summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c48
-rw-r--r--Wrappers/Python/demos/demo_cpu_inpainters.py6
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx12
3 files changed, 48 insertions, 18 deletions
diff --git a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
index 3a846bb..a197375 100644
--- a/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
+++ b/Core/inpainters_CPU/NonlocalMarching_Inpaint_core.c
@@ -42,7 +42,7 @@ float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Outpu
{
int i, j, i_m, j_m, counter, iter, iterations_number, W_fullsize, switchmask, switchcurr, counterElements;
float *Gauss_weights;
-
+
/* copying M to M_upd */
copyIm_unchar(M, M_upd, dimX, dimY, 1);
@@ -54,11 +54,11 @@ float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Outpu
iterations_number = 0;
for (i=0; i<dimY*dimX; i++) {
if (M[i] == 1) iterations_number++;
- }
+ }
+ if ((int)(iterations_number/dimY) > dimX) iterations_number = dimX;
}
- else iterations_number = (int)(iterationsNumb/dimX);
- if (iterations_number > dimX) iterations_number = dimX;
-
+ else iterations_number = iterationsNumb;
+
if (iterations_number == 0) printf("%s \n", "Nothing to inpaint, zero mask!");
else {
@@ -81,11 +81,38 @@ float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Outpu
counter++;
}
}
+
+ if (trigger == 0) {
+ /*Matlab*/
+ #pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr)
+ for(j=0; j<dimY; j++) {
+ switchmask = 0;
+ for(i=0; i<dimX; i++) {
+ switchcurr = 0;
+ if ((M_upd[j*dimX + i] == 1) && (switchmask == 0)) {
+ /* perform inpainting of the current pixel */
+ inpaint_func(Output, M_upd, Gauss_weights, i, j, dimX, dimY, W_halfsize, W_fullsize);
+ /* add value to the mask*/
+ M_upd[j*dimX + i] = 0;
+ switchmask = 1; switchcurr = 1;
+ }
+ if ((M_upd[j*dimX + i] == 0) && (switchmask == 1) && (switchcurr == 0)) {
+ /* perform inpainting of the previous (i-1) pixel */
+ inpaint_func(Output, M_upd, Gauss_weights, i-1, j, dimX, dimY, W_halfsize, W_fullsize);
+ /* add value to the mask*/
+ M_upd[(j)*dimX + i-1] = 0;
+ switchmask = 0;
+ }
+ }
+ }
+ }
+ else {
+ /*Python*/
/* find a point in the mask to inpaint */
#pragma omp parallel for shared(Output, M_upd, Gauss_weights) private(i, j, switchmask, switchcurr)
- for(j=0; j<dimY; j++) {
- switchmask = 0;
- for(i=0; i<dimX; i++) {
+ for(i=0; i<dimX; i++) {
+ switchmask = 0;
+ for(j=0; j<dimY; j++) {
switchcurr = 0;
if ((M_upd[j*dimX + i] == 1) && (switchmask == 0)) {
/* perform inpainting of the current pixel */
@@ -96,13 +123,14 @@ float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Outpu
}
if ((M_upd[j*dimX + i] == 0) && (switchmask == 1) && (switchcurr == 0)) {
/* perform inpainting of the previous (j-1) pixel */
- inpaint_func(Output, M_upd, Gauss_weights, i-1, j, dimX, dimY, W_halfsize, W_fullsize);
+ inpaint_func(Output, M_upd, Gauss_weights, i, j-1, dimX, dimY, W_halfsize, W_fullsize);
/* add value to the mask*/
- M_upd[(j)*dimX + i-1] = 0;
+ M_upd[(j-1)*dimX + i] = 0;
switchmask = 0;
}
}
}
+ }
free(Gauss_weights);
/* check if possible to terminate iterations earlier */
diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py
index 7f452c1..9197e91 100644
--- a/Wrappers/Python/demos/demo_cpu_inpainters.py
+++ b/Wrappers/Python/demos/demo_cpu_inpainters.py
@@ -55,6 +55,7 @@ plt.imshow(mask)
plt.title('Mask')
plt.show()
#%%
+"""
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("___Inpainting using linear diffusion (2D)__")
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
@@ -111,7 +112,7 @@ fig = plt.figure(3)
plt.suptitle('Performance of nonlinear diffusion inpainting using the CPU')
a=fig.add_subplot(1,2,1)
a.set_title('Missing data sinogram')
-imgplot = plt.imshow(sino_cut,cmap="gray")
+imgplot = plt.imshow(sino_cut_new,cmap="gray")
# set parameters
pars = {'algorithm' : NDF_INP, \
@@ -148,6 +149,7 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray")
plt.title('{}'.format('Nonlinear diffusion inpainting results'))
+"""
#%%
print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
print ("Inpainting using nonlocal vertical marching")
@@ -165,7 +167,7 @@ pars = {'algorithm' : NVM_INP, \
'input' : sino_cut_new,\
'maskData' : mask,\
'SW_increment': 1,\
- 'number_of_iterations' :0
+ 'number_of_iterations' : 150
}
start_time = timeit.default_timer()
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index 7c06c28..732b4cb 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -27,7 +27,6 @@ cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output,
cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int dimX, int dimY, int dimZ);
-
#****************************************************************#
#********************** Total-variation ROF *********************#
#****************************************************************#
@@ -374,14 +373,14 @@ def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
#*********************Inpainting WITH****************************#
#***************Nonlocal Vertical Marching method****************#
#****************************************************************#
-def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations):
+def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterationsNumb):
if inputData.ndim == 2:
- return NVM_INP_2D(inputData, maskData, SW_increment, iterations)
+ return NVM_INP_2D(inputData, maskData, SW_increment, iterationsNumb)
elif inputData.ndim == 3:
return
def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
- np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
+ np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
int SW_increment,
int iterationsNumb):
cdef long dims[2]
@@ -395,7 +394,8 @@ def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
np.zeros([dims[0],dims[1]], dtype='uint8')
# Run Inpaiting by Nonlocal vertical marching method for 2D data
- NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], &maskData_upd[0,0],
- SW_increment, iterationsNumb,dims[1], dims[0], 1)
+ NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0],
+ &maskData_upd[0,0],
+ SW_increment, iterationsNumb, dims[1], dims[0], 1)
return (outputData, maskData_upd)