summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Wrappers/Python/ccpi/filters/regularisers.py5
-rw-r--r--Wrappers/Python/demos/demo_cpu_inpainters.py45
-rw-r--r--Wrappers/Python/src/cpu_regularisers.pyx31
3 files changed, 77 insertions, 4 deletions
diff --git a/Wrappers/Python/ccpi/filters/regularisers.py b/Wrappers/Python/ccpi/filters/regularisers.py
index 8120f72..a07b39a 100644
--- a/Wrappers/Python/ccpi/filters/regularisers.py
+++ b/Wrappers/Python/ccpi/filters/regularisers.py
@@ -2,7 +2,7 @@
script which assigns a proper device core function based on a flag ('cpu' or 'gpu')
"""
-from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, NDF_INPAINT_CPU
+from ccpi.filters.cpu_regularisers import TV_ROF_CPU, TV_FGP_CPU, TV_SB_CPU, dTV_FGP_CPU, TNV_CPU, NDF_CPU, NDF_INPAINT_CPU, NVM_INPAINT_CPU
from ccpi.filters.gpu_regularisers import TV_ROF_GPU, TV_FGP_GPU, TV_SB_GPU, dTV_FGP_GPU, NDF_GPU
def ROF_TV(inputData, regularisation_parameter, iterations,
@@ -114,3 +114,6 @@ def NDF_INP(inputData, maskData, regularisation_parameter, edge_parameter, itera
time_marching_parameter, penalty_type):
return NDF_INPAINT_CPU(inputData, maskData, regularisation_parameter,
edge_parameter, iterations, time_marching_parameter, penalty_type)
+
+def NVM_INP(inputData, maskData, SW_increment, iterations):
+ return NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations)
diff --git a/Wrappers/Python/demos/demo_cpu_inpainters.py b/Wrappers/Python/demos/demo_cpu_inpainters.py
index b067b11..ab7ed2f 100644
--- a/Wrappers/Python/demos/demo_cpu_inpainters.py
+++ b/Wrappers/Python/demos/demo_cpu_inpainters.py
@@ -10,7 +10,7 @@ import numpy as np
import os
import timeit
from scipy import io
-from ccpi.filters.regularisers import NDF_INP
+from ccpi.filters.regularisers import NDF_INP, NVM_INP
from qualitymetrics import rmse
###############################################################################
def printParametersToString(pars):
@@ -146,4 +146,45 @@ a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
verticalalignment='top', bbox=props)
imgplot = plt.imshow(ndf_inp_nonlinear, cmap="gray")
plt.title('{}'.format('Nonlinear diffusion inpainting results'))
-#%% \ No newline at end of file
+#%%
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+print ("Inpainting using nonlocal vertical marching")
+print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
+
+## plot
+fig = plt.figure(4)
+plt.suptitle('Performance of NVM inpainting using the CPU')
+a=fig.add_subplot(1,2,1)
+a.set_title('Missing data sinogram')
+imgplot = plt.imshow(sino_cut,cmap="gray")
+
+# set parameters
+pars = {'algorithm' : NVM_INP, \
+ 'input' : sino_cut_new,\
+ 'maskData' : mask,\
+ 'SW_increment': 1,\
+ 'number_of_iterations' :20
+ }
+
+start_time = timeit.default_timer()
+nvm_inp = NVM_INP(pars['input'],
+ pars['maskData'],
+ pars['SW_increment'],
+ pars['number_of_iterations'])
+
+rms = rmse(sino_full, nvm_inp)
+pars['rmse'] = rms
+
+txtstr = printParametersToString(pars)
+txtstr += "%s = %.3fs" % ('elapsed time',timeit.default_timer() - start_time)
+print (txtstr)
+a=fig.add_subplot(1,2,2)
+
+# these are matplotlib.patch.Patch properties
+props = dict(boxstyle='round', facecolor='wheat', alpha=0.75)
+# place a text box in upper left in axes coords
+a.text(0.15, 0.25, txtstr, transform=a.transAxes, fontsize=14,
+ verticalalignment='top', bbox=props)
+imgplot = plt.imshow(nvm_inp, cmap="gray")
+plt.title('{}'.format('Nonlocal Vertical Marching inpainting results'))
+#%%
diff --git a/Wrappers/Python/src/cpu_regularisers.pyx b/Wrappers/Python/src/cpu_regularisers.pyx
index 3625106..19dd707 100644
--- a/Wrappers/Python/src/cpu_regularisers.pyx
+++ b/Wrappers/Python/src/cpu_regularisers.pyx
@@ -26,7 +26,7 @@ cdef extern float TNV_CPU_main(float *Input, float *u, float lambdaPar, int maxI
cdef extern float dTV_FGP_CPU_main(float *Input, float *InputRef, float *Output, float lambdaPar, int iterationsNumb, float epsil, float eta, int methodTV, int nonneg, int printM, int dimX, int dimY, int dimZ);
cdef extern float Diffusion_Inpaint_CPU_main(float *Input, unsigned char *Mask, float *Output, float lambdaPar, float sigmaPar, int iterationsNumb, float tau, int penaltytype, int dimX, int dimY, int dimZ);
-#cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int dimX, int dimY, int dimZ);
+cdef extern float NonlocalMarching_Inpaint_main(float *Input, unsigned char *M, float *Output, unsigned char *M_upd, int SW_increment, int iterationsNumb, int dimX, int dimY, int dimZ);
#****************************************************************#
#********************** Total-variation ROF *********************#
@@ -369,3 +369,32 @@ def NDF_INP_3D(np.ndarray[np.float32_t, ndim=3, mode="c"] inputData,
Diffusion_Inpaint_CPU_main(&inputData[0,0,0], &maskData[0,0,0], &outputData[0,0,0], regularisation_parameter, edge_parameter, iterationsNumb, time_marching_parameter, penalty_type, dims[2], dims[1], dims[0])
return outputData
+#*********************Inpainting WITH****************************#
+#***************Nonlocal Vertical Marching method****************#
+#****************************************************************#
+def NVM_INPAINT_CPU(inputData, maskData, SW_increment, iterations):
+ if inputData.ndim == 2:
+ return NVM_INP_2D(inputData, maskData, SW_increment, iterations)
+ elif inputData.ndim == 3:
+ return
+
+def NVM_INP_2D(np.ndarray[np.float32_t, ndim=2, mode="c"] inputData,
+ np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData,
+ int SW_increment,
+ int iterationsNumb):
+ cdef long dims[2]
+ dims[0] = inputData.shape[0]
+ dims[1] = inputData.shape[1]
+
+ cdef np.ndarray[np.float32_t, ndim=2, mode="c"] outputData = \
+ np.zeros([dims[0],dims[1]], dtype='float32')
+
+ cdef np.ndarray[np.uint8_t, ndim=2, mode="c"] maskData_upd = \
+ np.zeros([dims[0],dims[1]], dtype='uint8')
+
+ # Run Inpaiting by Nonlocal vertical marching method for 2D data
+ NonlocalMarching_Inpaint_main(&inputData[0,0], &maskData[0,0], &outputData[0,0], &maskData_upd[0,0],
+ SW_increment, iterationsNumb,
+ dims[0], dims[1], 1)
+
+ return outputData