OPTIONAL] + * 9. print information: 0 (off) or 1 (on) [OPTIONAL] + * + * Output: + * [1] Filtered/regularized image/volume + * + * This function is based on the Matlab's codes and papers by + * [1] Amir Beck and Marc Teboulle, "Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems" + * [2] M. J. Ehrhardt and M. M. Betcke, Multi-Contrast MRI Reconstruction with Structure-Guided Total Variation, SIAM Journal on Imaging Sciences 9(3), pp. 1084–1106 + */ +void mexFunction( + int nlhs, mxArray *plhs[], + int nrhs, const mxArray *prhs[]) + +{ + int number_of_dims, iter, dimX, dimY, dimZ, methTV, printswitch, nonneg; + const int *dim_array; + const int *dim_array2; + float *Input, *InputRef, *Output=NULL, lambda, epsil, eta; + + number_of_dims = mxGetNumberOfDimensions(prhs[0]); + dim_array = mxGetDimensions(prhs[0]); + dim_array2 = mxGetDimensions(prhs[1]); + + /*Handling Matlab input data*/ + if ((nrhs < 3) || (nrhs > 9)) mexErrMsgTxt("At least 3 parameters is required, all parameters are: Image(2D/3D), Reference(2D/3D), Regularization parameter, iterations number, tolerance, smoothing constant, penalty type ('iso' or 'l1'), nonnegativity switch, print switch"); + + Input = (float *) mxGetData(prhs[0]); /*noisy image (2D/3D) */ + InputRef = (float *) mxGetData(prhs[1]); /* reference image (2D/3D) */ + lambda = (float) mxGetScalar(prhs[2]); /* regularization parameter */ + iter = 300; /* default iterations number */ + epsil = 0.0001; /* default tolerance constant */ + eta = 0.01; /* default smoothing constant */ + methTV = 0; /* default isotropic TV penalty */ + nonneg = 0; /* default nonnegativity switch, off - 0 */ + printswitch = 0; /*default print is switched, off - 0 */ + + + if (mxGetClassID(prhs[0]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + if (mxGetClassID(prhs[1]) != mxSINGLE_CLASS) {mexErrMsgTxt("The input image must be in a single precision"); } + + /*Handling Matlab output data*/ + dimX = dim_array[0]; dimY = dim_array[1]; dimZ = dim_array[2]; + if (number_of_dims == 2) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1])) mexErrMsgTxt("The input images have different dimensionalities");} + if (number_of_dims == 3) { if ((dimX != dim_array2[0]) || (dimY != dim_array2[1]) || (dimZ != dim_array2[2])) mexErrMsgTxt("The input volumes have different dimensionalities");} + + + if ((nrhs == 4) || (nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) iter = (int) mxGetScalar(prhs[3]); /* iterations number */ + if ((nrhs == 5) || (nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) epsil = (float) mxGetScalar(prhs[4]); /* tolerance constant */ + if ((nrhs == 6) || (nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { + eta = (float) mxGetScalar(prhs[5]); /* smoothing constant for the gradient of InputRef */ + } + if ((nrhs == 7) || (nrhs == 8) || (nrhs == 9)) { + char *penalty_type; + penalty_type = mxArrayToString(prhs[6]); /* choosing TV penalty: 'iso' or 'l1', 'iso' is the default */ + if ((strcmp(penalty_type, "l1") != 0) && (strcmp(penalty_type, "iso") != 0)) mexErrMsgTxt("Choose TV type: 'iso' or 'l1',"); + if (strcmp(penalty_type, "l1") == 0) methTV = 1; /* enable 'l1' penalty */ + mxFree(penalty_type); + } + if ((nrhs == 8) || (nrhs == 9)) { + nonneg = (int) mxGetScalar(prhs[7]); + if ((nonneg != 0) && (nonneg != 1)) mexErrMsgTxt("Nonnegativity constraint can be enabled by choosing 1 or off - 0"); + } + if (nrhs == 9) { + printswitch = (int) mxGetScalar(prhs[8]); + if ((printswitch != 0) && (printswitch != 1)) mexErrMsgTxt("Print can be enabled by choosing 1 or off - 0"); + } + + if (number_of_dims == 2) { + dimZ = 1; /*2D case*/ + Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(2, dim_array, mxSINGLE_CLASS, mxREAL)); + } + if (number_of_dims == 3) Output = (float*)mxGetPr(plhs[0] = mxCreateNumericArray(3, dim_array, mxSINGLE_CLASS, mxREAL)); + + /* running the function */ + dTV_FGP_GPU_main(Input, InputRef, Output, lambda, iter, epsil, eta, methTV, nonneg, printswitch, dimX, dimY, dimZ); +}
\ No newline at end of file diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py index 039daab..c6723fa 100644 --- a/Wrappers/Python/ccpi/filters/regularisers.py +++ b/Wrappers/Python/ccpi/filters/regularisers.py @@ -2,8 +2,8 @@ script which assigns a proper device core function based on a flag ('cpu' or 'gpu') """ -from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU -from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU +from ccpi.filters.cpu_regularisers_cython import TV_ROF_CPU, TV_FGP_CPU dTV_FGP_CPU +from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU dTV_FGP_GPU def ROF_TV(inputData, regularisation_parameter, iterations, time_marching_parameter,device='cpu'): @@ -42,3 +42,28 @@ def FGP_TV(inputData, regularisation_parameter,iterations, else: raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) +def FGP_dTV(inputData, refdata, regularisation_parameter, iterations, + tolerance_param, eta_const, methodTV, nonneg, printM, device='cpu'): + if device == 'cpu': + return dTV_FGP_CPU(inputData, + refdata, + regularisation_parameter, + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM) + elif device == 'gpu': + return dTV_FGP_GPU(inputData, + refdata, + regularisation_parameter, + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM) + else: + raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ + .format(device)) diff --git a/Wrappers/Python/test/run_test.py b/Wrappers/Python/conda-recipe/run_test.py index 04bbd40..04bbd40 100644 --- a/Wrappers/Python/test/run_test.py +++ b/Wrappers/Python/conda-recipe/run_test.py diff --git a/Wrappers/Python/demos/demo_cpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_regularisers.py index 929f0af..fd3050c 100644 --- a/Wrappers/Python/demos/demo_cpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, FGP_dTV from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -39,9 +39,14 @@ perc = 0.05 u0 = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) + # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') +u_ref = u_ref.astype('float32') print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -134,9 +139,64 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(fgp_cpu, cmap="gray") plt.title('{}'.format('CPU results')) + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_____________FGP-dTV (2D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of FGP-dTV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : u0,\ + 'refdata' : u_ref,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :2000 ,\ + 'tolerance_constant':1e-06,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP dTV CPU####################") +start_time = timeit.default_timer() +fgp_dtv_cpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + +rms = rmse(Im, fgp_dtv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + + + # Uncomment to test 3D regularisation performance #%% -""" + N = 512 slices = 20 @@ -148,10 +208,12 @@ Im = Im/255 perc = 0.05 noisyVol = np.zeros((slices,N,N),dtype='float32') +noisyRef = np.zeros((slices,N,N),dtype='float32') idealVol = np.zeros((slices,N,N),dtype='float32') for i in range (slices): noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) idealVol[i,:,:] = Im print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -159,7 +221,7 @@ print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(3) +fig = plt.figure(4) plt.suptitle('Performance of ROF-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy 15th slice of a volume') @@ -199,7 +261,7 @@ print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(4) +fig = plt.figure(5) plt.suptitle('Performance of FGP-TV regulariser using the CPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -242,5 +304,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) imgplot = plt.imshow(fgp_cpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the CPU using FGP-TV')) -""" -#%%
\ No newline at end of file + + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-dTV (3D)__________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(6) +plt.suptitle('Performance of FGP-dTV regulariser using the CPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : noisyVol,\ + 'refdata' : noisyRef,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP dTV CPU####################") +start_time = timeit.default_timer() +fgp_dTV_cpu3D = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(idealVol, fgp_dTV_cpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dTV_cpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the CPU using FGP-dTV')) +#%% diff --git a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py index cfe2e7d..aa1f865 100644 --- a/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_cpu_vs_gpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, FGP_dTV from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -39,10 +39,14 @@ perc = 0.05 u0 = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) + # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') - +u_ref = u_ref.astype('float32') print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("____________ROF-TV bench___________________") @@ -213,3 +217,96 @@ else: print ("Arrays match") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-dTV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Comparison of FGP-dTV regulariser using CPU and GPU implementations') +a=fig.add_subplot(1,4,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : u0,\ + 'refdata' : u_ref,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :2000 ,\ + 'tolerance_constant':1e-06,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP dTV CPU####################") +start_time = timeit.default_timer() +fgp_dtv_cpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'cpu') + + +rms = rmse(Im, fgp_dtv_cpu) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_cpu, cmap="gray") +plt.title('{}'.format('CPU results')) + +print ("##############FGP dTV GPU##################") +start_time = timeit.default_timer() +fgp_dtv_gpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') +rms = rmse(Im, fgp_dtv_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_dTV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,4,3) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + + +print ("--------Compare the results--------") +tolerance = 1e-05 +diff_im = np.zeros(np.shape(rof_cpu)) +diff_im = abs(fgp_dtv_cpu - fgp_dtv_gpu) +diff_im[diff_im > tolerance] = 1 +a=fig.add_subplot(1,4,4) +imgplot = plt.imshow(diff_im, vmin=0, vmax=1, cmap="gray") +plt.title('{}'.format('Pixels larger threshold difference')) +if (diff_im.sum() > 1): + print ("Arrays do not match!") +else: + print ("Arrays match") diff --git a/Wrappers/Python/demos/demo_gpu_regularisers.py b/Wrappers/Python/demos/demo_gpu_regularisers.py index c496e1c..4759cc3 100644 --- a/Wrappers/Python/demos/demo_gpu_regularisers.py +++ b/Wrappers/Python/demos/demo_gpu_regularisers.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt import numpy as np import os import timeit -from ccpi.filters.regularisers import ROF_TV, FGP_TV +from ccpi.filters.regularisers import ROF_TV, FGP_TV, FGP_dTV from qualitymetrics import rmse ############################################################################### def printParametersToString(pars): @@ -39,10 +39,13 @@ perc = 0.05 u0 = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) +u_ref = Im + np.random.normal(loc = 0 , + scale = 0.01 * Im , + size = np.shape(Im)) # map the u0 u0->u0>0 # f = np.frompyfunc(lambda x: 0 if x < 0 else x, 1,1) u0 = u0.astype('float32') - +u_ref = u_ref.astype('float32') print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("____________ROF-TV bench___________________") @@ -134,10 +137,62 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, imgplot = plt.imshow(fgp_gpu, cmap="gray") plt.title('{}'.format('GPU results')) +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("____________FGP-dTV bench___________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(3) +plt.suptitle('Performance of the FGP-dTV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(u0,cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : u0,\ + 'refdata' : u_ref,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :2000 ,\ + 'tolerance_constant':1e-06,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("##############FGP dTV GPU##################") +start_time = timeit.default_timer() +fgp_dtv_gpu = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(Im, fgp_dtv_gpu) +pars['rmse'] = rms +pars['algorithm'] = FGP_dTV +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dtv_gpu, cmap="gray") +plt.title('{}'.format('GPU results')) + # Uncomment to test 3D regularisation performance #%% -""" + N = 512 slices = 20 @@ -149,10 +204,12 @@ Im = Im/255 perc = 0.05 noisyVol = np.zeros((slices,N,N),dtype='float32') +noisyRef = np.zeros((slices,N,N),dtype='float32') idealVol = np.zeros((slices,N,N),dtype='float32') for i in range (slices): noisyVol[i,:,:] = Im + np.random.normal(loc = 0 , scale = perc * Im , size = np.shape(Im)) + noisyRef[i,:,:] = Im + np.random.normal(loc = 0 , scale = 0.01 * Im , size = np.shape(Im)) idealVol[i,:,:] = Im print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") @@ -160,7 +217,7 @@ print ("_______________ROF-TV (3D)_________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(3) +fig = plt.figure(4) plt.suptitle('Performance of ROF-TV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy 15th slice of a volume') @@ -200,7 +257,7 @@ print ("_______________FGP-TV (3D)__________________") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") ## plot -fig = plt.figure(4) +fig = plt.figure(5) plt.suptitle('Performance of FGP-TV regulariser using the GPU') a=fig.add_subplot(1,2,1) a.set_title('Noisy Image') @@ -242,6 +299,58 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) imgplot = plt.imshow(fgp_gpu3D[10,:,:], cmap="gray") plt.title('{}'.format('Recovered volume on the GPU using FGP-TV')) -#%% -""" + +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") +print ("_______________FGP-dTV (3D)________________") +print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") + +## plot +fig = plt.figure(6) +plt.suptitle('Performance of FGP-dTV regulariser using the GPU') +a=fig.add_subplot(1,2,1) +a.set_title('Noisy Image') +imgplot = plt.imshow(noisyVol[10,:,:],cmap="gray") + +# set parameters +pars = {'algorithm' : FGP_dTV, \ + 'input' : noisyVol,\ + 'refdata' : noisyRef,\ + 'regularisation_parameter':0.04, \ + 'number_of_iterations' :300 ,\ + 'tolerance_constant':0.00001,\ + 'eta_const':0.2,\ + 'methodTV': 0 ,\ + 'nonneg': 0 ,\ + 'printingOut': 0 + } + +print ("#############FGP TV GPU####################") +start_time = timeit.default_timer() +fgp_dTV_gpu3D = FGP_dTV(pars['input'], + pars['refdata'], + pars['regularisation_parameter'], + pars['number_of_iterations'], + pars['tolerance_constant'], + pars['eta_const'], + pars['methodTV'], + pars['nonneg'], + pars['printingOut'],'gpu') + +rms = rmse(idealVol, fgp_dTV_gpu3D) +pars['rmse'] = rms + +txtstr = printParametersToString(pars) +txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time) +print (txtstr) +a=fig.add_subplot(1,2,2) + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.75) +# place a text box in upper left in axes coords +a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(fgp_dTV_gpu3D[10,:,:], cmap="gray") +plt.title('{}'.format('Recovered volume on the GPU using FGP-dTV')) + +#%% diff --git a/Wrappers/Python/setup-regularisers.py.in b/Wrappers/Python/setup-regularisers.py.in index a1c1ab6..c7ebb5c 100644 --- a/Wrappers/Python/setup-regularisers.py.in +++ b/Wrappers/Python/setup-regularisers.py.in @@ -36,6 +36,7 @@ extra_include_dirs += [os.path.join(".." , ".." , "Core"), os.path.join(".." , ".." , "Core", "regularisers_CPU"), os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_FGP" ) , os.path.join(".." , ".." , "Core", "regularisers_GPU" , "TV_ROF" ) , + os.path.join(".." , ".." , "Core", "regularisers_GPU" , "dTV_FGP" ) , "."] if platform.system() == 'Windows': diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx index 0f08f7f..8f9185a 100644 --- a/Wrappers/Python/src/cpu_regularisers.pyx +++ b/Wrappers/Python/src/cpu_regularisers.pyx @@ -20,6 +20,7 @@ cimport numpy as np cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); +cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ); #****************************************************************# @@ -89,7 +90,7 @@ def TV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') - #/* Run ROF iterations for 2D data */ + #/* Run FGP-TV iterations for 2D data */ TV_FGP_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, iterationsNumb, tolerance_param, @@ -115,7 +116,7 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - #/* Run ROF iterations for 3D data */ + #/* Run FGP-TV iterations for 3D data */ TV_FGP_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, iterationsNumb, tolerance_param, @@ -124,3 +125,69 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, printM, dims[2], dims[1], dims[0]) return outputData +#****************************************************************# +#**************Directional Total-variation FGP ******************# +#****************************************************************# +#******** Directional TV Fast-Gradient-Projection (FGP)*********# +def dTV_FGP_CPU(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM): + if inputData.ndim == 2: + return dTV_FGP_2D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM) + elif inputData.ndim == 3: + return dTV_FGP_3D(inputData, refdata, regularisation_parameter, iterationsNumb, tolerance_param, eta_const, methodTV, nonneg, printM) + +def dTV_FGP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + np.ndarray[np.float32_t, ndim=2, mode="c"] refdata, + float regularisation_parameter, + int iterationsNumb, + float tolerance_param, + float eta_const, + int methodTV, + int nonneg, + int printM): + + cdef long dims[2] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ + np.zeros([dims[0],dims[1]], dtype='float32') + + #/* Run FGP-dTV iterations for 2D data */ + dTV_FGP_CPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], regularisation_parameter, + iterationsNumb, + tolerance_param, + methodTV, + eta_const, + nonneg, + printM, + dims[0], dims[1], 1) + + return outputData + +def dTV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + np.ndarray[np.float32_t, ndim=3, mode="c"] refdata, + float regularisation_parameter, + int iterationsNumb, + float tolerance_param, + float eta_const, + int methodTV, + int nonneg, + int printM): + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0], dims[1], dims[2]], dtype='float32') + + #/* Run FGP-dTV iterations for 3D data */ + dTV_FGP_CPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], regularisation_parameter, + iterationsNumb, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM, + dims[2], dims[1], dims[0]) + return outputData diff --git a/Wrappers/Python/src/gpu_regularisers.pyx b/Wrappers/Python/src/gpu_regularisers.pyx index ea746d3..4a14f69 100644 --- a/Wrappers/Python/src/gpu_regularisers.pyx +++ b/Wrappers/Python/src/gpu_regularisers.pyx @@ -20,6 +20,7 @@ cimport numpy as np cdef extern void TV_ROF_GPU_main(float* Input, float* Output, float lambdaPar, int iter, float tau, int N, int M, int Z); cdef extern void TV_FGP_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int printM, int N, int M, int Z); +cdef extern void dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); # Total-variation Rudin-Osher-Fatemi (ROF) def TV_ROF_GPU(inputData, @@ -61,7 +62,36 @@ def TV_FGP_GPU(inputData, methodTV, nonneg, printM) - +# Directional Total-variation Fast-Gradient-Projection (FGP) +def dTV_FGP_GPU(inputData, + refdata, + regularisation_parameter, + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM): + if inputData.ndim == 2: + return FGPdTV2D(inputData, + refdata, + regularisation_parameter, + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM) + elif inputData.ndim == 3: + return FGPdTV3D(inputData, + refdata, + regularisation_parameter, + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM) #****************************************************************# #********************** Total-variation ROF *********************# #****************************************************************# @@ -167,4 +197,68 @@ def FGPTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, printM, dims[2], dims[1], dims[0]); - return outputData + return outputData + +#****************************************************************# +#**************Directional Total-variation FGP ******************# +#****************************************************************# +#******** Directional TV Fast-Gradient-Projection (FGP)*********# +def FGPdTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + np.ndarray[np.float32_t, ndim=3, mode="c"] refdata, + float regularisation_parameter, + int iterations, + float tolerance_param, + float eta_const, + int methodTV, + int nonneg, + int printM): + + cdef long dims[2] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ + np.zeros([dims[0],dims[1]], dtype='float32') + + # Running CUDA code here + dTV_FGP_GPU_main(&inputData[0,0], &refdata[0,0], &outputData[0,0], + regularisation_parameter, + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM, + dims[0], dims[1], 1); + + return outputData + +def FGPdTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + np.ndarray[np.float32_t, ndim=3, mode="c"] refdata, + float regularisation_parameter, + int iterations, + float tolerance_param, + float eta_const, + int methodTV, + int nonneg, + int printM): + + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0],dims[1],dims[2]], dtype='float32') + + # Running CUDA code here + dTV_FGP_GPU_main(&inputData[0,0,0], &refdata[0,0,0], &outputData[0,0,0], + regularisation_parameter , + iterations, + tolerance_param, + eta_const, + methodTV, + nonneg, + printM, + dims[2], dims[1], dims[0]); + return outputData diff --git a/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc b/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc Binary files differdeleted file mode 100644 index 2196a53..0000000 --- a/Wrappers/Python/test/__pycache__/metrics.cpython-35.pyc +++ /dev/null |