diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2017-07-03 22:35:23 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2017-07-03 22:35:23 +0100 |
commit | 329a104d4cb5ba50a59fb80e58de0453ba49f075 (patch) | |
tree | 278a879fb4000c488b3e07dbd6cac6bb9d9aeb7e /demo | |
parent | e55c200119ebf9fd42755cb2fea7c3d286ffe96b (diff) | |
download | regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.tar.gz regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.tar.bz2 regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.tar.xz regularization-329a104d4cb5ba50a59fb80e58de0453ba49f075.zip |
Major reorganization, updated routines
Diffstat (limited to 'demo')
-rw-r--r-- | demo/Demo1.m | 160 | ||||
-rw-r--r-- | demo/Demo2.m | 156 | ||||
-rw-r--r-- | demo/DemoRD1.m | 99 | ||||
-rw-r--r-- | demo/DemoRD2.m | 130 |
4 files changed, 0 insertions, 545 deletions
diff --git a/demo/Demo1.m b/demo/Demo1.m deleted file mode 100644 index 08d46e1..0000000 --- a/demo/Demo1.m +++ /dev/null @@ -1,160 +0,0 @@ -% Demonstration of tomographic reconstruction from noisy and corrupted by -% artifacts undersampled projection data using Students't penalty -% Optimisation problem is solved using FISTA algorithm (see Beck & Teboulle) - -% see ReadMe file for instructions -clear all -close all - -% adding paths -addpath('data/'); -addpath('main_func/'); -addpath('supp/'); - -load phantom_bone512.mat % load the phantom -load my_red_yellowMAP.mat % load the colormap -% load sino1.mat; % load noisy sinogram - -N = 512; % the size of the tomographic image NxN -theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi) -theta_rad = theta*(pi/180); % conversion to radians -P = 2*ceil(N/sqrt(2))+1; % the size of the detector array -ROI = find(phantom > 0); - -zing_rings_add; % generating data, adding zingers and stripes - -%% -fprintf('%s\n', 'Direct reconstruction using FBP...'); -FBP_1 = iradon(sino_zing_rings', theta, N); - -fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:))); - -figure(1); -subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[0 0.6]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); -clear params -% define parameters -params.sino = sino_zing_rings; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 180; %max number of outer iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -params.weights = Dweights; % statistical weighting -tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction is:', min(error_FISTA(:))); - -figure(2); clf -%set(gcf, 'Position', get(0,'Screensize')); -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); -figure(3); clf -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...'); -clear params -% define parameters -params.sino = sino_zing_rings; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 200; % max number of outer iterations -params.lambdaTV = 5.39e-05; % regularization parameter for TV problem -params.tol = 1.0e-04; % tolerance to terminate TV iterations -params.iterTV = 20; % the max number of TV iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.weights = Dweights; % statistical weighting -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction is:', min(error_FISTA_TV(:))); - -figure(4); clf -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); -figure(5); clf -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); -clear params -% define parameters -params.sino = sino_zing_rings; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 60; % max number of outer iterations -params.lambdaTV = 0.002526; % regularization parameter for TV problem -params.tol = 1.0e-04; % tolerance to terminate TV iterations -params.iterTV = 20; % the max number of TV iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.weights = Dweights; % statistical weighting -params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector" -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction is:', min(error_FISTA_GH_TV(:))); - -figure(6); clf -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); - -figure(7); clf -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); -clear params -% define parameters -params.sino = sino_zing_rings; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 67; % max number of outer iterations -%params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence) -params.lambdaTV = 0.00152; % regularization parameter for TV problem -params.tol = 1.0e-04; % tolerance to terminate TV iterations -params.iterTV = 20; % the max number of TV iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.weights = Dweights; % statistical weighting -params.fidelity = 'student'; % selecting students t fidelity -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction is:', min(error_FISTA_student_TV(:))); - -figure(8); -set(gcf, 'Position', get(0,'Screensize')); -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); - -figure(9); -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -% print all RMSE's -fprintf('%s\n', '--------------------------------------------'); -fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:))); -%
\ No newline at end of file diff --git a/demo/Demo2.m b/demo/Demo2.m deleted file mode 100644 index 3c1592c..0000000 --- a/demo/Demo2.m +++ /dev/null @@ -1,156 +0,0 @@ -% Demonstration of tomographic reconstruction from noisy and corrupted by -% artifacts undersampled projection data using Students t penalty -% This is the missing wedge demo, run it after DemoFISTA_StudT - -% see ReadMe file for instructions -% clear all -% close all - -load phantom_bone512.mat % load the phantom -load my_red_yellowMAP.mat % load the colormap -% load sino1.mat; % load noisy sinogram - -N = 512; % the size of the tomographic image NxN -theta = 1:1:180; % acquisition angles (in parallel beam from 0 to Pi) -theta_rad = theta*(pi/180); % conversion to radians -P = 2*ceil(N/sqrt(2))+1; % the size of the detector array -ROI = find(phantom > 0.0); - -add_wedges % apply the missing wedge mask - -%% -fprintf('%s\n', 'Direct reconstruction using FBP...'); -FBP_1 = iradon(MW_sino_artifacts', theta, N); - -fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_1(:), phantom(:))); - -figure(1); -% set(gcf, 'Position', get(0,'Screensize')); -subplot_tight(1,2,1, [0.05 0.05]); imshow(FBP_1,[-2 0.8]); title('FBP reconstruction of noisy and corrupted by artifacts sinogram'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - FBP_1).^2,[0 0.1]); title('residual: (ideal phantom - FBP)^2'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); -clear params -% define parameters -params.sino = MW_sino_artifacts; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 132; %max number of outer iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -params.weights = Dweights; % statistical weighting -tic; [X_FISTA, error_FISTA, obj_FISTA, sinoFISTA] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:))); - -figure(2); clf -%set(gcf, 'Position', get(0,'Screensize')); -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA,[0 0.6]); title('FISTA-LS reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); -figure(3); clf -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...'); -clear params -% define parameters -params.sino = MW_sino_artifacts; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 200; % max number of outer iterations -params.lambdaTV = 5.39e-05; % regularization parameter for TV problem -params.tol = 1.0e-04; % tolerance to terminate TV iterations -params.iterTV = 20; % the max number of TV iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.weights = Dweights; % statistical weighting -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -tic; [X_FISTA_TV, error_FISTA_TV, obj_FISTA_TV, sinoFISTA_TV] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:))); - -figure(4); clf -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_TV,[0 0.6]); title('FISTA-LS-TV reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_TV).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); -figure(5); clf -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_TV); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_TV); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); -clear params -% define parameters -params.sino = MW_sino_artifacts; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 250; % max number of outer iterations -params.lambdaTV = 0.0019; % regularization parameter for TV problem -params.tol = 1.0e-04; % tolerance to terminate TV iterations -params.iterTV = 20; % the max number of TV iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.weights = Dweights; % statistical weighting -params.lambdaR_L1 = 0.002; % parameter to sparsify the "rings vector" -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -tic; [X_FISTA_GH_TV, error_FISTA_GH_TV, obj_FISTA_GH_TV, sinoFISTA_GH_TV] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:))); - -figure(6); clf -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_GH_TV,[0 0.6]); title('FISTA-GH-TV reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]);imshow((phantom - X_FISTA_GH_TV).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); - -figure(7); clf -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_GH_TV); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_GH_TV); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); -clear params -% define parameters -params.sino = MW_sino_artifacts; -params.N = N; % image size -params.angles = theta_rad; % angles in radians -params.iterFISTA = 80; % max number of outer iterations -% params.L_const = 80000; % Lipshitz constant (can be chosen manually to accelerate convergence) -params.lambdaTV = 0.0016; % regularization parameter for TV problem -params.tol = 1.0e-04; % tolerance to terminate TV iterations -params.iterTV = 20; % the max number of TV iterations -params.X_ideal = phantom; % ideal phantom -params.ROI = ROI; % phantom region-of-interest -params.weights = Dweights; % statistical weighting -params.fidelity = 'student'; % selecting students t fidelity -params.show = 0; % visualize reconstruction on each iteration -params.slice = 1; params.maxvalplot = 0.6; -tic; [X_FISTA_student_TV, error_FISTA_student_TV, obj_FISTA_student_TV, sinoFISTA_student_TV] = FISTA_REC(params); toc; - -fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:))); - -figure(8); -set(gcf, 'Position', get(0,'Screensize')); -subplot_tight(1,2,1, [0.05 0.05]); imshow(X_FISTA_student_TV,[0 0.6]); title('FISTA-Student-TV reconstruction'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); imshow((phantom - X_FISTA_student_TV).^2,[0 0.1]); title('residual'); colorbar; -colormap(cmapnew); - -figure(9); -subplot_tight(1,2,1, [0.05 0.05]); plot(error_FISTA_student_TV); title('RMSE plot'); colorbar; -subplot_tight(1,2,2, [0.05 0.05]); plot(obj_FISTA_student_TV); title('Objective plot'); colorbar; -colormap(cmapnew); -%% -% print all RMSE's -fprintf('%s\n', '--------------------------------------------'); -fprintf('%s %.4f\n', 'RMSE for FBP reconstruction:', RMSE(FBP_2(:), phantom(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS reconstruction:', min(error_FISTA(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-LS-TV reconstruction:', min(error_FISTA_TV(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-GH-TV reconstruction:', min(error_FISTA_GH_TV(:))); -fprintf('%s %.4f\n', 'Min RMSE for FISTA-Student-TV reconstruction:', min(error_FISTA_student_TV(:))); -%
\ No newline at end of file diff --git a/demo/DemoRD1.m b/demo/DemoRD1.m deleted file mode 100644 index 9a43cb5..0000000 --- a/demo/DemoRD1.m +++ /dev/null @@ -1,99 +0,0 @@ -% Demonstration of tomographic reconstruction from neutron tomography -% dataset (basalt sample) using Student t data fidelity -clear all -close all - -% adding paths -addpath('data/'); -addpath('main_func/'); -addpath('supp/'); - -load('sino_basalt.mat') % load real neutron data - -size_det = size(sino_basalt, 1); % detector size -angSize = size(sino_basalt,2); % angles dim -recon_size = 650; % reconstruction size - -FBP = iradon(sino_basalt, rad2deg(angles),recon_size); -figure; imshow(FBP , [0, 0.45]); title ('FBP reconstruction'); - -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); -clear params -params.sino = sino_basalt'; -params.N = recon_size; -params.angles = angles; -params.iterFISTA = 50; -params.show = 0; -params.maxvalplot = 0.6; params.slice = 1; - -tic; [X_fista] = FISTA_REC(params); toc; -figure; imshow(X_fista , [0, 0.45]); title ('FISTA-LS reconstruction'); -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...'); -clear params -params.sino = sino_basalt'; -params.N = recon_size; -params.angles = angles; -params.iterFISTA = 150; -params.lambdaTV = 0.0003; % TV regularization parameter -params.tol = 1.0e-04; -params.iterTV = 20; -params.show = 1; -params.maxvalplot = 0.6; params.slice = 1; - -tic; [X_fista_TV] = FISTA_REC(params); toc; -figure; imshow(X_fista_TV , [0, 0.45]); title ('FISTA-LS-TV reconstruction'); -%% -%% -fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); -clear params -params.sino = sino_basalt'; -params.N = recon_size; -params.angles = angles; -params.iterFISTA = 350; -params.lambdaTV = 0.0003; % TV regularization parameter -params.tol = 1.0e-04; -params.iterTV = 20; -params.lambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter -params.show = 1; -params.maxvalplot = 0.6; params.slice = 1; - -tic; [X_fista_GH_TV] = FISTA_REC(params); toc; -figure; imshow(X_fista_GH_TV , [0, 0.45]); title ('FISTA-GH-TV reconstruction'); -%% -%% -fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); -clear params -params.sino = sino_basalt'; -params.N = recon_size; -params.angles = angles; -params.iterFISTA = 350; -params.L_const = 7000; % Lipshitz constant -params.lambdaTV = 0.0003; % TV regularization parameter -params.tol = 1.0e-04; -params.iterTV = 20; -params.fidelity = 'student'; % choosing Student t penalty -params.show = 1; -params.maxvalplot = 0.6; params.slice = 1; - -tic; [X_fistaStudentTV] = FISTA_REC(params); toc; -figure; imshow(X_fistaStudentTV , [0, 0.45]); title ('FISTA-Student-TV reconstruction'); -%% - -fprintf('%s\n', 'Segmentation using OTSU method ...'); -level = graythresh(X_fista); -Segm_FISTA = im2bw(X_fista,level); -figure; imshow(Segm_FISTA, []); title ('Segmented FISTA-LS reconstruction'); - -level = graythresh(X_fista_TV); -Segm_FISTA_TV = im2bw(X_fista_TV,level); -figure; imshow(Segm_FISTA_TV, []); title ('Segmented FISTA-LS-TV reconstruction'); - -level = graythresh(X_fista_GH_TV); -BW_FISTA_GH_TV = im2bw(X_fista_GH_TV,level); -figure; imshow(BW_FISTA_GH_TV, []); title ('Segmented FISTA-GH-TV reconstruction'); - -level = graythresh(X_fistaStudentTV); -BW_FISTA_Student_TV = im2bw(X_fistaStudentTV,level); -figure; imshow(BW_FISTA_Student_TV, []); title ('Segmented FISTA-Student-LS reconstruction');
\ No newline at end of file diff --git a/demo/DemoRD2.m b/demo/DemoRD2.m deleted file mode 100644 index a8ac2ca..0000000 --- a/demo/DemoRD2.m +++ /dev/null @@ -1,130 +0,0 @@ -% Demonstration of tomographic 3D reconstruction from X-ray synchrotron -% dataset (dendrites) using various data fidelities -% clear all -% close all -% -% % adding paths - addpath('data/'); - addpath('main_func/'); - addpath('supp/'); - -load('sino3D_dendrites.mat') % load 3D normalized sinogram -angles_rad = angles*(pi/180); % conversion to radians - -angSize = size(Sino3D,1); % angles dim -size_det = size(Sino3D, 2); % detector size -recon_size = 850; % reconstruction size - -FBP = iradon(Sino3D(:,:,10)', angles,recon_size); -figure; imshow(FBP , [0, 3]); title ('FBP reconstruction'); - -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS without regularization...'); -clear params -params.sino = Sino3D; -params.N = recon_size; -params.angles = angles_rad; -params.iterFISTA = 80; -params.precondition = 1; % switch on preconditioning -params.show = 0; -params.maxvalplot = 2.5; params.slice = 10; - -tic; [X_fista] = FISTA_REC(params); toc; -figure; imshow(X_fista(:,:,10) , [0, 2.5]); title ('FISTA-LS reconstruction'); -%% -fprintf('%s\n', 'Reconstruction using FISTA-LS-TV...'); -clear params -params.sino = Sino3D; -params.N = recon_size; -params.angles = angles_rad; -params.iterFISTA = 100; -params.lambdaTV = 0.001; % TV regularization parameter for FISTA-TV -params.tol = 1.0e-04; -params.iterTV = 20; -params.precondition = 1; % switch on preconditioning -params.show = 0; -params.maxvalplot = 2.5; params.slice = 10; - -tic; [X_fista_TV] = FISTA_REC(params); toc; -figure; imshow(X_fista_TV(:,:,10) , [0, 2.5]); title ('FISTA-LS-TV reconstruction'); -%% -%% -fprintf('%s\n', 'Reconstruction using FISTA-GH-TV...'); -clear params -params.sino = Sino3D; -params.N = recon_size; -params.angles = angles_rad; -params.iterFISTA = 100; -params.lambdaTV = 0.001; % TV regularization parameter for FISTA-TV -params.tol = 1.0e-04; -params.iterTV = 20; -params.lambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter -params.alpha_ring = 20; % to boost ring removal procedure -params.precondition = 1; % switch on preconditioning -params.show = 0; -params.maxvalplot = 2.5; params.slice = 10; - -tic; [X_fista_GH_TV] = FISTA_REC(params); toc; -figure; imshow(X_fista_GH_TV(:,:,10) , [0, 2.5]); title ('FISTA-GH-TV reconstruction'); -%% -%% -fprintf('%s\n', 'Reconstruction using FISTA-GH-TV-LLT...'); -clear params -params.sino = Sino3D; -params.N = recon_size; -params.angles = angles_rad; -params.iterFISTA = 100; -params.lambdaTV = 0.001; % TV regularization parameter for FISTA-TV -params.tol = 1.0e-04; -params.iterTV = 20; -params.lambdaHO = 35; % regularization parameter for LLT problem -params.tauHO = 0.00011; % time-step parameter for explicit scheme -params.iterHO = 70; % the max number of TV iterations -params.lambdaR_L1 = 0.001; % Soft-Thresh L1 ring variable parameter -params.alpha_ring = 20; % to boost ring removal procedure -params.precondition = 1; % switch on preconditioning -params.show = 0; -params.maxvalplot = 2.5; params.slice = 10; - -tic; [X_fista_GH_TVLLT] = FISTA_REC(params); toc; -figure; imshow(X_fista_GH_TVLLT(:,:,10) , [0, 2.5]); title ('FISTA-GH-TV-LLT reconstruction'); -%% -%% -% fprintf('%s\n', 'Reconstruction using FISTA-Student-TV...'); -% %%%%<<<< Not stable with this dataset! Requires more work >>>> %%%%% -% clear params -% params.sino = Sino3D(:,:,15); -% params.N = 950; -% params.angles = angles_rad; -% params.iterFISTA = 150; -% params.L_const = 30; % Lipshitz constant -% params.lambdaTV = 0.009; % TV regularization parameter for FISTA-TV -% params.tol = 1.0e-04; -% params.iterTV = 20; -% params.fidelity = 'student'; % choosing Student t penalty -% % params.precondition = 1; % switch on preconditioning -% params.show = 1; -% params.maxvalplot = 2.5; params.slice = 1; -% -% tic; [X_fistaStudentTV] = FISTA_REC(params); toc; -% figure; imshow(X_fistaStudentTV , [0, 2.5]); title ('FISTA-Student-TV reconstruction'); -%% -slice = 10; % if 3D reconstruction - -fprintf('%s\n', 'Segmentation using OTSU method ...'); -level = graythresh(X_fista(:,:,slice)); -Segm_FISTA = im2bw(X_fista(:,:,slice),level); -figure; imshow(Segm_FISTA, []); title ('Segmented FISTA-LS reconstruction'); - -level = graythresh(X_fista_TV(:,:,slice)); -Segm_FISTA_TV = im2bw(X_fista_TV(:,:,slice),level); -figure; imshow(Segm_FISTA_TV, []); title ('Segmented FISTA-LS-TV reconstruction'); - -level = graythresh(X_fista_GH_TV(:,:,slice)); -BW_FISTA_GH_TV = im2bw(X_fista_GH_TV(:,:,slice),level); -figure; imshow(BW_FISTA_GH_TV, []); title ('Segmented FISTA-GH-TV reconstruction'); - -level = graythresh(X_fista_GH_TVLLT(:,:,slice)); -BW_FISTA_GH_TVLLT = im2bw(X_fista_GH_TVLLT(:,:,slice),level); -figure; imshow(BW_FISTA_GH_TVLLT, []); title ('Segmented FISTA-GH-TV-LLT reconstruction'); -%%
\ No newline at end of file |