summaryrefslogtreecommitdiffstats
path: root/demos/SoftwareX_supp
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2019-03-12 22:14:27 +0000
committerDaniil Kazantsev <dkazanc@hotmail.com>2019-03-12 22:14:27 +0000
commit1ac06b5ce11b247930489b7aa3afa59215e43c91 (patch)
tree8a5dc7649b2fdeda67c8df9ff2ea2880596d9e67 /demos/SoftwareX_supp
parent420e71a0dcb42e91e1aa93306c2e2f688b309620 (diff)
downloadregularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.tar.gz
regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.tar.bz2
regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.tar.xz
regularization-1ac06b5ce11b247930489b7aa3afa59215e43c91.zip
readme updates and demos
Diffstat (limited to 'demos/SoftwareX_supp')
-rw-r--r--demos/SoftwareX_supp/Demo_RealData_Recon_SX.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
index ca8f1d2..5991989 100644
--- a/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
+++ b/demos/SoftwareX_supp/Demo_RealData_Recon_SX.py
@@ -1,15 +1,15 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
-This demo scripts support the following publication:
-"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with
+This demo scripts support the following publication:
+"CCPi-Regularisation Toolkit for computed tomographic image reconstruction with
proximal splitting algorithms" by Daniil Kazantsev, Edoardo Pasca, Martin J. Turner,
Philip J. Withers; Software X, 2019
____________________________________________________________________________
* Reads real tomographic data (stored at Zenodo)
--- https://doi.org/10.5281/zenodo.2578893
* Reconstructs using TomoRec software
-* Saves reconstructed images
+* Saves reconstructed images
____________________________________________________________________________
>>>>> Dependencies: <<<<<
1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox
@@ -40,7 +40,7 @@ data_norm = normaliser(dataRaw, flats, darks, log='log')
del dataRaw, darks, flats
intens_max = 2.3
-plt.figure()
+plt.figure()
plt.subplot(131)
plt.imshow(data_norm[:,150,:],vmin=0, vmax=intens_max)
plt.title('2D Projection (analytical)')
@@ -72,7 +72,7 @@ FBPrec = RectoolsDIR.FBP(data_norm[0:100,:,det_y_crop])
sliceSel = 50
max_val = 0.003
-plt.figure()
+plt.figure()
plt.subplot(131)
plt.imshow(FBPrec[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray")
plt.title('FBP Reconstruction, axial view')
@@ -108,7 +108,7 @@ RectoolsIR = RecToolsIR(DetectorsDimH = np.size(det_y_crop), # DetectorsDimH #
DetectorsDimV = 100, # DetectorsDimV # detector dimension (vertical) for 3D case only
AnglesVec = angles_rad, # array of angles in radians
ObjSize = N_size, # a scalar to define reconstructed object dimensions
- datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip)
+ datafidelity='LS',# data fidelity, choose LS, PWLS, GH (wip), Students t (wip)
nonnegativity='ENABLE', # enable nonnegativity constraint (set to 'ENABLE')
OS_number = None, # the number of subsets, NONE/(or > 1) ~ classical / ordered subsets
tolerance = 0.0, # tolerance to stop inner (regularisation) iterations earlier
@@ -124,7 +124,7 @@ RecADMM_reg_sbtv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],
sliceSel = 50
max_val = 0.003
-plt.figure()
+plt.figure()
plt.subplot(131)
plt.imshow(RecADMM_reg_sbtv[sliceSel,:,:],vmin=0, vmax=max_val, cmap="gray")
plt.title('3D ADMM-SB-TV Reconstruction, axial view')
@@ -164,7 +164,7 @@ RecADMM_reg_rofllt = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],
sliceSel = 50
max_val = 0.003
-plt.figure()
+plt.figure()
plt.subplot(131)
plt.imshow(RecADMM_reg_rofllt[sliceSel,:,:],vmin=0, vmax=max_val)
plt.title('3D ADMM-ROFLLT Reconstruction, axial view')
@@ -202,7 +202,7 @@ RecADMM_reg_tgv = RectoolsIR.ADMM(data_norm[0:100,:,det_y_crop],
sliceSel = 50
max_val = 0.003
-plt.figure()
+plt.figure()
plt.subplot(131)
plt.imshow(RecADMM_reg_tgv[sliceSel,:,:],vmin=0, vmax=max_val)
plt.title('3D ADMM-TGV Reconstruction, axial view')