diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-05-14 16:13:39 +0100 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-05-14 16:13:39 +0100 |
commit | d000db76c60654cdb0b07ea7f7967ceeebfbd73a (patch) | |
tree | 0868a70bcc1c0c43091bc760de932638898ded99 /demos/demoMatlab_denoise.m | |
parent | 76241b2a0eb03d5326a70a914cb649239c066e01 (diff) | |
download | regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.gz regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.bz2 regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.xz regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.zip |
fixes all matlab issues
Diffstat (limited to 'demos/demoMatlab_denoise.m')
-rw-r--r-- | demos/demoMatlab_denoise.m | 188 |
1 files changed, 0 insertions, 188 deletions
diff --git a/demos/demoMatlab_denoise.m b/demos/demoMatlab_denoise.m deleted file mode 100644 index 9d89138..0000000 --- a/demos/demoMatlab_denoise.m +++ /dev/null @@ -1,188 +0,0 @@ -% Image (2D) denoising demo using CCPi-RGL -clear; close all -fsep = '/'; - -Path1 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i); -Path2 = sprintf(['data' fsep], 1i); -Path3 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'supp'], 1i); -addpath(Path1); -addpath(Path2); -addpath(Path3); - -Im = double(imread('lena_gray_512.tif'))/255; % loading image -u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; -figure; imshow(u0, [0 1]); title('Noisy image'); -%% -fprintf('Denoise using the ROF-TV model (CPU) \n'); -lambda_reg = 0.03; % regularsation parameter for all methods -iter_rof = 2000; % number of ROF iterations -tau_rof = 0.01; % time-marching constant -epsil_tol = 0.0; % tolerance / 1.0e-06 -tic; [u_rof,infovec] = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; -energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value -rmseROF = (RMSE(u_rof(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF); -[ssimval] = ssim(u_rof*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for ROF-TV is:', ssimval); -figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)'); -%% -%fprintf('Denoise using the ROF-TV model (GPU) \n'); -%tic; [u_rofG,infovec] = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc; -%figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)'); -%% -fprintf('Denoise using the FGP-TV model (CPU) \n'); -lambda_reg = 0.03; -iter_fgp = 500; % number of FGP iterations -epsil_tol = 0.0; % tolerance -tic; [u_fgp,infovec] = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; -energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value -rmseFGP = (RMSE(u_fgp(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP); -[ssimval] = ssim(u_fgp*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for FGP-TV is:', ssimval); -figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)'); -%% -% fprintf('Denoise using the FGP-TV model (GPU) \n'); -% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc; -% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)'); -%% -fprintf('Denoise using the SB-TV model (CPU) \n'); -lambda_reg = 0.03; -iter_sb = 200; % number of SB iterations -epsil_tol = 0.0; % tolerance -tic; [u_sb,infovec] = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc; -energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value -rmseSB = (RMSE(u_sb(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB); -[ssimval] = ssim(u_sb*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for SB-TV is:', ssimval); -figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); -%% -% fprintf('Denoise using the SB-TV model (GPU) \n'); -% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc; -% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); -%% -fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n'); -iter_diff = 450; % number of diffusion iterations -lambda_regDiff = 0.025; % regularisation for the diffusivity -sigmaPar = 0.015; % edge-preserving parameter -tau_param = 0.02; % time-marching constant -epsil_tol = 0.0; % tolerance -tic; [u_diff,infovec] = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; -rmseDiffus = (RMSE(u_diff(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus); -[ssimval] = ssim(u_diff*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for NDF is:', ssimval); -figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)'); -%% -%fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n'); -%tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc; -%figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)'); -%% -fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.035; % regularisation parameter -alpha1 = 1.0; % parameter to control the first-order term -alpha0 = 2.0; % parameter to control the second-order term -L2 = 12.0; % convergence parameter -iter_TGV = 1200; % number of Primal-Dual iterations for TGV -epsil_tol = 0.0; % tolerance -tic; [u_tgv,infovec] = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; -figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); -rmseTGV = (RMSE(u_tgv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); -[ssimval] = ssim(u_tgv*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval); -%% -% fprintf('Denoise using the TGV model (GPU) \n'); -% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc; -% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)'); -%% -fprintf('Denoise using the ROF-LLT model (CPU) \n'); -lambda_ROF = 0.02; % ROF regularisation parameter -lambda_LLT = 0.015; % LLT regularisation parameter -iter_LLT = 2000; % iterations -tau_rof_llt = 0.01; % time-marching constant -epsil_tol = 0.0; % tolerance -tic; [u_rof_llt,infovec] = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt,epsil_tol); toc; -rmseROFLLT = (RMSE(u_rof_llt(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT); -[ssimval] = ssim(u_rof_llt*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for ROFLLT is:', ssimval); -figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)'); -%% -% fprintf('Denoise using the ROF-LLT model (GPU) \n'); -% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc; -% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)'); -%% -fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n'); -iter_diff = 800; % number of diffusion iterations -lambda_regDiff = 3; % regularisation for the diffusivity -sigmaPar = 0.03; % edge-preserving parameter -tau_param = 0.0025; % time-marching constant -epsil_tol = 0.0; % tolerance -tic; [u_diff4,infovec] = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc; -rmseDiffHO = (RMSE(u_diff4(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO); -[ssimval] = ssim(u_diff4*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for DIFF4th is:', ssimval); -figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)'); -%% -%fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n'); -%tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc; -%figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)'); -%% -fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n'); -SearchingWindow = 7; -PatchWindow = 2; -NeighboursNumber = 20; % the number of neibours to include -h = 0.23; % edge related parameter for NLM -tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc; -%% -fprintf('Denoise using Non-local Total Variation (CPU) \n'); -iter_nltv = 3; % number of nltv iterations -lambda_nltv = 0.055; % regularisation parameter for nltv -tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc; -rmse_nltv = (RMSE(u_nltv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv); -[ssimval] = ssim(u_nltv*255,single(Im)*255); -fprintf('%s %f \n', 'MSSIM error for NLTV is:', ssimval); -figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)'); -%% -%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % - -fprintf('Denoise using the FGP-dTV model (CPU) \n'); -% create another image (reference) with slightly less amount of noise -u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; -% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) - -lambda_reg = 0.04; -iter_fgp = 1000; % number of FGP iterations -epsil_tol = 0.0; % tolerance -eta = 0.2; % Reference image gradient smoothing constant -tic; [u_fgp_dtv,infovec] = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:))); -fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV); -figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)'); -%% -% fprintf('Denoise using the FGP-dTV model (GPU) \n'); -% % create another image (reference) with slightly less amount of noise -% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0; -% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV) -% -% iter_fgp = 1000; % number of FGP iterations -% epsil_tol = 1.0e-06; % tolerance -% eta = 0.2; % Reference image gradient smoothing constant -% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc; -% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)'); -%% -fprintf('Denoise using the TNV prior (CPU) \n'); -slices = 5; N = 512; -vol3D = zeros(N,N,slices, 'single'); -for i = 1:slices -vol3D(:,:,i) = Im + .05*randn(size(Im)); -end -vol3D(vol3D < 0) = 0; - -iter_tnv = 200; % number of TNV iterations -tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc; -figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)'); |