diff options
Diffstat (limited to 'Wrappers/Matlab/demos')
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m | 15 | ||||
-rw-r--r-- | Wrappers/Matlab/demos/demoMatlab_denoise.m | 16 |
2 files changed, 21 insertions, 10 deletions
diff --git a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m index 5cc47b3..23cda32 100644 --- a/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_3Ddenoise.m @@ -2,11 +2,13 @@ clear; close all Path1 = sprintf(['..' filesep 'mex_compile' filesep 'installed'], 1i); Path2 = sprintf(['..' filesep '..' filesep '..' filesep 'data' filesep], 1i); +Path3 = sprintf(['..' filesep 'supp'], 1i); addpath(Path1); addpath(Path2); +addpath(Path3); N = 512; -slices = 15; +slices = 7; vol3D = zeros(N,N,slices, 'single'); Ideal3D = zeros(N,N,slices, 'single'); Im = double(imread('lena_gray_512.tif'))/255; % loading image @@ -131,7 +133,16 @@ figure; imshow(u_diff4(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (CP % fprintf('%s %f \n', 'RMSE error for Anis.Diff of 4th order is:', rmse_diff4); % figure; imshow(u_diff4_g(:,:,7), [0 1]); title('Diffusion 4thO denoised volume (GPU)'); %% - +fprintf('Denoise using the TGV model (CPU) \n'); +lambda_TGV = 0.05; % regularisation parameter +alpha1 = 1.0; % parameter to control the first-order term +alpha0 = 2.0; % parameter to control the second-order term +iter_TGV = 40; % number of Primal-Dual iterations for TGV +tic; u_tgv = TGV(single(vol3D), lambda_TGV, alpha1, alpha0, iter_TGV, 128); toc; +rmseTGV = RMSE(Ideal3D(:),u_tgv(:)); +fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); +figure; imshow(u_tgv(:,:,3), [0 1]); title('TGV denoised volume (CPU)'); +%% %>>>>>>>>>>>>>> MULTI-CHANNEL priors <<<<<<<<<<<<<<< % fprintf('Denoise a volume using the FGP-dTV model (CPU) \n'); diff --git a/Wrappers/Matlab/demos/demoMatlab_denoise.m b/Wrappers/Matlab/demos/demoMatlab_denoise.m index 3506cca..14d3096 100644 --- a/Wrappers/Matlab/demos/demoMatlab_denoise.m +++ b/Wrappers/Matlab/demos/demoMatlab_denoise.m @@ -60,20 +60,20 @@ figure; imshow(u_sb, [0 1]); title('SB-TV denoised image (CPU)'); % figure; imshow(u_sbG, [0 1]); title('SB-TV denoised image (GPU)'); %% fprintf('Denoise using the TGV model (CPU) \n'); -lambda_TGV = 0.04; % regularisation parameter -alpha1 = 1; % parameter to control the first-order term -alpha0 = 0.7; % parameter to control the second-order term -iter_TGV = 500; % number of Primal-Dual iterations for TGV +lambda_TGV = 0.045; % regularisation parameter +alpha1 = 1.0; % parameter to control the first-order term +alpha0 = 2.0; % parameter to control the second-order term +iter_TGV = 2000; % number of Primal-Dual iterations for TGV tic; u_tgv = TGV(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; rmseTGV = (RMSE(u_tgv(:),Im(:))); fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV); figure; imshow(u_tgv, [0 1]); title('TGV denoised image (CPU)'); %% % fprintf('Denoise using the TGV model (GPU) \n'); -% lambda_TGV = 0.04; % regularisation parameter -% alpha1 = 1; % parameter to control the first-order term -% alpha0 = 0.7; % parameter to control the second-order term -% iter_TGV = 500; % number of Primal-Dual iterations for TGV +% lambda_TGV = 0.045; % regularisation parameter +% alpha1 = 1.0; % parameter to control the first-order term +% alpha0 = 2.0; % parameter to control the second-order term +% iter_TGV = 2000; % number of Primal-Dual iterations for TGV % tic; u_tgv_gpu = TGV_GPU(single(u0), lambda_TGV, alpha1, alpha0, iter_TGV); toc; % rmseTGV_gpu = (RMSE(u_tgv_gpu(:),Im(:))); % fprintf('%s %f \n', 'RMSE error for TGV is:', rmseTGV_gpu); |