diff options
author | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-03-08 14:22:43 +0000 |
---|---|---|
committer | Daniil Kazantsev <dkazanc@hotmail.com> | 2019-03-08 14:22:43 +0000 |
commit | 49761c3730e2ddf2ec40c84952572c43e9334ccb (patch) | |
tree | ca76282ad2a8ce7c67d55efb462ec9efa8ae8f21 /src/Python | |
parent | 47693d15132130513f8d0f74fd4831a3bbf69159 (diff) | |
download | regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.tar.gz regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.tar.bz2 regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.tar.xz regularization-49761c3730e2ddf2ec40c84952572c43e9334ccb.zip |
SBTV,LLTROF completed
Diffstat (limited to 'src/Python')
-rw-r--r-- | src/Python/ccpi/filters/regularisers.py | 30 | ||||
-rw-r--r-- | src/Python/src/cpu_regularisers.pyx | 132 | ||||
-rw-r--r-- | src/Python/src/gpu_regularisers.pyx | 72 |
3 files changed, 127 insertions, 107 deletions
diff --git a/src/Python/ccpi/filters/regularisers.py b/src/Python/ccpi/filters/regularisers.py index 05120af..09b465a 100644 --- a/src/Python/ccpi/filters/regularisers.py +++ b/src/Python/ccpi/filters/regularisers.py @@ -52,21 +52,30 @@ def FGP_TV(inputData, regularisation_parameter,iterations, raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) def SB_TV(inputData, regularisation_parameter, iterations, - tolerance_param, methodTV, printM, device='cpu'): + tolerance_param, methodTV, device='cpu'): if device == 'cpu': return TV_SB_CPU(inputData, regularisation_parameter, iterations, tolerance_param, - methodTV, - printM) + methodTV) elif device == 'gpu' and gpu_enabled: return TV_SB_GPU(inputData, regularisation_parameter, iterations, tolerance_param, - methodTV, - printM) + methodTV) + else: + if not gpu_enabled and device == 'gpu': + raise ValueError ('GPU is not available') + raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ + .format(device)) +def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, + time_marching_parameter, tolerance_param, device='cpu'): + if device == 'cpu': + return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param) + elif device == 'gpu' and gpu_enabled: + return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param) else: if not gpu_enabled and device == 'gpu': raise ValueError ('GPU is not available') @@ -194,17 +203,6 @@ def TGV(inputData, regularisation_parameter, alpha1, alpha0, iterations, raise ValueError ('GPU is not available') raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ .format(device)) -def LLT_ROF(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, - time_marching_parameter, device='cpu'): - if device == 'cpu': - return LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - elif device == 'gpu' and gpu_enabled: - return LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - else: - if not gpu_enabled and device == 'gpu': - raise ValueError ('GPU is not available') - raise ValueError('Unknown device {0}. Expecting gpu or cpu'\ - .format(device)) def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, iterations, time_marching_parameter, penalty_type): return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter, diff --git a/src/Python/src/cpu_regularisers.pyx b/src/Python/src/cpu_regularisers.pyx index aeca141..f2276bb 100644 --- a/src/Python/src/cpu_regularisers.pyx +++ b/src/Python/src/cpu_regularisers.pyx @@ -20,8 +20,8 @@ cimport numpy as np cdef extern float TV_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float TV_FGP_CPU_main(float *Input, float *Output, float *infovector, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int nonneg, int dimX, int dimY, int dimZ); -cdef extern float SB_TV_CPU_main(float *Input, float *Output, float lambdaPar, int iterationsNumb, float epsil, int methodTV, int printM, int dimX, int dimY, int dimZ); -cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); +cdef extern float SB_TV_CPU_main(float *Input, float *Output, float *infovector, float mu, int iter, float epsil, int methodTV, int dimX, int dimY, int dimZ); +cdef extern float LLT_ROF_CPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int dimX, int dimY, int dimZ); cdef extern float TGV_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); cdef extern float Diffusion_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ); cdef extern float Diffus4th_CPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int dimX, int dimY, int dimZ); @@ -149,18 +149,17 @@ def TV_FGP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, #********************** Total-variation SB *********************# #***************************************************************# #*************** Total-variation Split Bregman (SB)*************# -def TV_SB_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM): +def TV_SB_CPU(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV): if inputData.ndim == 2: - return TV_SB_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM) + return TV_SB_2D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV) elif inputData.ndim == 3: - return TV_SB_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV, printM) + return TV_SB_3D(inputData, regularisation_parameter, iterationsNumb, tolerance_param, methodTV) def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularisation_parameter, int iterationsNumb, float tolerance_param, - int methodTV, - int printM): + int methodTV): cdef long dims[2] dims[0] = inputData.shape[0] @@ -168,23 +167,24 @@ def TV_SB_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.zeros([2], dtype='float32') #/* Run SB-TV iterations for 2D data */ - SB_TV_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameter, + SB_TV_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], + regularisation_parameter, iterationsNumb, tolerance_param, methodTV, - printM, - dims[1],dims[0],1) + dims[1],dims[0], 1) - return outputData + return (outputData,infovec) def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, float regularisation_parameter, int iterationsNumb, float tolerance_param, - int methodTV, - int printM): + int methodTV): cdef long dims[3] dims[0] = inputData.shape[0] dims[1] = inputData.shape[1] @@ -192,16 +192,71 @@ def TV_SB_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.zeros([2], dtype='float32') + #/* Run SB-TV iterations for 3D data */ - SB_TV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameter, + SB_TV_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], + regularisation_parameter, iterationsNumb, tolerance_param, methodTV, - printM, dims[2], dims[1], dims[0]) - return outputData + return (outputData,infovec) +#***************************************************************# +#******************* ROF - LLT regularisation ******************# +#***************************************************************# +def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param): + if inputData.ndim == 2: + return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param) + elif inputData.ndim == 3: + return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param) +def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, + float regularisation_parameterROF, + float regularisation_parameterLLT, + int iterations, + float time_marching_parameter, + float tolerance_param): + + cdef long dims[2] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + + cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ + np.zeros([dims[0],dims[1]], dtype='float32') + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.zeros([2], dtype='float32') + + #/* Run ROF-LLT iterations for 2D data */ + LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], &infovec[0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, + tolerance_param, + dims[1],dims[0],1) + return (outputData,infovec) + +def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, + float regularisation_parameterROF, + float regularisation_parameterLLT, + int iterations, + float time_marching_parameter, + float tolerance_param): + + cdef long dims[3] + dims[0] = inputData.shape[0] + dims[1] = inputData.shape[1] + dims[2] = inputData.shape[2] + + cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ + np.zeros([dims[0], dims[1], dims[2]], dtype='float32') + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.zeros([2], dtype='float32') + + #/* Run ROF-LLT iterations for 3D data */ + LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameterROF, regularisation_parameterLLT, iterations, + time_marching_parameter, + tolerance_param, + dims[2], dims[1], dims[0]) + return (outputData,infovec) #***************************************************************# #***************** Total Generalised Variation *****************# #***************************************************************# @@ -259,49 +314,6 @@ def TGV_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, dims[2], dims[1], dims[0]) return outputData -#***************************************************************# -#******************* ROF - LLT regularisation ******************# -#***************************************************************# -def LLT_ROF_CPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter): - if inputData.ndim == 2: - return LLT_ROF_2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - elif inputData.ndim == 3: - return LLT_ROF_3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) - -def LLT_ROF_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, - float regularisation_parameterROF, - float regularisation_parameterLLT, - int iterations, - float time_marching_parameter): - - cdef long dims[2] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - - cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ - np.zeros([dims[0],dims[1]], dtype='float32') - - #/* Run ROF-LLT iterations for 2D data */ - LLT_ROF_CPU_main(&inputData[0,0], &outputData[0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1) - return outputData - -def LLT_ROF_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, - float regularisation_parameterROF, - float regularisation_parameterLLT, - int iterations, - float time_marching_parameter): - - cdef long dims[3] - dims[0] = inputData.shape[0] - dims[1] = inputData.shape[1] - dims[2] = inputData.shape[2] - - cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ - np.zeros([dims[0], dims[1], dims[2]], dtype='float32') - - #/* Run ROF-LLT iterations for 3D data */ - LLT_ROF_CPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0]) - return outputData #****************************************************************# #**************Directional Total-variation FGP ******************# diff --git a/src/Python/src/gpu_regularisers.pyx b/src/Python/src/gpu_regularisers.pyx index db4fa67..6fc4135 100644 --- a/src/Python/src/gpu_regularisers.pyx +++ b/src/Python/src/gpu_regularisers.pyx @@ -22,9 +22,9 @@ CUDAErrorMessage = 'CUDA error' cdef extern int TV_ROF_GPU_main(float* Input, float* Output, float *infovector, float lambdaPar, int iter, float tau, float epsil, int N, int M, int Z); cdef extern int TV_FGP_GPU_main(float *Input, float *Output, float *infovector, float lambdaPar, int iter, float epsil, int methodTV, int nonneg, int N, int M, int Z); -cdef extern int TV_SB_GPU_main(float *Input, float *Output, float lambdaPar, int iter, float epsil, int methodTV, int printM, int N, int M, int Z); +cdef extern int TV_SB_GPU_main(float *Input, float *Output, float *infovector, float lambdaPar, int iter, float epsil, int methodTV, int N, int M, int Z); +cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float *infovector, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, float epsil, int N, int M, int Z); cdef extern int TGV_GPU_main(float *Input, float *Output, float lambdaPar, float alpha1, float alpha0, int iterationsNumb, float L2, int dimX, int dimY, int dimZ); -cdef extern int LLT_ROF_GPU_main(float *Input, float *Output, float lambdaROF, float lambdaLLT, int iterationsNumb, float tau, int N, int M, int Z); cdef extern int NonlDiff_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int N, int M, int Z); cdef extern int dTV_FGP_GPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int N, int M, int Z); cdef extern int Diffus4th_GPU_main(float *Input, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int N, int M, int Z); @@ -75,28 +75,25 @@ def TV_SB_GPU(inputData, regularisation_parameter, iterations, tolerance_param, - methodTV, - printM): + methodTV): if inputData.ndim == 2: return SBTV2D(inputData, regularisation_parameter, iterations, tolerance_param, - methodTV, - printM) + methodTV) elif inputData.ndim == 3: return SBTV3D(inputData, regularisation_parameter, iterations, tolerance_param, - methodTV, - printM) + methodTV) # LLT-ROF model -def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter): +def LLT_ROF_GPU(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param): if inputData.ndim == 2: - return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) + return LLT_ROF_GPU2D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param) elif inputData.ndim == 3: - return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter) + return LLT_ROF_GPU3D(inputData, regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, tolerance_param) # Total Generilised Variation (TGV) def TGV_GPU(inputData, regularisation_parameter, alpha1, alpha0, iterations, LipshitzConst): if inputData.ndim == 2: @@ -300,8 +297,7 @@ def SBTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularisation_parameter, int iterations, float tolerance_param, - int methodTV, - int printM): + int methodTV): cdef long dims[2] dims[0] = inputData.shape[0] @@ -309,16 +305,17 @@ def SBTV2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.ones([2], dtype='float32') - # Running CUDA code here - if (TV_SB_GPU_main(&inputData[0,0], &outputData[0,0], + # Running CUDA code here + if (TV_SB_GPU_main(&inputData[0,0], &outputData[0,0],&infovec[0], regularisation_parameter, iterations, tolerance_param, methodTV, - printM, dims[1], dims[0], 1)==0): - return outputData; + return (outputData,infovec) else: raise ValueError(CUDAErrorMessage); @@ -327,8 +324,7 @@ def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, float regularisation_parameter, int iterations, float tolerance_param, - int methodTV, - int printM): + int methodTV): cdef long dims[3] dims[0] = inputData.shape[0] @@ -337,16 +333,17 @@ def SBTV3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0],dims[1],dims[2]], dtype='float32') - + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.ones([2], dtype='float32') + # Running CUDA code here - if (TV_SB_GPU_main(&inputData[0,0,0], &outputData[0,0,0], + if (TV_SB_GPU_main(&inputData[0,0,0], &outputData[0,0,0],&infovec[0], regularisation_parameter , iterations, tolerance_param, methodTV, - printM, dims[2], dims[1], dims[0])==0): - return outputData; + return (outputData,infovec) else: raise ValueError(CUDAErrorMessage); @@ -359,7 +356,8 @@ def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, float regularisation_parameterROF, float regularisation_parameterLLT, int iterations, - float time_marching_parameter): + float time_marching_parameter, + float tolerance_param): cdef long dims[2] dims[0] = inputData.shape[0] @@ -367,10 +365,15 @@ def LLT_ROF_GPU2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \ np.zeros([dims[0],dims[1]], dtype='float32') - + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.ones([2], dtype='float32') + # Running CUDA code here - if (LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[1],dims[0],1)==0): - return outputData; + if (LLT_ROF_GPU_main(&inputData[0,0], &outputData[0,0],&infovec[0],regularisation_parameterROF, regularisation_parameterLLT, iterations, + time_marching_parameter, + tolerance_param, + dims[1],dims[0],1)==0): + return (outputData,infovec) else: raise ValueError(CUDAErrorMessage); @@ -379,7 +382,8 @@ def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, float regularisation_parameterROF, float regularisation_parameterLLT, int iterations, - float time_marching_parameter): + float time_marching_parameter, + float tolerance_param): cdef long dims[3] dims[0] = inputData.shape[0] @@ -388,10 +392,16 @@ def LLT_ROF_GPU3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData, cdef np.ndarray[np.float32_t, ndim=3, mode="c"] outputData = \ np.zeros([dims[0],dims[1],dims[2]], dtype='float32') + cdef np.ndarray[np.float32_t, ndim=1, mode="c"] infovec = \ + np.ones([2], dtype='float32') - # Running CUDA code here - if (LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], regularisation_parameterROF, regularisation_parameterLLT, iterations, time_marching_parameter, dims[2], dims[1], dims[0])==0): - return outputData; + # Running CUDA code here + if (LLT_ROF_GPU_main(&inputData[0,0,0], &outputData[0,0,0], &infovec[0], regularisation_parameterROF, regularisation_parameterLLT, + iterations, + time_marching_parameter, + tolerance_param, + dims[2], dims[1], dims[0])==0): + return (outputData,infovec) else: raise ValueError(CUDAErrorMessage); |