summaryrefslogtreecommitdiffstats
path: root/demos/demoMatlab_denoise.m
diff options
context:
space:
mode:
authorDaniil Kazantsev <dkazanc@hotmail.com>2019-05-14 16:13:39 +0100
committerDaniil Kazantsev <dkazanc@hotmail.com>2019-05-14 16:13:39 +0100
commitd000db76c60654cdb0b07ea7f7967ceeebfbd73a (patch)
tree0868a70bcc1c0c43091bc760de932638898ded99 /demos/demoMatlab_denoise.m
parent76241b2a0eb03d5326a70a914cb649239c066e01 (diff)
downloadregularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.gz
regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.bz2
regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.tar.xz
regularization-d000db76c60654cdb0b07ea7f7967ceeebfbd73a.zip
fixes all matlab issues
Diffstat (limited to 'demos/demoMatlab_denoise.m')
-rw-r--r--demos/demoMatlab_denoise.m188
1 files changed, 0 insertions, 188 deletions
diff --git a/demos/demoMatlab_denoise.m b/demos/demoMatlab_denoise.m
deleted file mode 100644
index 9d89138..0000000
--- a/demos/demoMatlab_denoise.m
+++ /dev/null
@@ -1,188 +0,0 @@
-% Image (2D) denoising demo using CCPi-RGL
-clear; close all
-fsep = '/';
-
-Path1 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'mex_compile' fsep 'installed'], 1i);
-Path2 = sprintf(['data' fsep], 1i);
-Path3 = sprintf(['..' fsep 'src' fsep 'Matlab' fsep 'supp'], 1i);
-addpath(Path1);
-addpath(Path2);
-addpath(Path3);
-
-Im = double(imread('lena_gray_512.tif'))/255; % loading image
-u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0;
-figure; imshow(u0, [0 1]); title('Noisy image');
-%%
-fprintf('Denoise using the ROF-TV model (CPU) \n');
-lambda_reg = 0.03; % regularsation parameter for all methods
-iter_rof = 2000; % number of ROF iterations
-tau_rof = 0.01; % time-marching constant
-epsil_tol = 0.0; % tolerance / 1.0e-06
-tic; [u_rof,infovec] = ROF_TV(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc;
-energyfunc_val_rof = TV_energy(single(u_rof),single(u0),lambda_reg, 1); % get energy function value
-rmseROF = (RMSE(u_rof(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for ROF-TV is:', rmseROF);
-[ssimval] = ssim(u_rof*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for ROF-TV is:', ssimval);
-figure; imshow(u_rof, [0 1]); title('ROF-TV denoised image (CPU)');
-%%
-%fprintf('Denoise using the ROF-TV model (GPU) \n');
-%tic; [u_rofG,infovec] = ROF_TV_GPU(single(u0), lambda_reg, iter_rof, tau_rof, epsil_tol); toc;
-%figure; imshow(u_rofG, [0 1]); title('ROF-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the FGP-TV model (CPU) \n');
-lambda_reg = 0.03;
-iter_fgp = 500; % number of FGP iterations
-epsil_tol = 0.0; % tolerance
-tic; [u_fgp,infovec] = FGP_TV(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-energyfunc_val_fgp = TV_energy(single(u_fgp),single(u0),lambda_reg, 1); % get energy function value
-rmseFGP = (RMSE(u_fgp(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for FGP-TV is:', rmseFGP);
-[ssimval] = ssim(u_fgp*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for FGP-TV is:', ssimval);
-figure; imshow(u_fgp, [0 1]); title('FGP-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using the FGP-TV model (GPU) \n');
-% tic; u_fgpG = FGP_TV_GPU(single(u0), lambda_reg, iter_fgp, epsil_tol); toc;
-% figure; imshow(u_fgpG, [0 1]); title('FGP-TV denoised image (GPU)');
-%%
-fprintf('Denoise using the SB-TV model (CPU) \n');
-lambda_reg = 0.03;
-iter_sb = 200; % number of SB iterations
-epsil_tol = 0.0; % tolerance
-tic; [u_sb,infovec] = SB_TV(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-energyfunc_val_sb = TV_energy(single(u_sb),single(u0),lambda_reg, 1); % get energy function value
-rmseSB = (RMSE(u_sb(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for SB-TV is:', rmseSB);
-[ssimval] = ssim(u_sb*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for SB-TV is:', ssimval);
-figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)');
-%%
-% fprintf('Denoise using the SB-TV model (GPU) \n');
-% tic; u_sbG = SB_TV_GPU(single(u0), lambda_reg, iter_sb, epsil_tol); toc;
-% figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)');
-%%
-fprintf('Denoise using Nonlinear-Diffusion model (CPU) \n');
-iter_diff = 450; % number of diffusion iterations
-lambda_regDiff = 0.025; % regularisation for the diffusivity
-sigmaPar = 0.015; % edge-preserving parameter
-tau_param = 0.02; % time-marching constant
-epsil_tol = 0.0; % tolerance
-tic; [u_diff,infovec] = NonlDiff(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc;
-rmseDiffus = (RMSE(u_diff(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Nonlinear Diffusion is:', rmseDiffus);
-[ssimval] = ssim(u_diff*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for NDF is:', ssimval);
-figure; imshow(u_diff, [0 1]); title('Diffusion denoised image (CPU)');
-%%
-%fprintf('Denoise using Nonlinear-Diffusion model (GPU) \n');
-%tic; u_diff_g = NonlDiff_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, 'Huber', epsil_tol); toc;
-%figure; imshow(u_diff_g, [0 1]); title('Diffusion denoised image (GPU)');
-%%
-fprintf('Denoise using the TGV model (CPU) \n');
-lambda_TGV = 0.035; % regularisation parameter
-alpha1 = 1.0; % parameter to control the first-order term
-alpha0 = 2.0; % parameter to control the second-order term
-L2 = 12.0; % convergence parameter
-iter_TGV = 1200; % number of Primal-Dual iterations for TGV
-epsil_tol = 0.0; % tolerance
-tic; [u_tgv,infovec] = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc;
-figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)');
-rmseTGV = (RMSE(u_tgv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV);
-[ssimval] = ssim(u_tgv*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for TGV is:', ssimval);
-%%
-% fprintf('Denoise using the TGV model (GPU) \n');
-% tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV, L2, epsil_tol); toc;
-% figure; imshow(u_tgv_gpu, [0 1]); title('TGV denoised image (GPU)');
-%%
-fprintf('Denoise using the ROF-LLT model (CPU) \n');
-lambda_ROF = 0.02; % ROF regularisation parameter
-lambda_LLT = 0.015; % LLT regularisation parameter
-iter_LLT = 2000; % iterations
-tau_rof_llt = 0.01; % time-marching constant
-epsil_tol = 0.0; % tolerance
-tic; [u_rof_llt,infovec] = LLT_ROF(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt,epsil_tol); toc;
-rmseROFLLT = (RMSE(u_rof_llt(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for TGV is:', rmseROFLLT);
-[ssimval] = ssim(u_rof_llt*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for ROFLLT is:', ssimval);
-figure; imshow(u_rof_llt, [0 1]); title('ROF-LLT denoised image (CPU)');
-%%
-% fprintf('Denoise using the ROF-LLT model (GPU) \n');
-% tic; u_rof_llt_g = LLT_ROF_GPU(single(u0), lambda_ROF, lambda_LLT, iter_LLT, tau_rof_llt, epsil_tol); toc;
-% figure; imshow(u_rof_llt_g, [0 1]); title('ROF-LLT denoised image (GPU)');
-%%
-fprintf('Denoise using Fourth-order anisotropic diffusion model (CPU) \n');
-iter_diff = 800; % number of diffusion iterations
-lambda_regDiff = 3; % regularisation for the diffusivity
-sigmaPar = 0.03; % edge-preserving parameter
-tau_param = 0.0025; % time-marching constant
-epsil_tol = 0.0; % tolerance
-tic; [u_diff4,infovec] = Diffusion_4thO(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param, epsil_tol); toc;
-rmseDiffHO = (RMSE(u_diff4(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Fourth-order anisotropic diffusion is:', rmseDiffHO);
-[ssimval] = ssim(u_diff4*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for DIFF4th is:', ssimval);
-figure; imshow(u_diff4, [0 1]); title('Diffusion 4thO denoised image (CPU)');
-%%
-%fprintf('Denoise using Fourth-order anisotropic diffusion model (GPU) \n');
-%tic; u_diff4_g = Diffusion_4thO_GPU(single(u0), lambda_regDiff, sigmaPar, iter_diff, tau_param); toc;
-%figure; imshow(u_diff4_g, [0 1]); title('Diffusion 4thO denoised image (GPU)');
-%%
-fprintf('Weights pre-calculation for Non-local TV (takes time on CPU) \n');
-SearchingWindow = 7;
-PatchWindow = 2;
-NeighboursNumber = 20; % the number of neibours to include
-h = 0.23; % edge related parameter for NLM
-tic; [H_i, H_j, Weights] = PatchSelect(single(u0), SearchingWindow, PatchWindow, NeighboursNumber, h); toc;
-%%
-fprintf('Denoise using Non-local Total Variation (CPU) \n');
-iter_nltv = 3; % number of nltv iterations
-lambda_nltv = 0.055; % regularisation parameter for nltv
-tic; u_nltv = Nonlocal_TV(single(u0), H_i, H_j, 0, Weights, lambda_nltv, iter_nltv); toc;
-rmse_nltv = (RMSE(u_nltv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Non-local Total Variation is:', rmse_nltv);
-[ssimval] = ssim(u_nltv*255,single(Im)*255);
-fprintf('%s %f \n', 'MSSIM error for NLTV is:', ssimval);
-figure; imagesc(u_nltv, [0 1]); colormap(gray); daspect([1 1 1]); title('Non-local Total Variation denoised image (CPU)');
-%%
-%>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< %
-
-fprintf('Denoise using the FGP-dTV model (CPU) \n');
-% create another image (reference) with slightly less amount of noise
-u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
-% u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-
-lambda_reg = 0.04;
-iter_fgp = 1000; % number of FGP iterations
-epsil_tol = 0.0; % tolerance
-eta = 0.2; % Reference image gradient smoothing constant
-tic; [u_fgp_dtv,infovec] = FGP_dTV(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-rmse_dTV= (RMSE(u_fgp_dtv(:),Im(:)));
-fprintf('%s %f \n', 'RMSE error for Directional Total Variation (dTV) is:', rmse_dTV);
-figure; imshow(u_fgp_dtv, [0 1]); title('FGP-dTV denoised image (CPU)');
-%%
-% fprintf('Denoise using the FGP-dTV model (GPU) \n');
-% % create another image (reference) with slightly less amount of noise
-% u_ref = Im + .01*randn(size(Im)); u_ref(u_ref < 0) = 0;
-% % u_ref = zeros(size(Im),'single'); % pass zero reference (dTV -> TV)
-%
-% iter_fgp = 1000; % number of FGP iterations
-% epsil_tol = 1.0e-06; % tolerance
-% eta = 0.2; % Reference image gradient smoothing constant
-% tic; u_fgp_dtvG = FGP_dTV_GPU(single(u0), single(u_ref), lambda_reg, iter_fgp, epsil_tol, eta); toc;
-% figure; imshow(u_fgp_dtvG, [0 1]); title('FGP-dTV denoised image (GPU)');
-%%
-fprintf('Denoise using the TNV prior (CPU) \n');
-slices = 5; N = 512;
-vol3D = zeros(N,N,slices, 'single');
-for i = 1:slices
-vol3D(:,:,i) = Im + .05*randn(size(Im));
-end
-vol3D(vol3D < 0) = 0;
-
-iter_tnv = 200; % number of TNV iterations
-tic; u_tnv = TNV(single(vol3D), lambda_reg, iter_tnv); toc;
-figure; imshow(u_tnv(:,:,3), [0 1]); title('TNV denoised stack of channels (CPU)');