diff options
| -rw-r--r-- | Wrappers/Python/fista_module.cpp | 18 | ||||
| -rw-r--r-- | Wrappers/Python/setup.py | 9 | 
2 files changed, 19 insertions, 8 deletions
| diff --git a/Wrappers/Python/fista_module.cpp b/Wrappers/Python/fista_module.cpp index f3add76..bb43b84 100644 --- a/Wrappers/Python/fista_module.cpp +++ b/Wrappers/Python/fista_module.cpp @@ -592,6 +592,8 @@ bp::list FGP_TV(np::ndarray input, double d_mu, int iter, double d_epsil, int me  bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, double d_epsil, int switcher) {  	// the result is in the following list  	bp::list result; +	 +	std::cout << "Calling LLT_model" << std::endl;  	int number_of_dims, dimX, dimY, dimZ, ll, j, count;  	//const int  *dim_array; @@ -644,7 +646,8 @@ bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, d  		np::ndarray npD1 = np::zeros(shape, dtype);  		np::ndarray npD2 = np::zeros(shape, dtype); - +        //result.append<np::ndarray>(npU); +		  		U = reinterpret_cast<float *>(npU.get_data());  		U_old = reinterpret_cast<float *>(npU_old.get_data());  		D1 = reinterpret_cast<float *>(npD1.get_data()); @@ -657,7 +660,7 @@ bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, d  		re_old = 0.0f;  		for (ll = 0; ll < iter; ll++) { - +			std::cout << "iteration " << ll << " of " << iter << " count " << count <<std::endl;  			copyIm(U, U_old, dimX, dimY, dimZ);  			/*estimate inner derrivatives */ @@ -683,9 +686,11 @@ bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, d  			re_old = re;  		} /*end of iterations*/ -		  //printf("HO iterations stopped at iteration: %i\n", ll); - +		  printf("HO iterations stopped at iteration: %i\n", ll);  		result.append<np::ndarray>(npU); +		std::cout << "npU shape " << bp::extract<char const *>(bp::str(shape)) <<std::endl; +		std::cout << "npU  " << bp::extract<char const *>(bp::str(npU)) <<std::endl; +		  	}  	else if (number_of_dims == 3) {  		/*3D case*/ @@ -766,6 +771,11 @@ bp::list LLT_model(np::ndarray input, double d_lambda, double d_tau, int iter, d  		if (switcher != 0) result.append<np::ndarray>(npMap);  	} +	std::cout << "Call to LLT_model ended" << std::endl; +	std::cout << "result length " << bp::len(result) << std::endl; +	//std::cout << "npU shape " << bp::extract<char const *>(bp::str(shape)) <<std::endl; +	std::cout << "npU  " << bp::extract<char const *>(bp::str(result[0])) <<std::endl; +			  	return result;  } diff --git a/Wrappers/Python/setup.py b/Wrappers/Python/setup.py index ef20a27..d2129b0 100644 --- a/Wrappers/Python/setup.py +++ b/Wrappers/Python/setup.py @@ -32,8 +32,9 @@ extra_compile_args = []  extra_link_args = []  extra_libraries = ['cilreg'] -extra_include_dirs += [os.path.join(".." , ".." , "Core",  "regularizers_CPU"), -                       	   os.path.join(".." , ".." , "Core",  "regularizers_GPU") ,  +extra_include_dirs += [os.path.join(".." , ".." , "Core"), +					   os.path.join(".." , ".." , "Core",  "regularizers_CPU"), +                       os.path.join(".." , ".." , "Core",  "regularizers_GPU") ,   						   "."]  if platform.system() == 'Windows': @@ -57,7 +58,7 @@ setup(  	description='CCPi Core Imaging Library - Image Regularizers',  	version=cil_version,      cmdclass = {'build_ext': build_ext}, -    ext_modules = [Extension("ccpi.imaging.cpu_regularizers", +    ext_modules = [Extension("ccpi.filters.cpu_regularizers",                               sources=[os.path.join("." , "fista_module.cpp" ),                                       # os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "FGP_TV_core.c"),  									 # os.path.join("@CMAKE_SOURCE_DIR@" , "main_func" ,  "regularizers_CPU", "SplitBregman_TV_core.c"), @@ -73,7 +74,7 @@ setup(      ],  	zip_safe = False,	 -	packages = {'ccpi','ccpi.imaging'}, +	packages = {'ccpi','ccpi.filters'},  ) | 
