summaryrefslogtreecommitdiffstats
path: root/main_func
diff options
context:
space:
mode:
authoralgol <algol@algol-UX305FA>2017-07-05 16:45:52 +0100
committeralgol <algol@algol-UX305FA>2017-07-05 16:45:52 +0100
commit73755371cf2632aa724fa941c78165728f96e3c7 (patch)
tree8a9781e64ec42250f1307a1e8cc4b682780c8006 /main_func
parente097a4edcced2bbc8c78d1302467bdf625deff1d (diff)
downloadregularization-73755371cf2632aa724fa941c78165728f96e3c7.tar.gz
regularization-73755371cf2632aa724fa941c78165728f96e3c7.tar.bz2
regularization-73755371cf2632aa724fa941c78165728f96e3c7.tar.xz
regularization-73755371cf2632aa724fa941c78165728f96e3c7.zip
FISTA_REC code optimized and cleaned
Diffstat (limited to 'main_func')
-rw-r--r--main_func/FISTA_REC.m206
1 files changed, 85 insertions, 121 deletions
diff --git a/main_func/FISTA_REC.m b/main_func/FISTA_REC.m
index 688dcc3..18e430e 100644
--- a/main_func/FISTA_REC.m
+++ b/main_func/FISTA_REC.m
@@ -6,30 +6,33 @@ function [X, output] = FISTA_REC(params)
% - .proj_geom (geometry of the projector) [required]
% - .vol_geom (geometry of the reconstructed object) [required]
% - .sino (vectorized in 2D or 3D sinogram) [required]
-% - .iterFISTA (iterations for the main loop)
+% - .iterFISTA (iterations for the main loop, default 40)
% - .L_const (Lipschitz constant, default Power method) )
% - .X_ideal (ideal image, if given)
% - .weights (statisitcal weights, size of the sinogram)
% - .ROI (Region-of-interest, only if X_ideal is given)
-% - .Regul_LambdaTV (TV regularization parameter, default 0 - reg. TV is switched off)
-% - .Regul_tol (tolerance to terminate TV regularization, default 1.0e-04)
-% - .Regul_iterTV (iterations for the TV penalty, default 0)
-% - .Regul_LambdaHO (Higher Order LLT regularization parameter, default 0 - LLT reg. switched off)
-% - .Regul_iterHO (iterations for HO penalty, default 50)
-% - .Regul_tauHO (time step parameter for HO term)
-% - .Ring_LambdaR_L1 (regularization parameter for L1 ring minimization, if lambdaR_L1 > 0 then switch on ring removal, default 0)
+% - .fidelity (choose between "LS" and "student" data fidelities, default LS)
+% - .initialize (a 'warm start' using SIRT method from ASTRA)
+%----------------Regularization choices------------------------
+% - .Regul_Lambda_FGPTV (FGP-TV regularization parameter)
+% - .Regul_Lambda_SBTV (SplitBregman-TV regularization parameter)
+% - .Regul_Lambda_L1 (L1 regularization by soft-thresholding)
+% - .Regul_Lambda_TVLLT (Higher order SB-LLT regularization parameter)
+% - .Regul_tol (tolerance to terminate regul iterations, default 1.0e-04)
+% - .Regul_Iterations (iterations for the selected penalty, default 25)
+% - .Regul_tauLLT (time step parameter for LLT term)
+% - .Ring_LambdaR_L1 (regularization parameter for L1-ring minimization, if lambdaR_L1 > 0 then switch on ring removal)
% - .Ring_Alpha (larger values can accelerate convergence but check stability, default 1)
-% - .fidelity (choose between "LS" and "student" data fidelities)
-% - .initializ (a 'warm start' using SIRT method from ASTRA)
-% - .precondition (1 - switch on Fourier filtering before backprojection)
+%----------------Visualization parameters------------------------
% - .show (visualize reconstruction 1/0, (0 default))
% - .maxvalplot (maximum value to use for imshow[0 maxvalplot])
% - .slice (for 3D volumes - slice number to imshow)
% ___Output___:
% 1. X - reconstructed image/volume
-% 2. Resid_error - residual error (if X_ideal is given)
-% 3. value of the objective function
-% 4. forward projection of X
+% 2. output - structure with
+% - .Resid_error - residual error (if X_ideal is given)
+% - .objective: value of the objective function
+% - .L_const: Lipshitz constant to avoid recalculations
% References:
% 1. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
@@ -61,7 +64,7 @@ end
if (isfield(params,'iterFISTA'))
iterFISTA = params.iterFISTA;
else
- iterFISTA = 30;
+ iterFISTA = 40;
end
if (isfield(params,'weights'))
weights = params.weights;
@@ -72,7 +75,7 @@ if (isfield(params,'L_const'))
L_const = params.L_const;
else
% using Power method (PM) to establish L constant
- niter = 6; % number of iteration for PM
+ niter = 8; % number of iteration for PM
x = rand(N,N,SlicesZ);
sqweight = sqrt(weights);
[sino_id, y] = astra_create_sino3d_cuda(x, proj_geom, vol_geom);
@@ -100,20 +103,30 @@ if (isfield(params,'ROI'))
else
ROI = find(X_ideal>=0.0);
end
-if (isfield(params,'Regul_LambdaTV'))
- lambdaTV = params.Regul_LambdaTV;
+if (isfield(params,'Regul_Lambda_FGPTV'))
+ lambdaFGP_TV = params.Regul_Lambda_FGPTV;
else
- lambdaTV = 0;
+ lambdaFGP_TV = 0;
+end
+if (isfield(params,'Regul_Lambda_SBTV'))
+ lambdaSB_TV = params.Regul_Lambda_SBTV;
+else
+ lambdaSB_TV = 0;
+end
+if (isfield(params,'Regul_Lambda_L1'))
+ lambdaL1 = params.Regul_Lambda_L1;
+else
+ lambdaL1 = 0;
end
if (isfield(params,'Regul_tol'))
tol = params.Regul_tol;
else
tol = 1.0e-04;
end
-if (isfield(params,'Regul_iterTV'))
- iterTV = params.Regul_iterTV;
+if (isfield(params,'Regul_Iterations'))
+ IterationsRegul = params.Regul_Iterations;
else
- iterTV = 25;
+ IterationsRegul = 25;
end
if (isfield(params,'Regul_LambdaHO'))
lambdaHO = params.Regul_LambdaHO;
@@ -125,8 +138,8 @@ if (isfield(params,'Regul_iterHO'))
else
iterHO = 50;
end
-if (isfield(params,'Regul_tauHO'))
- tauHO = params.Regul_tauHO;
+if (isfield(params,'Regul_tauLLT'))
+ tauHO = params.Regul_tauLLT;
else
tauHO = 0.0001;
end
@@ -191,132 +204,83 @@ end
Resid_error = zeros(iterFISTA,1); % error vector
objective = zeros(iterFISTA,1); % obhective vector
-if (lambdaR_L1 > 0)
- % do reconstruction WITH ring removal (Group-Huber fidelity)
t = 1;
X_t = X;
- add_ring = zeros(size(sino),'single'); % size of sinogram array
+ % add_ring = zeros(size(sino),'single'); % size of sinogram array
r = zeros(Detectors,SlicesZ, 'single'); % 2D array (for 3D data) of sparse "ring" vectors
- r_x = r;
+ r_x = r; % another ring variable
- % iterations loop
+
+ % Outer iterations loop
for i = 1:iterFISTA
X_old = X;
- t_old = t;
- r_old = r;
-
+ t_old = t;
+ r_old = r;
+
[sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- for kkk = 1:anglesNumb
- add_ring(:,kkk,:) = squeeze(sino(:,kkk,:)) - alpha_ring.*r_x;
- end
-
- residual = weights.*(sino_updt - add_ring);
-
- vec = sum(residual,2);
- if (SlicesZ > 1)
- vec = squeeze(vec(:,1,:));
- end
-
- r = r_x - (1./L_const).*vec;
-
+ if (lambdaR_L1 > 1)
+ % add ring removal part (Group-Huber fidelity)
+ for kkk = 1:anglesNumb
+ % add_ring(:,kkk,:) = squeeze(sino(:,kkk,:)) - alpha_ring.*r_x;
+ residual(:,kkk,:) = weights(:,kkk,:).*(sino_updt(:,kkk,:) - (squeeze(sino(:,kkk,:)) - alpha_ring.*r_x));
+ end
+
+ vec = sum(residual,2);
+ if (SlicesZ > 1)
+ vec = squeeze(vec(:,1,:));
+ end
+ r = r_x - (1./L_const).*vec;
+ else
+ % no ring removal
+ residual = weights.*(sino_updt - sino);
+ end
+ % residual = weights.*(sino_updt - add_ring);
+
[id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
X = X_t - (1/L_const).*x_temp;
astra_mex_data3d('delete', sino_id);
astra_mex_data3d('delete', id);
- if ((lambdaTV > 0) && (lambdaHO == 0))
- [X, f_val] = FGP_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
+ if (lambdaFGP_TV > 0)
+ % FGP-TV regularization
+ [X, f_val] = FGP_TV(single(X), lambdaFGP_TV, IterationsRegul, tol, 'iso');
objective(i) = 0.5.*norm(residual(:))^2 + f_val;
- % X = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
- elseif ((lambdaHO > 0) && (lambdaTV == 0))
- % Higher Order regularization
- X = LLT_model(single(X), lambdaHO, tauHO, iterHO, tol, 0); % LLT higher order model
- elseif ((lambdaTV > 0) && (lambdaHO > 0))
- %X1 = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
- X1 = FGP_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, 3.0e-05, 0); % LLT higher order model
- X = 0.5.*(X1 + X2); % averaged combination of two solutions
- elseif ((lambdaTV == 0) && (lambdaHO == 0))
+ elseif (lambdaSB_TV > 0)
+ % Split Bregman regularization
+ X = SplitBregman_TV(single(X), lambdaSB_TV, IterationsRegul, tol); % (more memory efficent)
+ objective(i) = 0.5.*norm(residual(:))^2;
+ elseif (lambdaL1 > 0)
+ % L1 soft-threhsolding regularization
+ X = max(abs(X)-lambdaL1, 0).*sign(X);
+ objective(i) = 0.5.*norm(residual(:))^2;
+ elseif (lambdaHO > 0)
+ % Higher Order (LLT) regularization
+ X2 = LLT_model(single(X), lambdaHO, tauHO, IterationsRegul, 3.0e-05, 0);
+ X = 0.5.*(X + X2); % averaged combination of two solutions
objective(i) = 0.5.*norm(residual(:))^2;
end
+ if (lambdaR_L1 > 1)
r = max(abs(r)-lambdaR_L1, 0).*sign(r); % soft-thresholding operator
+ end
t = (1 + sqrt(1 + 4*t^2))/2; % updating t
X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
+
+ if (lambdaR_L1 > 1)
r_x = r + ((t_old-1)/t).*(r - r_old); % updating r
+ end
if (show == 1)
figure(10); imshow(X(:,:,slice), [0 maxvalplot]);
+ if (lambdaR_L1 > 1)
figure(11); plot(r); title('Rings offset vector')
- pause(0.03);
- end
- if (strcmp(X_ideal, 'none' ) == 0)
- Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
- fprintf('%s %i %s %s %.4f %s %s %.4f \n', 'Iteration Number:', i, '|', 'Error RMSE:', Resid_error(i), '|', 'Objective:', objective(i));
- else
- fprintf('%s %i %s %s %.4f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
- end
-
- end
-
-else
- % WITHOUT ring removal
- t = 1;
- X_t = X;
-
- % FISTA outer iterations loop
- for i = 1:iterFISTA
-
- X_old = X;
- t_old = t;
-
- [sino_id, sino_updt] = astra_create_sino3d_cuda(X_t, proj_geom, vol_geom);
- residual = weights.*(sino_updt - sino);
-
- % employ students t fidelity term
- if (strcmp(fidelity,'student') == 1)
- res_vec = reshape(residual, anglesNumb*Detectors*SlicesZ,1);
- %s = 100;
- %gr = (2)*res_vec./(s*2 + conj(res_vec).*res_vec);
- [ff, gr] = studentst(res_vec,1);
- residual = reshape(gr, Detectors, anglesNumb, SlicesZ);
- end
-
- [id, x_temp] = astra_create_backprojection3d_cuda(residual, proj_geom, vol_geom);
- X = X_t - (1/L_const).*x_temp;
- astra_mex_data3d('delete', sino_id);
- astra_mex_data3d('delete', id);
-
- if ((lambdaTV > 0) && (lambdaHO == 0))
- [X,f_val] = FGP_TV(single(X), lambdaTV, iterTV, tol); % TV regularization using FISTA
- if (strcmp(fidelity,'student') == 1)
- objective(i) = ff + f_val;
- else
- objective(i) = 0.5.*norm(residual(:))^2 + f_val;
end
- %X = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
- elseif ((lambdaHO > 0) && (lambdaTV == 0))
- % Higher Order regularization
- X = LLT_model(single(X), lambdaHO, tauHO, iterHO, tol, 0); % LLT higher order model
- elseif ((lambdaTV > 0) && (lambdaHO > 0))
- X1 = SplitBregman_TV(single(X), lambdaTV, iterTV, tol); % TV-Split Bregman regularization on CPU (memory limited)
- X2 = LLT_model(single(X), lambdaHO, tauHO, iterHO, tol, 0); % LLT higher order model
- X = 0.5.*(X1 + X2); % averaged combination of two solutions
- elseif ((lambdaTV == 0) && (lambdaHO == 0))
- objective(i) = 0.5.*norm(residual(:))^2;
- end
-
- t = (1 + sqrt(1 + 4*t^2))/2; % updating t
- X_t = X + ((t_old-1)/t).*(X - X_old); % updating X
-
- if (show == 1)
- figure(11); imshow(X(:,:,slice), [0 maxvalplot]);
- pause(0.03);
+ pause(0.01);
end
if (strcmp(X_ideal, 'none' ) == 0)
Resid_error(i) = RMSE(X(ROI), X_ideal(ROI));
@@ -324,7 +288,7 @@ else
else
fprintf('%s %i %s %s %.4f \n', 'Iteration Number:', i, '|', 'Objective:', objective(i));
end
- end
+ end
end
output.Resid_error = Resid_error;
output.objective = objective;