diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-05-14 16:13:39 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-05-14 16:13:39 +0100 |
commit | d000db76c60654cdb0b07ea7f7967ceeebfbd73a (patch) | |
tree | 0868a70bcc1c0c43091bc760de932638898ded99 /demos/Matlab_demos | |
parent | 76241b2a0eb03d5326a70a914cb649239c066e01 (diff) | |
download | regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.gz regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.bz2 regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.xz regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.zip |
fixes all matlab issues
Diffstat (limited to 'demos/Matlab_demos')
-rw-r--r-- | demos/Matlab_demos/demoMatlab_3Ddenoise.m | 200 | ||||
-rw-r--r-- | demos/Matlab_demos/demoMatlab_denoise.m | 188 | ||||
-rw-r--r-- | demos/Matlab_demos/demoMatlab_inpaint.m | 40 |
3 files changed, 428 insertions, 0 deletions
diff --git a/demos/Matlab_demos/demoMatlab_3Ddenoise.m b/demos/Matlab_demos/demoMatlab_3Ddenoise.m new file mode 100644 index 0000000..d7ff60c --- /dev/null +++ b/demos/Matlab_demos/demoMatlab_3Ddenoise.m @@ -0,0 +1,200 @@ +% Volume (3D) denoising demo using CCPi-RGL +clear; close all +fsep = '/'; + + +Path1 = sprintf(['..' fsep '..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i); +Path2 = sprintf(['..' fsep 'data' fsep], 1i); +Path3 = sprintf(['..' fsep '..' fsep 'src' fsep 'Matlab' fsep 'supp'], 1i); +addpath(Path1); +addpath(Path2); +addpath(Path3); + +N = 512; +slices = 15; +vol3D = zeros(N,N,slices, 'single'); +Ideal3D = zeros(N,N,slices, 'single'); +Im = double(imread('lena_gray_512.tif'))/255; % loading image +for i = 1:slices +vol3D(:,:,i) = Im + .05*randn(size(Im)); +Ideal3D(:,:,i) = Im; +end +vol3D(vol3D < 0) = 0; +figure; imshow(vol3D(:,:,7), [0 1]); title('Noisy image'); +%% +fprintf('Denoise a volume using the ROF-TV model (CPU) \n'); +lambda_reg = 0.03; % regularsation parameter for all methods +tau_rof = 0.0025; % time-marching constant +iter_rof = 300; % number of ROF iterations +epsil_tol = 0.0; % tolerance +tic; [u_rof,infovec] = ROF_TV(single(vol3D), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; +energyfunc_val_rof = TV_energy(single(u_rof),single(vol3D),lambda_reg, 1); % get energy function value +rmse_rof = (RMSE(Ideal3D(:),u_rof(:))); +fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rof); +figure; imshow(u_rof(:,:,7), [0 1]); title('ROF-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the ROF-TV model (GPU) \n'); +% lambda_reg = 0.03; % regularsation parameter for all methods +% tau_rof = 0.0025; % time-marching constant +% iter_rof = 300; % number of ROF iterations +% epsil_tol = 0.0; % tolerance +% tic; u_rofG = ROF_TV_GPU(single(vol3D), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; +% rmse_rofG = (RMSE(Ideal3D(:),u_rofG(:))); +% fprintf('%s %f \n', 'RMSE error for ROF is:', rmse_rofG); +% figure; imshow(u_rofG(:,:,7), [0 1]); title('ROF-TV denoised volume (GPU)'); +%% +fprintf('Denoise a volume using the FGP-TV model (CPU) \n'); +lambda_reg = 0.03; % regularsation parameter for all methods +iter_fgp = 300; % number of FGP iterations +epsil_tol = 0.0; % tolerance +tic; [u_fgp,infovec] = FGP_TV(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; +energyfunc_val_fgp = TV_energy(single(u_fgp),single(vol3D),lambda_reg, 1); % get energy function value +rmse_fgp = (RMSE(Ideal3D(:),u_fgp(:))); +fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgp); +figure; imshow(u_fgp(:,:,7), [0 1]); title('FGP-TV denoised volume (CPU)'); +%% +fprintf('Denoise a volume using the FGP-TV model (GPU) \n'); +% lambda_reg = 0.03; % regularsation parameter for all methods +% iter_fgp = 300; % number of FGP iterations +% epsil_tol = 0.0; % tolerance +% tic; u_fgpG = FGP_TV_GPU(single(vol3D), lambda_reg, iter_fgp, epsil_tol); toc; +% rmse_fgpG = (RMSE(Ideal3D(:),u_fgpG(:))); +% fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmse_fgpG); +% figure; imshow(u_fgpG(:,:,7), [0 1]); title('FGP-TV denoised volume (GPU)'); +%% +fprintf('Denoise a volume using the SB-TV model (CPU) \n'); +iter_sb = 150; % number of SB iterations +epsil_tol = 0.0; % tolerance +tic; [u_sb,infovec] = SB_TV(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +energyfunc_val_sb = TV_energy(single(u_sb),single(vol3D),lambda_reg, 1); % get energy function value +rmse_sb = (RMSE(Ideal3D(:),u_sb(:))); +fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sb); +figure; imshow(u_sb(:,:,7), [0 1]); title('SB-TV denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the SB-TV model (GPU) \n'); +% iter_sb = 150; % number of SB iterations +% epsil_tol = 0.0; % tolerance +% tic; u_sbG = SB_TV_GPU(single(vol3D), lambda_reg, iter_sb, epsil_tol); toc; +% rmse_sbG = (RMSE(Ideal3D(:),u_sbG(:))); +% fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmse_sbG); +% figure; imshow(u_sbG(:,:,7), [0 1]); title('SB-TV denoised volume (GPU)'); +%% +fprintf('Denoise a volume using the ROF-LLT model (CPU) \n'); +lambda_ROF = lambda_reg; % ROF regularisation parameter +lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter +iter_LLT = 300; % iterations +tau_rof_llt = 0.0025; % time-marching constant +epsil_tol = 0.0; % tolerance +tic; [u_rof_llt, infovec] = LLT_ROF(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; +rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt(:))); +fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); +figure; imshow(u_rof_llt(:,:,7), [0 1]); title('ROF-LLT denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using the ROF-LLT model (GPU) \n'); +% lambda_ROF = lambda_reg; % ROF regularisation parameter +% lambda_LLT = lambda_reg*0.35; % LLT regularisation parameter +% iter_LLT = 300; % iterations +% tau_rof_llt = 0.0025; % time-marching constant +% epsil_tol = 0.0; % tolerance +% tic; u_rof_llt_g = LLT_ROF_GPU(single(vol3D), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; +% rmse_rof_llt = (RMSE(Ideal3D(:),u_rof_llt_g(:))); +% fprintf('%s %f \n', 'RMSE error for ROF-LLT is:', rmse_rof_llt); +% figure; imshow(u_rof_llt_g(:,:,7), [0 1]); title('ROF-LLT denoised volume (GPU)'); +%% +fprintf('Denoise a volume using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 300; % number of diffusion iterations +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter +tau_param = 0.025; % time-marching constant +epsil_tol = 0.0; % tolerance +tic; [u_diff, infovec] = NonlDiff(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; +rmse_diff = (RMSE(Ideal3D(:),u_diff(:))); +fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); +figure; imshow(u_diff(:,:,7), [0 1]); title('Diffusion denoised volume (CPU)'); +%% +% fprintf('Denoise a volume using Nonlinear-Diffusion model (GPU) \n'); +% iter_diff = 300; % number of diffusion iterations +% lambda_regDiff = 0.025; % regularisation for the diffusivity +% sigmaPar = 0.015; % edge-preserving parameter +% tau_param = 0.025; % time-marching constant +% tic; u_diff_g = NonlDiff_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; +% rmse_diff = (RMSE(Ideal3D(:),u_diff_g(:))); +% fprintf('%s %f \n', 'RMSE error for Diffusion is:', rmse_diff); +% figure; imshow(u_diff_g(:,:,7), [0 1]); title('Diffusion denoised volume (GPU)'); +%% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 300; % number of diffusion iterations +lambda_regDiff = 3.5; % regularisation for the diffusivity +sigmaPar = 0.02; % edge-preserving parameter +tau_param = 0.0015; % time-marching constant +epsil_tol = 0.0; % tolerance +tic; u_diff4 = Diffusion_4thO(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; +rmse_diff4 = (RMSE(Ideal3D(:),u_diff4(:))); +fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); +figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CPU)'); +%% +% fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +% iter_diff = 300; % number of diffusion iterations +% lambda_regDiff = 3.5; % regularisation for the diffusivity +% sigmaPar = 0.02; % edge-preserving parameter +% tau_param = 0.0015; % time-marching constant +% tic; u_diff4_g = Diffusion_4thO_GPU(single(vol3D), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; +% rmse_diff4 = (RMSE(Ideal3D(:),u_diff4_g(:))); +% fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); +% figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); +%% +fprintf('Denoise using the TGV model (CPU) \n'); +lambda_TGV = 0.03; % regularisation parameter +alpha1 = 1.0; % parameter to control the first-order term +alpha0 = 2.0; % parameter to control the second-order term +L2 = 12.0; % convergence parameter +iter_TGV = 500; % number of Primal-Dual iterations for TGV +epsil_tol = 0.0; % tolerance +tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; +rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); +%% +% fprintf('Denoise using the TGV model (GPU) \n'); +% lambda_TGV = 0.03; % regularisation parameter +% alpha1 = 1.0; % parameter to control the first-order term +% alpha0 = 2.0; % parameter to control the second-order term +% iter_TGV = 500; % number of Primal-Dual iterations for TGV +% tic; u_tgv_gpu = TGV_GPU(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; +% rmseTGV = RMSE(Ideal3D(:),u_tgv_gpu(:)); +% fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +% figure; imshow(u_tgv_gpu(:,:,3), [0 1]); title('TGV denoised volume (GPU)'); +%% +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % +fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); + +% create another volume (reference) with slightly less amount of noise +vol3D_ref = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); +end +vol3D_ref(vol3D_ref < 0) = 0; +% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +iter_fgp = 300; % number of FGP iterations +epsil_tol = 0.0; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv = FGP_dTV(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv(:,:,7), [0 1]); title('FGP-dTV denoised volume (CPU)'); +%% +fprintf('Denoise a volume using the FGP-dTV model (GPU) \n'); + +% create another volume (reference) with slightly less amount of noise +vol3D_ref = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D_ref(:,:,i) = Im + .01*randn(size(Im)); +end +vol3D_ref(vol3D_ref < 0) = 0; +% vol3D_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +iter_fgp = 300; % number of FGP iterations +epsil_tol = 0.0; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; u_fgp_dtv_g = FGP_dTV_GPU(single(vol3D), single(vol3D_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +figure; imshow(u_fgp_dtv_g(:,:,7), [0 1]); title('FGP-dTV denoised volume (GPU)'); +%% diff --git a/demos/Matlab_demos/demoMatlab_denoise.m b/demos/Matlab_demos/demoMatlab_denoise.m new file mode 100644 index 0000000..5af927f --- /dev/null +++ b/demos/Matlab_demos/demoMatlab_denoise.m @@ -0,0 +1,188 @@ +% Image (2D) denoising demo using CCPi-RGL +clear; close all +fsep = '/'; + +Path1 = sprintf(['..' fsep '..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i); +Path2 = sprintf(['..' fsep 'data' fsep], 1i); +Path3 = sprintf(['..' fsep '..' fsep 'src' fsep 'Matlab' fsep 'supp'], 1i); +addpath(Path1); +addpath(Path2); +addpath(Path3); + +Im = double(imread('lena_gray_512.tif'))/255; % loading image +u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; +figure; imshow(u0, [0 1]); title('Noisy image'); +%% +fprintf('Denoise using the ROF-TV model (CPU) \n'); +lambda_reg = 0.03; % regularsation parameter for all methods +iter_rof = 1500; % number of ROF iterations +tau_rof = 0.003; % time-marching constant +epsil_tol = 0.0; % tolerance / 1.0e-06 +tic; [u_rof,infovec] = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; +energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value +rmseROF = (RMSE(u_rof(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); +[ssimval] = ssim(u_rof*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for ROF-TV is:', ssimval); +figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); +%% +%fprintf('Denoise using the ROF-TV model (GPU) \n'); +%tic; [u_rofG,infovec] = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; +%figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); +%% +fprintf('Denoise using the FGP-TV model (CPU) \n'); +lambda_reg = 0.03; +iter_fgp = 500; % number of FGP iterations +epsil_tol = 0.0; % tolerance +tic; [u_fgp,infovec] = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; +energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value +rmseFGP = (RMSE(u_fgp(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP); +[ssimval] = ssim(u_fgp*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for FGP-TV is:', ssimval); +figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); +%% +% fprintf('Denoise using the FGP-TV model (GPU) \n'); +% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; +% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); +%% +fprintf('Denoise using the SB-TV model (CPU) \n'); +lambda_reg = 0.03; +iter_sb = 200; % number of SB iterations +epsil_tol = 0.0; % tolerance +tic; [u_sb,infovec] = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value +rmseSB = (RMSE(u_sb(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB); +[ssimval] = ssim(u_sb*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for SB-TV is:', ssimval); +figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); +%% +% fprintf('Denoise using the SB-TV model (GPU) \n'); +% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; +% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); +%% +fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 450; % number of diffusion iterations +lambda_regDiff = 0.025; % regularisation for the diffusivity +sigmaPar = 0.015; % edge-preserving parameter +tau_param = 0.02; % time-marching constant +epsil_tol = 0.0; % tolerance +tic; [u_diff,infovec] = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; +rmseDiffus = (RMSE(u_diff(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); +[ssimval] = ssim(u_diff*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for NDF is:', ssimval); +figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); +%% +%fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); +%tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; +%figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); +%% +fprintf('Denoise using the TGV model (CPU) \n'); +lambda_TGV = 0.035; % regularisation parameter +alpha1 = 1.0; % parameter to control the first-order term +alpha0 = 2.0; % parameter to control the second-order term +L2 = 12.0; % convergence parameter +iter_TGV = 1200; % number of Primal-Dual iterations for TGV +epsil_tol = 0.0; % tolerance +tic; [u_tgv,infovec] = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; +figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); +rmseTGV = (RMSE(u_tgv(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +[ssimval] = ssim(u_tgv*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval); +%% +% fprintf('Denoise using the TGV model (GPU) \n'); +% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; +% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); +%% +fprintf('Denoise using the ROF-LLT model (CPU) \n'); +lambda_ROF = 0.02; % ROF regularisation parameter +lambda_LLT = 0.015; % LLT regularisation parameter +iter_LLT = 2000; % iterations +tau_rof_llt = 0.01; % time-marching constant +epsil_tol = 0.0; % tolerance +tic; [u_rof_llt,infovec] = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt,epsil_tol); toc; +rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); +[ssimval] = ssim(u_rof_llt*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for ROFLLT is:', ssimval); +figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); +%% +% fprintf('Denoise using the ROF-LLT model (GPU) \n'); +% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; +% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); +%% +fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); +iter_diff = 800; % number of diffusion iterations +lambda_regDiff = 3; % regularisation for the diffusivity +sigmaPar = 0.03; % edge-preserving parameter +tau_param = 0.0025; % time-marching constant +epsil_tol = 0.0; % tolerance +tic; [u_diff4,infovec] = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; +rmseDiffHO = (RMSE(u_diff4(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); +[ssimval] = ssim(u_diff4*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for DIFF4th is:', ssimval); +figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); +%% +%fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); +%tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +%figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); +%% +fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n'); +SearchingWindow = 7; +PatchWindow = 2; +NeighboursNumber = 20; % the number of neibours to include +h = 0.23; % edge related parameter for NLM +tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc; +%% +fprintf('Denoise using Non-local Total Variation (CPU) \n'); +iter_nltv = 3; % number of nltv iterations +lambda_nltv = 0.055; % regularisation parameter for nltv +tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; +rmse_nltv = (RMSE(u_nltv(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv); +[ssimval] = ssim(u_nltv*255,single(Im)*255); +fprintf('%s %f \n', 'MSSIM error for NLTV is:', ssimval); +figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)'); +%% +%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % + +fprintf('Denoise using the FGP-dTV model (CPU) \n'); +% create another image (reference) with slightly less amount of noise +u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; +% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) + +lambda_reg = 0.04; +iter_fgp = 1000; % number of FGP iterations +epsil_tol = 0.0; % tolerance +eta = 0.2; % Reference image gradient smoothing constant +tic; [u_fgp_dtv,infovec] = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:))); +fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV); +figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); +%% +% fprintf('Denoise using the FGP-dTV model (GPU) \n'); +% % create another image (reference) with slightly less amount of noise +% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; +% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) +% +% iter_fgp = 1000; % number of FGP iterations +% epsil_tol = 1.0e-06; % tolerance +% eta = 0.2; % Reference image gradient smoothing constant +% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; +% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); +%% +fprintf('Denoise using the TNV prior (CPU) \n'); +slices = 5; N = 512; +vol3D = zeros(N,N,slices, 'single'); +for i = 1:slices +vol3D(:,:,i) = Im + .05*randn(size(Im)); +end +vol3D(vol3D < 0) = 0; + +iter_tnv = 200; % number of TNV iterations +tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; +figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)'); diff --git a/demos/Matlab_demos/demoMatlab_inpaint.m b/demos/Matlab_demos/demoMatlab_inpaint.m new file mode 100644 index 0000000..67a6a23 --- /dev/null +++ b/demos/Matlab_demos/demoMatlab_inpaint.m @@ -0,0 +1,40 @@ +% Image (2D) inpainting demo using CCPi-RGL +clear; close all + +fsep = '/'; + +Path1 = sprintf(['..' fsep '..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i); +Path2 = sprintf(['..' fsep 'data' fsep], 1i); +Path3 = sprintf(['..' fsep '..' fsep 'src' fsep 'Matlab' fsep 'supp'], 1i); +addpath(Path1); +addpath(Path2); +addpath(Path3); + +load('SinoInpaint.mat'); +Sinogram = Sinogram./max(Sinogram(:)); +Sino_mask = Sinogram.*(1-single(Mask)); +figure; +subplot(1,2,1); imshow(Sino_mask, [0 1]); title('Missing data sinogram'); +subplot(1,2,2); imshow(Mask, [0 1]); title('Mask'); +%% +fprintf('Inpaint using Linear-Diffusion model (CPU) \n'); +iter_diff = 5000; % number of diffusion iterations +lambda_regDiff = 6000; % regularisation for the diffusivity +sigmaPar = 0.0; % edge-preserving parameter +tau_param = 0.000075; % time-marching constant +tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; +figure; imshow(u_diff, [0 1]); title('Linear-Diffusion inpainted sinogram (CPU)'); +%% +fprintf('Inpaint using Nonlinear-Diffusion model (CPU) \n'); +iter_diff = 1500; % number of diffusion iterations +lambda_regDiff = 80; % regularisation for the diffusivity +sigmaPar = 0.00009; % edge-preserving parameter +tau_param = 0.000008; % time-marching constant +tic; u_diff = NonlDiff_Inp(single(Sino_mask), Mask, lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber'); toc; +figure; imshow(u_diff, [0 1]); title('Non-Linear Diffusion inpainted sinogram (CPU)'); +%% +fprintf('Inpaint using Nonlocal Vertical Marching model (CPU) \n'); +Increment = 1; % linear increment for the searching window +tic; [u_nom,maskupd] = NonlocalMarching_Inpaint(single(Sino_mask), Mask, Increment); toc; +figure; imshow(u_nom, [0 1]); title('NVM inpainted sinogram (CPU)'); +%%
\ No newline at end of file |