diff options
-rw-r--r-- | src/Python/test_regularizers.py | 124 |
1 files changed, 85 insertions, 39 deletions
diff --git a/src/Python/test_regularizers.py b/src/Python/test_regularizers.py index 755804a..86849eb 100644 --- a/src/Python/test_regularizers.py +++ b/src/Python/test_regularizers.py @@ -5,15 +5,15 @@ Created on Fri Aug 4 11:10:05 2017 @author: ofn77899 """ -from ccpi.viewer.CILViewer2D import Converter -import vtk +#from ccpi.viewer.CILViewer2D import Converter +#import vtk import matplotlib.pyplot as plt import numpy as np import os from enum import Enum import timeit - +#from PIL import Image #from Regularizer import Regularizer from ccpi.imaging.Regularizer import Regularizer @@ -46,12 +46,20 @@ def nrmse(im1, im2): # u0 = Im + .05*randn(size(Im)); u0(u0 < 0) = 0; # u = SplitBregman_TV(single(u0), 10, 30, 1e-04); -filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" -reader = vtk.vtkTIFFReader() -reader.SetFileName(os.path.normpath(filename)) -reader.Update() +#filename = r"C:\Users\ofn77899\Documents\GitHub\CCPi-FISTA_reconstruction\data\lena_gray_512.tif" +#reader = vtk.vtkTIFFReader() +#reader.SetFileName(os.path.normpath(filename)) +#reader.Update() #vtk returns 3D images, let's take just the one slice there is as 2D -Im = Converter.vtk2numpy(reader.GetOutput()).T[0]/255 +#Im = Converter.vtk2numpy(reader.GetOutput()).T[0]/255 +filename = '/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif' +Im = plt.imread(filename) +#Im = Image.open('/home/algol/Documents/Python/STD_test_images/lena_gray_512.tif')/255 +#img.show() +Im = np.asarray(Im, dtype='float32') + + + #imgplot = plt.imshow(Im) perc = 0.05 @@ -80,6 +88,7 @@ reg_output = [] use_object = True if use_object: reg = Regularizer(Regularizer.Algorithm.SplitBregman_TV) + print (reg.pars) reg.setParameter(input=u0) reg.setParameter(regularization_parameter=10.) # or @@ -113,7 +122,7 @@ props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) -imgplot = plt.imshow(plotme) +imgplot = plt.imshow(plotme,cmap="gray") ###################### FGP_TV ######################################### # u = FGP_TV(single(u0), 0.05, 100, 1e-04); @@ -129,10 +138,28 @@ textstr = out2[-1] # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - verticalalignment='top', bbox=props) + verticalalignment='top', bbox=props) imgplot = plt.imshow(reg_output[-1][0]) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") ###################### LLT_model ######################################### # * u0 = Im + .03*randn(size(Im)); % adding noise @@ -149,13 +176,32 @@ pars = out2[-2] reg_output.append(out2) a=fig.add_subplot(2,3,4) +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) + +a=fig.add_subplot(2,3,5) + + +textstr = out2[-1] + +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") + textstr = out2[-1] # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # place a text box in upper left in axes coords a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, verticalalignment='top', bbox=props) -imgplot = plt.imshow(reg_output[-1][0]) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") # ###################### PatchBased_Regul ######################################### # # Quick 2D denoising example in Matlab: @@ -163,24 +209,24 @@ imgplot = plt.imshow(reg_output[-1][0]) # # u0 = Im + .03*randn(size(Im)); u0(u0<0) = 0; % adding noise # # ImDen = PB_Regul_CPU(single(u0), 3, 1, 0.08, 0.05); -# out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, - # searching_window_ratio=3, - # similarity_window_ratio=1, - # PB_filtering_parameter=0.08) -# pars = out2[-2] -# reg_output.append(out2) +out2 = Regularizer.PatchBased_Regul(input=u0, regularization_parameter=0.05, + searching_window_ratio=3, + similarity_window_ratio=1, + PB_filtering_parameter=0.08) +pars = out2[-2] +reg_output.append(out2) -# a=fig.add_subplot(2,3,5) +a=fig.add_subplot(2,3,5) -# textstr = out2[-1] +textstr = out2[-1] -# # these are matplotlib.patch.Patch properties -# props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# # place a text box in upper left in axes coords -# a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - # verticalalignment='top', bbox=props) -# imgplot = plt.imshow(reg_output[-1][0]) +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") # ###################### TGV_PD ######################################### @@ -190,25 +236,25 @@ imgplot = plt.imshow(reg_output[-1][0]) # # u = PrimalDual_TGV(single(u0), 0.02, 1.3, 1, 550); -# out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, - # first_order_term=1.3, - # second_order_term=1, - # number_of_iterations=550) -# pars = out2[-2] -# reg_output.append(out2) +out2 = Regularizer.TGV_PD(input=u0, regularization_parameter=0.05, + first_order_term=1.3, + second_order_term=1, + number_of_iterations=550) +pars = out2[-2] +reg_output.append(out2) -# a=fig.add_subplot(2,3,6) +a=fig.add_subplot(2,3,6) -# textstr = out2[-1] +textstr = out2[-1] -# # these are matplotlib.patch.Patch properties -# props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) -# # place a text box in upper left in axes coords -# a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, - # verticalalignment='top', bbox=props) -# imgplot = plt.imshow(reg_output[-1][0]) +# these are matplotlib.patch.Patch properties +props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) +# place a text box in upper left in axes coords +a.text(0.05, 0.95, textstr, transform=a.transAxes, fontsize=14, + verticalalignment='top', bbox=props) +imgplot = plt.imshow(reg_output[-1][0],cmap="gray") plt.show() |